Interplay Between Vitamin D Levels and Heavy Metals Exposure in Pregnancy and Childbirth: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Protocol
2.2. Eligibility Criteria
2.3. Search Strategy
2.4. Study Quality Assessment
- Q1 (high quality, low risk of bias): ≥75% “yes” responses;
- Q2 (moderate quality, unclear risk of bias): ≥50–74% “yes” responses;
- Q3 (low quality, high risk of bias): ≥50–74% “no” responses.
2.5. PECO Statement
2.6. Data Extraction
3. Results
3.1. Study Selection and Characteristics
3.2. Associations Between VD Levels and Heavy Metal Exposure During Pregnancy
4. Discussion
4.1. Limitations
4.2. Future Directions
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Holick, M.F.; Binkley, N.C.; Bischoff-Ferrari, H.A.; Gordon, C.M.; Hanley, D.A.; Heaney, R.P.; Murad, M.H.; Weaver, C.M. Evaluation, treatment, and prevention of vitamin D deficiency: An Endocrine Society clinical practice guideline. J. Clin. Endocrinol. Metab. 2011, 96, 1911–1930. [Google Scholar] [CrossRef] [PubMed]
- Poel, Y.; Hummel, P.; Lips, P.; Stam, F.; Van Der Ploeg, T.; Simsek, S. Vitamin D and gestational diabetes: A systematic review and meta-analysis. Eur. J. Intern. Med. 2012, 23, 465–469. [Google Scholar] [CrossRef] [PubMed]
- Aghajafari, F.; Nagulesapillai, T.; Ronksley, P.E.; Tough, S.C.; O’Beirne, M.; Rabi, D.M. Association between maternal serum 25-hydroxyvitamin D level and pregnancy and neonatal outcomes: Systematic review and meta-analysis of observational studies. BMJ 2013, 346, f1169. [Google Scholar] [CrossRef]
- Zhang, M.-X.; Pan, G.-T.; Guo, J.-F.; Li, B.-Y.; Qin, L.-Q.; Zhang, Z.-L. Vitamin D deficiency increases the risk of gestational diabetes mellitus: A meta-analysis of observational studies. Nutrients 2015, 7, 8366–8375. [Google Scholar] [CrossRef] [PubMed]
- Tabesh, M.; Salehi-Abargouei, A.; Tabesh, M.; Esmaillzadeh, A. Maternal vitamin D status and risk of pre-eclampsia: A systematic review and meta-analysis. J. Clin. Endocrinol. Metab. 2013, 98, 3165–3173. [Google Scholar] [CrossRef]
- Akbari, S.; Khodadadi, B.; Ahmadi, S.A.Y.; Abbaszadeh, S.; Shahsavar, F. Association of vitamin D level and vitamin D deficiency with risk of preeclampsia: A systematic review and updated meta-analysis. Taiwan. J. Obstet. Gynecol. 2018, 57, 241–247. [Google Scholar] [CrossRef]
- Yuan, Y.; Tai, W.; Xu, P.; Fu, Z.; Wang, X.; Long, W.; Guo, X.; Ji, C.; Zhang, L.; Zhang, Y. Association of maternal serum 25-hydroxyvitamin D concentrations with risk of preeclampsia: A nested case-control study and meta-analysis. J. Matern. Fetal Neonatal Med. 2021, 34, 1576–1585. [Google Scholar] [CrossRef]
- Lima, M.S.; Pereira, M.; Castro, C.T.; Santos, D.B. Vitamin D deficiency and anemia in pregnant women: A systematic review and meta-analysis. Nutr. Rev. 2022, 80, 428–438. [Google Scholar] [CrossRef]
- Qin, L.-L.; Lu, F.-G.; Yang, S.-H.; Xu, H.-L.; Luo, B.-A. Does maternal vitamin D deficiency increase the risk of preterm birth: A meta-analysis of observational studies. Nutrients 2016, 8, 301. [Google Scholar] [CrossRef]
- Lian, R.-H.; Qi, P.-A.; Yuan, T.; Yan, P.-J.; Qiu, W.-W.; Wei, Y.; Hu, Y.-G.; Yang, K.-H.; Yi, B. Systematic review and meta-analysis of vitamin D deficiency in different pregnancy on preterm birth: Deficiency in middle pregnancy might be at risk. Medicine 2021, 100, e26303. [Google Scholar] [CrossRef]
- Zhang, H.; Huang, Z.; Xiao, L.; Jiang, X.; Chen, D.; Wei, Y. Meta-analysis of the effect of the maternal vitamin D level on the risk of spontaneous pregnancy loss. Int. J. Gynecol. Obstet. 2017, 138, 242–249. [Google Scholar] [CrossRef] [PubMed]
- Tamblyn, J.A.; Pilarski, N.S.; Markland, A.D.; Marson, E.J.; Devall, A.; Hewison, M.; Morris, R.K.; Coomarasamy, A. Vitamin D and miscarriage: A systematic review and meta-analysis. Fertil. Steril. 2022, 118, 111–122. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Wang, S.; Zhang, C.; Wu, X.; Zhou, L.; Zou, X.; Guan, T.; Zhang, Z.; Hao, J. Association between serum vitamin D level during pregnancy and recurrent spontaneous abortion: A systematic review and meta-analysis. Am. J. Reprod. Immunol. 2022, 88, e13582. [Google Scholar] [CrossRef] [PubMed]
- Szarpak, L.; Feduniw, S.; Pruc, M.; Ciebiera, M.; Cander, B.; Rahnama-Hezavah, M.; Szarpak, Ł. The Vitamin D Serum Levels in Pregnant Women Affected by COVID-19: A Systematic Review and Meta-Analysis. Nutrients 2023, 15, 2588. [Google Scholar] [CrossRef]
- Chen, Y.; Zhu, B.; Wu, X.; Li, S.; Tao, F. Association between maternal vitamin D deficiency and small for gestational age: Evidence from a meta-analysis of prospective cohort studies. BMJ Open 2017, 7, e016404. [Google Scholar] [CrossRef]
- Thacher, T.D.; Clarke, B.L. Vitamin D insufficiency. Mayo Clin. Proc. 2011, 86, 50–60. [Google Scholar] [CrossRef]
- Tsiaras, W.G.; Weinstock, M.A. Factors influencing vitamin D status. Acta Derm. Venereol. 2011, 91, 115. [Google Scholar] [CrossRef]
- Vidailhet, M.; Mallet, E.; Bocquet, A.; Bresson, J.-L.; Briend, A.; Chouraqui, J.-P.; Darmaun, D.; Dupont, C.; Frelut, M.-L.; Ghisolfi, J. Vitamin D: Still a topical matter in children and adolescents. A position paper by the Committee on Nutrition of the French Society of Paediatrics. Arch. Pédiatr. 2012, 19, 316–328. [Google Scholar] [CrossRef]
- Chee, W.F.; Aji, A.S.; Lipoeto, N.I.; Siew, C.Y. Maternal vitamin D status and its associated environmental factors: A cross-sectional study. Ethiop. J. Health Sci. 2022, 32, 885–894. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, L.; Liu, H.; Cao, Z.; Su, X.; Cai, J.; Hua, J. Particulate air pollution exposure and plasma vitamin D levels in pregnant women: A longitudinal cohort study. J. Clin. Endocrinol. Metab. 2019, 104, 3320–3326. [Google Scholar] [CrossRef]
- Yang, D.; Chen, L.; Yang, Y.; Shi, J.; Huang, Z.; Li, M.; Yang, Y.; Ji, X. Effect of PM2. 5 exposure on Vitamin D status among pregnant women: A distributed lag analysis. Ecotoxicol. Environ. Saf. 2022, 239, 113642. [Google Scholar] [CrossRef] [PubMed]
- Baïz, N.; Dargent-Molina, P.; Wark, J.D.; Souberbielle, J.-C.; Slama, R.; Annesi-Maesano, I.; Group, E.M.-C.C.S. Gestational exposure to urban air pollution related to a decrease in cord blood vitamin D levels. J. Clin. Endocrinol. Metab. 2012, 97, 4087–4095. [Google Scholar] [CrossRef] [PubMed]
- Johns, L.E.; Ferguson, K.K.; Cantonwine, D.E.; McElrath, T.F.; Mukherjee, B.; Meeker, J.D. Erratum:“Urinary BPA and Phthalate Metabolite Concentrations and Plasma Vitamin D Levels in Pregnant Women: A Repeated Measures Analysis”. Environ. Health Perspect. 2019, 127, 019002. [Google Scholar] [CrossRef] [PubMed]
- Mousavi, S.E.; Amini, H.; Heydarpour, P.; Chermahini, F.A.; Godderis, L. Air pollution, environmental chemicals, and smoking may trigger vitamin D deficiency: Evidence and potential mechanisms. Environ. Int. 2019, 122, 67–90. [Google Scholar] [CrossRef]
- Long, J.; Huang, H.; Tang, P.; Liang, J.; Liao, Q.; Chen, J.; Pang, L.; Yang, K.; Wei, H.; Chen, M. Associations between maternal exposure to multiple metals and metalloids and blood pressure in preschool children: A mixture-based approach. J. Trace Elem. Med. Biol. 2024, 84, 127460. [Google Scholar] [CrossRef]
- Xu, R.; Meng, X.; Pang, Y.; An, H.; Wang, B.; Zhang, L.; Ye, R.; Ren, A.; Li, Z.; Gong, J. Associations of maternal exposure to 41 metals/metalloids during early pregnancy with the risk of spontaneous preterm birth: Does oxidative stress or DNA methylation play a crucial role? Environ. Int. 2022, 158, 106966. [Google Scholar] [CrossRef]
- Caserta, D.; Graziano, A.; Monte, G.; Bordi, G.; Moscarini, M. Heavy metals and placental fetal-maternal barrier: A mini-review on the major concerns. Eur. Rev. Med. Pharmacol. Sci. 2013, 17, 2198–2206. [Google Scholar]
- Bauer, J.A.; Romano, M.E.; Jackson, B.P.; Bellinger, D.; Korrick, S.; Karagas, M.R. Associations of Perinatal Metal and Metalloid Exposures with Early Child Behavioral Development Over Time in the New Hampshire Birth Cohort Study. Expo. Health 2024, 16, 135–148. [Google Scholar] [CrossRef]
- Mitra, P.; Sharma, S.; Purohit, P.; Sharma, P. Clinical and molecular aspects of lead toxicity: An update. Crit. Rev. Clin. Lab. Sci. 2017, 54, 506–528. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Moola, S.; Munn, Z.; Tufanaru, C.; Aromataris, E.; Sears, K.; Sfetcu, R.; Currie, M.; Lisy, K.; Qureshi, R.; Mattis, P.; et al. Systematic Reviews of Etiology and Risk; Aromataris, E., Lockwood, C., Porritt, K., Pilla, B., Jordan, Z., Eds.; JBI Manual for Evidence Synthesis; JBI: Adelaide, SA, Australia, 2020. [Google Scholar]
- Zhang, J.; Bai, Y.; Chen, X.; Li, S.; Meng, X.; Jia, A.; Yang, X.; Huang, F.; Zhang, X.; Zhang, Q. Association between urinary arsenic species and vitamin D deficiency: A cross-sectional study in Chinese pregnant women. Front. Public Health 2024, 12, 1371920. [Google Scholar] [CrossRef] [PubMed]
- Fisher, M.; Marro, L.; Arbuckle, T.E.; Potter, B.K.; Little, J.; Weiler, H.; Morisset, A.S.; Lanphear, B.; Oulhote, Y.; Braun, J.M. Association between toxic metals, vitamin D and preterm birth in the Maternal–Infant research on environmental chemicals study. Paediatr. Perinat. Epidemiol. 2023, 37, 447–457. [Google Scholar] [CrossRef] [PubMed]
- Fisher, M.; Potter, B.; Little, J.; Oulhote, Y.; Weiler, H.A.; Fraser, W.; Morisset, A.-S.; Braun, J.; Ashley-Martin, J.; Borghese, M.M. Blood metals and vitamin D status in a pregnancy cohort: A bidirectional biomarker analysis. Environ. Res. 2022, 211, 113034. [Google Scholar] [CrossRef] [PubMed]
- Jukic, A.M.Z.; Kim, S.S.; Meeker, J.D.; Weiss, S.T.; Cantonwine, D.E.; McElrath, T.F.; Ferguson, K.K. A prospective study of maternal 25-hydroxyvitamin D (25OHD) in the first trimester of pregnancy and second trimester heavy metal levels. Environ. Res. 2021, 199, 111351. [Google Scholar] [CrossRef]
- Fang, X.; Qu, J.; Huan, S.; Sun, X.; Li, J.; Liu, Q.; Jin, S.; Xia, W.; Xu, S.; Wu, Y. Associations of urine metals and metal mixtures during pregnancy with cord serum vitamin D Levels: A prospective cohort study with repeated measurements of maternal urinary metal concentrations. Environ. Int. 2021, 155, 106660. [Google Scholar] [CrossRef]
- Wu, H.; Xu, B.; Guan, Y.; Chen, T.; Huang, R.; Zhang, T.; Sun, R.; Xie, K.; Chen, M. A metabolomic study on the association of exposure to heavy metals in the first trimester with primary tooth eruption. Sci. Total Environ. 2020, 723, 138107. [Google Scholar] [CrossRef]
- Jukic, A.M.Z.; Zuchniak, A.; Qamar, H.; Ahmed, T.; Mahmud, A.A.; Roth, D.E. Vitamin d treatment during pregnancy and maternal and neonatal cord blood metal concentrations at delivery: Results of a randomized controlled trial in Bangladesh. Environ. Health Perspect. 2020, 128, 117007. [Google Scholar] [CrossRef]
- Irwinda, R.; Wibowo, N.; Putri, A.S. The concentration of micronutrients and heavy metals in maternal serum, placenta, and cord blood: A cross-sectional study in preterm birth. J. Pregnancy 2019, 2019, 5062365. [Google Scholar] [CrossRef]
- Kucukaydin, Z.; Kurdoglu, M.; Kurdoglu, Z.; Demir, H.; Yoruk, I.H. Selected maternal, fetal and placental trace element and heavy metal and maternal vitamin levels in preterm deliveries with or without preterm premature rupture of membranes. J. Obstet. Gynaecol. Res. 2018, 44, 880–889. [Google Scholar] [CrossRef]
- Harari, F.; Åkesson, A.; Casimiro, E.; Lu, Y.; Vahter, M. Exposure to lithium through drinking water and calcium homeostasis during pregnancy: A longitudinal study. Environ. Res. 2016, 147, 1–7. [Google Scholar] [CrossRef]
- Arbuckle, T.E.; Liang, C.L.; Morisset, A.-S.; Fisher, M.; Weiler, H.; Cirtiu, C.M.; Legrand, M.; Davis, K.; Ettinger, A.S.; Fraser, W.D. Maternal and fetal exposure to cadmium, lead, manganese and mercury: The MIREC study. Chemosphere 2016, 163, 270–282. [Google Scholar] [CrossRef] [PubMed]
- Rezende, V.B.; Amaral, J.H.; Quintana, S.M.; Gerlach, R.F.; Barbosa, F., Jr.; Tanus-Santos, J.E. Vitamin D receptor haplotypes affect lead levels during pregnancy. Sci. Total Environ. 2010, 408, 4955–4960. [Google Scholar] [CrossRef] [PubMed]
- Kolusari, A.; Adali, E.; Kurdoglu, M.; Yildizhan, R.; Cebi, A.; Edirne, T.; Demir, H.; Yoruk, I.H. Catalase activity, serum trace element and heavy metal concentrations, vitamin A, vitamin D and vitamin E levels in hydatidiform mole. Clin. Exp. Obstet. Gynecol. 2009, 36, 102–104. [Google Scholar] [PubMed]
- Kolusari, A.; Kurdoglu, M.; Yildizhan, R.; Adali, E.; Edirne, T.; Cebi, A.; Demir, H.; Yoruk, I.H. Catalase activity, serum trace element and heavy metal concentrations, and vitamin A, D and E levels in pre-eclampsia. J. Int. Med. Res. 2008, 36, 1335–1341. [Google Scholar] [CrossRef] [PubMed]
- Salle, B.L.; Delvin, E.E.; Lapillonne, A.; Bishop, N.J.; Glorieux, F.H. Perinatal metabolism of vitamin D. Am. J. Clin. Nutr. 2000, 71, 1317s–1324s. [Google Scholar] [CrossRef]
- Liu, Y.; Ding, C.; Xu, R.; Wang, K.; Zhang, D.; Pang, W.; Tu, W.; Chen, Y. Effects of vitamin D supplementation during pregnancy on offspring health at birth: A meta-analysis of randomized controlled trails. Clin. Nutr. 2022, 41, 1532–1540. [Google Scholar] [CrossRef]
- Blumfield, M.L.; Hure, A.J.; Macdonald-Wicks, L.; Smith, R.; Collins, C.E. A systematic review and meta-analysis of micronutrient intakes during pregnancy in developed countries. Nutr. Rev. 2013, 71, 118–132. [Google Scholar] [CrossRef]
- Forsby, M.; Winkvist, A.; Bärebring, L.; Augustin, H. Supplement use in relation to dietary intake in pregnancy: An analysis of the Swedish GraviD cohort. Br. J. Nutr. 2024, 131, 256–264. [Google Scholar] [CrossRef]
- Holick, M.F. Vitamin D: Evolutionary, physiological and health perspectives. Curr. Drug Targets 2011, 12, 4–18. [Google Scholar] [CrossRef]
- Kinney, D.K.; Teixeira, P.; Hsu, D.; Napoleon, S.C.; Crowley, D.J.; Miller, A.; Hyman, W.; Huang, E. Relation of schizophrenia prevalence to latitude, climate, fish consumption, infant mortality, and skin color: A role for prenatal vitamin d deficiency and infections? Schizophr. Bull. 2009, 35, 582–595. [Google Scholar] [CrossRef]
- Alp, H.; Tekgündüz, K.; Akkar, M.K. Maternal and cord blood vitamin D status in high-altitude pregnancy. J. Matern. Fetal Neonatal Med. 2016, 29, 571–575. [Google Scholar] [CrossRef] [PubMed]
- Vergara-Maldonado, C.; Urdaneta-Machado, J.R. The Effects of Latitude and Temperate Weather on Vitamin D Deficiency and Women’s Reproductive Health: A Scoping Review. J. Midwifery Womens Health 2023, 68, 340–352. [Google Scholar] [CrossRef] [PubMed]
- Merewood, A.; Mehta, S.D.; Grossman, X.; Chen, T.C.; Mathieu, J.S.; Holick, M.F.; Bauchner, H. Widespread vitamin D deficiency in urban Massachusetts newborns and their mothers. Pediatrics 2010, 125, 640–647. [Google Scholar] [CrossRef]
- Li, W.; Green, T.J.; Innis, S.M.; Barr, S.I.; Whiting, S.J.; Shand, A.; von Dadelszen, P. Suboptimal vitamin D levels in pregnant women despite supplement use. Can. J. Public Health 2011, 102, 308–312. [Google Scholar] [CrossRef]
- Tian, Y.; Holzman, C.; Siega-Riz, A.M.; Williams, M.A.; Dole, N.; Enquobahrie, D.A.; Ferre, C.D. Maternal Serum 25-Hydroxyvitamin D Concentrations during Pregnancy and Infant Birthweight for Gestational Age: A Three-Cohort Study. Paediatr. Perinat. Epidemiol. 2016, 30, 124–133. [Google Scholar] [CrossRef]
- Wegienka, G.; Kaur, H.; Sangha, R.; Cassidy-Bushrow, A.E. Maternal-Cord Blood Vitamin D Correlations Vary by Maternal Levels. J. Pregnancy 2016, 2016, 7474192. [Google Scholar] [CrossRef]
- Alanazi, M.; Nabil Aboushady, R.M.; Kamel, A.D. Association between different levels of maternal vitamin-D status during pregnancy and maternal outcomes. Clin. Nutr. ESPEN 2022, 50, 307–313. [Google Scholar] [CrossRef]
- Bikle, D.D. Vitamin D metabolism, mechanism of action, and clinical applications. Chem. Biol. 2014, 21, 319–329. [Google Scholar] [CrossRef]
- Tsuprykov, O.; Buse, C.; Skoblo, R.; Hocher, B. Comparison of free and total 25-hydroxyvitamin D in normal human pregnancy. J. Steroid Biochem. Mol. Biol. 2019, 190, 29–36. [Google Scholar] [CrossRef]
- Ramasamy, I. Vitamin D Metabolism and Guidelines for Vitamin D Supplementation. Clin. Biochem. Rev. 2020, 41, 103–126. [Google Scholar] [CrossRef]
- Leffelaar, E.R.; Vrijkotte, T.G.; van Eijsden, M. Maternal early pregnancy vitamin D status in relation to fetal and neonatal growth: Results of the multi-ethnic Amsterdam Born Children and their Development cohort. Br. J. Nutr. 2010, 104, 108–117. [Google Scholar] [CrossRef] [PubMed]
- Judistiani, R.T.D.; Nirmala, S.A.; Rahmawati, M.; Ghrahani, R.; Natalia, Y.A.; Sugianli, A.K.; Indrati, A.R.; Suwarsa, O.; Setiabudiawan, B. Optimizing ultraviolet B radiation exposure to prevent vitamin D deficiency among pregnant women in the tropical zone: Report from cohort study on vitamin D status and its impact during pregnancy in Indonesia. BMC Pregnancy Childbirth 2019, 19, 209. [Google Scholar] [CrossRef] [PubMed]
- Yun, C.; Chen, J.; He, Y.; Mao, D.; Wang, R.; Zhang, Y.; Yang, C.; Piao, J.; Yang, X. Vitamin D deficiency prevalence and risk factors among pregnant Chinese women. Public Health Nutr. 2017, 20, 1746–1754. [Google Scholar] [CrossRef] [PubMed]
- Gulson, B.; Mizon, K.; Korsch, M.; Taylor, A. Revisiting mobilisation of skeletal lead during pregnancy based on monthly sampling and cord/maternal blood lead relationships confirm placental transfer of lead. Arch. Toxicol. 2016, 90, 805–816. [Google Scholar] [CrossRef]
- Tasin, F.R.; Ahmed, A.; Halder, D.; Mandal, C. On-going consequences of in utero exposure of Pb: An epigenetic perspective. J. Appl. Toxicol. 2022, 42, 1553–1569. [Google Scholar] [CrossRef]
- Tung, P.W.; Kennedy, E.M.; Burt, A.; Hermetz, K.; Karagas, M.; Marsit, C.J. Prenatal lead (Pb) exposure is associated with differential placental DNA methylation and hydroxymethylation in a human population. Epigenetics 2022, 17, 2404–2420. [Google Scholar] [CrossRef]
- RÍsovÁ, V. The pathway of lead through the mother’s body to the child. Interdiscip. Toxicol. 2019, 12, 1–6. [Google Scholar] [CrossRef]
- Taylor, C.M.; Doerner, R.; Northstone, K.; Kordas, K. Maternal Diet During Pregnancy and Blood Cadmium Concentrations in an Observational Cohort of British Women. Nutrients 2020, 12, 904. [Google Scholar] [CrossRef]
- Kovacs, G.; Danko, T.; Bergeron, M.J.; Balazs, B.; Suzuki, Y.; Zsembery, A.; Hediger, M.A. Heavy metal cations permeate the TRPV6 epithelial cation channel. Cell Calcium 2011, 49, 43–55. [Google Scholar] [CrossRef]
- Nakamura, Y.; Ohba, K.; Ohta, H. Participation of metal transporters in cadmium transport from mother rat to fetus. J. Toxicol. Sci. 2012, 37, 1035–1044. [Google Scholar] [CrossRef]
- Geng, H.X.; Wang, L. Cadmium: Toxic effects on placental and embryonic development. Environ. Toxicol. Pharmacol. 2019, 67, 102–107. [Google Scholar] [CrossRef] [PubMed]
- Castillo, P.; Ibáñez, F.; Guajardo, A.; Llanos, M.N.; Ronco, A.M. Impact of cadmium exposure during pregnancy on hepatic glucocorticoid receptor methylation and expression in rat fetus. PLoS ONE 2012, 7, e44139. [Google Scholar] [CrossRef] [PubMed]
- Jacobo-Estrada, T.; Santoyo-Sánchez, M.; Thévenod, F.; Barbier, O. Cadmium Handling, Toxicity and Molecular Targets Involved during Pregnancy: Lessons from Experimental Models. Int. J. Mol. Sci. 2017, 18, 1590. [Google Scholar] [CrossRef] [PubMed]
- Kippler, M.; Tofail, F.; Gardner, R.; Rahman, A.; Hamadani, J.D.; Bottai, M.; Vahter, M. Maternal cadmium exposure during pregnancy and size at birth: A prospective cohort study. Environ. Health Perspect. 2012, 120, 284–289. [Google Scholar] [CrossRef] [PubMed]
- Bose-O’Reilly, S.; McCarty, K.M.; Steckling, N.; Lettmeier, B. Mercury exposure and children’s health. Curr. Probl. Pediatr. Adolesc. Health Care 2010, 40, 186–215. [Google Scholar] [CrossRef]
- Hoffmeyer, R.E.; Singh, S.P.; Doonan, C.J.; Ross, A.R.; Hughes, R.J.; Pickering, I.J.; George, G.N. Molecular mimicry in mercury toxicology. Chem. Res. Toxicol. 2006, 19, 753–759. [Google Scholar] [CrossRef]
- Simmons-Willis, T.A.; Koh, A.S.; Clarkson, T.W.; Ballatori, N. Transport of a neurotoxicant by molecular mimicry: The methylmercury-L-cysteine complex is a substrate for human L-type large neutral amino acid transporter (LAT) 1 and LAT2. Biochem. J. 2002, 367, 239–246. [Google Scholar] [CrossRef]
- Straka, E.; Ellinger, I.; Balthasar, C.; Scheinast, M.; Schatz, J.; Szattler, T.; Bleichert, S.; Saleh, L.; Knöfler, M.; Zeisler, H.; et al. Mercury toxicokinetics of the healthy human term placenta involve amino acid transporters and ABC transporters. Toxicology 2016, 340, 34–42. [Google Scholar] [CrossRef]
- Tong, M.; Yu, J.; Liu, M.; Li, Z.; Wang, L.; Yin, C.; Ren, A.; Chen, L.; Jin, L. Total mercury concentration in placental tissue, a good biomarker of prenatal mercury exposure, is associated with risk for neural tube defects in offspring. Environ. Int. 2021, 150, 106425. [Google Scholar] [CrossRef]
- Ealo Tapia, D.; Torres Abad, J.; Madera, M.; Márquez Lázaro, J. Mercury and neurodevelopmental disorders in children: A systematic review. Arch. Argent. Pediatr. 2023, 121, e202202838. [Google Scholar] [CrossRef]
- Cubadda, F.; D’Amato, M.; Mancini, F.R.; Aureli, F.; Raggi, A.; Busani, L.; Mantovani, A. Assessing human exposure to inorganic arsenic in high-arsenic areas of Latium: A biomonitoring study integrated with indicators of dietary intake. Ann. Ig. 2015, 27, 39–51. [Google Scholar] [PubMed]
- Rehman, K.; Naranmandura, H. Arsenic metabolism and thioarsenicals. Metallomics 2012, 4, 881–892. [Google Scholar] [CrossRef] [PubMed]
- El-Ghiaty, M.A.; El-Kadi, A.O.S. The Duality of Arsenic Metabolism: Impact on Human Health. Annu. Rev. Pharmacol. Toxicol. 2023, 63, 341–358. [Google Scholar] [CrossRef] [PubMed]
- Agency for Toxic Substances and Disease Registry. Table 8-1 Regulations and Guidelines Applicable to Arsenic and Arsenic Compounds. Toxicological Profile for Arsenic. 2007. Available online: https://www.ncbi.nlm.nih.gov/books/NBK591644/table/ch8.tab1/ (accessed on 10 September 2024).
- Lewis, J.V.; Knapp, E.A.; Bakre, S.; Dickerson, A.S.; Bastain, T.M.; Bendixsen, C.; Bennett, D.H.; Camargo, C.A.; Cassidy-Bushrow, A.E.; Colicino, E.; et al. Associations between area-level arsenic exposure and adverse birth outcomes: An Echo-wide cohort analysis. Environ. Res. 2023, 236, 116772. [Google Scholar] [CrossRef]
- Shi, X.; Ayotte, J.D.; Onda, A.; Miller, S.; Rees, J.; Gilbert-Diamond, D.; Onega, T.; Gui, J.; Karagas, M.; Moeschler, J. Geospatial association between adverse birth outcomes and arsenic in groundwater in New Hampshire, USA. Environ. Geochem. Health 2015, 37, 333–351. [Google Scholar] [CrossRef]
- Quansah, R.; Armah, F.A.; Essumang, D.K.; Luginaah, I.; Clarke, E.; Marfoh, K.; Cobbina, S.J.; Nketiah-Amponsah, E.; Namujju, P.B.; Obiri, S.; et al. Association of arsenic with adverse pregnancy outcomes/infant mortality: A systematic review and meta-analysis. Environ. Health Perspect. 2015, 123, 412–421. [Google Scholar] [CrossRef]
- Salmeri, N.; Villanacci, R.; Ottolina, J.; Bartiromo, L.; Cavoretto, P.; Dolci, C.; Lembo, R.; Schimberni, M.; Valsecchi, L.; Viganò, P.; et al. Maternal Arsenic Exposure and Gestational Diabetes: A Systematic Review and Meta-Analysis. Nutrients 2020, 12, 3094. [Google Scholar] [CrossRef]
- Stone, J.; Sutrave, P.; Gascoigne, E.; Givens, M.B.; Fry, R.C.; Manuck, T.A. Exposure to toxic metals and per- and polyfluoroalkyl substances and the risk of preeclampsia and preterm birth in the United States: A review. Am. J. Obstet. Gynecol. MFM 2021, 3, 100308. [Google Scholar] [CrossRef]
- Ashley-Martin, J.; Fisher, M.; Belanger, P.; Cirtiu, C.M.; Arbuckle, T.E. Biomonitoring of inorganic arsenic species in pregnancy. J. Expo. Sci. Environ. Epidemiol. 2023, 33, 921–932. [Google Scholar] [CrossRef]
- Edelstein, S.; Fullmer, C.S.; Wasserman, R.H. Gastrointestinal absorption of lead in chicks: Involvement of the cholecalciferol endocrine system. J. Nutr. 1984, 114, 692–700. [Google Scholar] [CrossRef]
- Ngueta, G.; Gonthier, C.; Levallois, P. Colder-to-warmer changes in children’s blood lead concentrations are related to previous blood lead status: Results from a systematic review of prospective studies. J. Trace Elem. Med. Biol. 2015, 29, 39–46. [Google Scholar] [CrossRef] [PubMed]
- Tuckey, R.C.; Cheng, C.Y.S.; Slominski, A.T. The serum vitamin D metabolome: What we know and what is still to discover. J. Steroid Biochem. Mol. Biol. 2019, 186, 4–21. [Google Scholar] [CrossRef] [PubMed]
- Tissandie, E.; Guéguen, Y.; Lobaccaro, J.M.; Grandcolas, L.; Grison, S.; Aigueperse, J.; Souidi, M. Vitamin D metabolism impairment in the rat’s offspring following maternal exposure to 137cesium. Arch. Toxicol. 2009, 83, 357–362. [Google Scholar] [CrossRef] [PubMed]
- Li, H.-B.; Xue, R.-Y.; Chen, X.-Q.; Lin, X.-Y.; Shi, X.-X.; Du, H.-Y.; Yin, N.-Y.; Cui, Y.-S.; Li, L.-N.; Scheckel, K.G.; et al. Ca Minerals and Oral Bioavailability of Pb, Cd, and As from Indoor Dust in Mice: Mechanisms and Health Implications. Environ. Health Perspect. 2022, 130, 127004. [Google Scholar] [CrossRef]
- Liu, D.Y.; Li, R.Y.; Fu, L.J.; Adu-Gyamfi, E.A.; Yang, Y.; Xu, Y.; Zhao, L.T.; Zhang, T.F.; Bao, H.Q.; Xu, X.O.; et al. SNP rs12794714 of CYP2R1 is associated with serum vitamin D levels and recurrent spontaneous abortion (RSA): A case-control study. Arch. Gynecol. Obstet. 2021, 304, 179–190. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, O.; Li, W.; Ma, L.; Ping, F.; Chen, L.; Nie, M. Variants in Vitamin D Binding Protein Gene Are Associated With Gestational Diabetes Mellitus. Medicine 2015, 94, e1693. [Google Scholar] [CrossRef]
- Strushkevich, N.; Usanov, S.A.; Plotnikov, A.N.; Jones, G.; Park, H.W. Structural analysis of CYP2R1 in complex with vitamin D3. J. Mol. Biol. 2008, 380, 95–106. [Google Scholar] [CrossRef]
- El-Boshy, M.; Refaat, B.; Almaimani, R.A.; Abdelghany, A.H.; Ahmad, J.; Idris, S.; Almasmoum, H.; Mahbub, A.A.; Ghaith, M.M.; BaSalamah, M.A. Vitamin D3 and calcium cosupplementation alleviates cadmium hepatotoxicity in the rat: Enhanced antioxidative and anti-inflammatory actions by remodeling cellular calcium pathways. J. Biochem. Mol. Toxicol. 2020, 34, e22440. [Google Scholar] [CrossRef]
- Permenter, M.G.; Dennis, W.E.; Sutto, T.E.; Jackson, D.A.; Lewis, J.A.; Stallings, J.D. Exposure to cobalt causes transcriptomic and proteomic changes in two rat liver derived cell lines. PLoS ONE 2013, 8, e83751. [Google Scholar] [CrossRef]
- Moore, L.E.; Karami, S.; Steinmaus, C.; Cantor, K.P. Use of OMIC technologies to study arsenic exposure in human populations. Environ. Mol. Mutagen. 2013, 54, 589–595. [Google Scholar] [CrossRef]
- Raza, A.; Tabassum, J.; Zahid, Z.; Charagh, S.; Bashir, S.; Barmukh, R.; Khan, R.S.A.; Barbosa, F., Jr.; Zhang, C.; Chen, H.; et al. Advances in “Omics” Approaches for Improving Toxic Metals/Metalloids Tolerance in Plants. Front. Plant Sci. 2022, 12, 794373. [Google Scholar] [CrossRef]
PECO | Evidence |
---|---|
Population | Pregnant women and infants |
Exposure | Exposure to naturally occurring heavy metal/lloids, or toxic environmental contaminants. |
Comparator | Comparison of metal and metalloid concentrations in biological samples with vitamin D levels in pregnant women and infants. |
Outcome | Relationship or association between vitamin D levels and heavy metal concentrations in mothers and infants, as well as complications. |
Ref. | Title and Year | Study Design | Country | Sample | Biological Sample/Analysis | Stage of Pregnancy/Delivery | VD Concentration/Supplementation | Heavy Metal/Lloid Evaluated | Significant Findings | Risk of Bias (Low, Medium, High) |
---|---|---|---|---|---|---|---|---|---|---|
[32] | Association between urinary arsenic species and vitamin D deficiency: a cross-sectional study in Chinese pregnant women (2024) | Cross-sectional | China | Pregnancy (n = 391) | Urine/heavy metals (HPLC and ICP-MS) Blood/VD (LC-MS/MS) | Second and third trimester | No supplementation Concentrations: <12 ng/mL (n = 60) | Species to As (As3+, As5+, MMA, DMA and AsB) | Subjects with higher levels of As3+ were more likely to develop VDD. Also, those with VDD showed significantly higher concentrations of As3+ and DMA compared to subjects without deficiency | Low |
[33] | Association between toxic metals, vitamin D and preterm birth in the maternal-infant research on environmental chemicals study (2023) | Cohort | Canada | Pregnancy (n = 1851) | Blood/heavy metals and VD (SG) | First and third trimester | No supplementation Concentration: The mean 25OHD level was first trimester (69.7 nmol/L) and third trimester (78.4 nmol/L) | Cd, As, Pb and Hg | In pregnant women, blood Pb levels were generally low; a positive correlation was found between elevated blood Pb and an increased risk of PTB. VD levels may influence this relationship, as the risk of SPTB was significantly higher when elevated concentrations of Pb and As were observed, along with a decrease in VD levels below 50 nmol/L. | Low |
[34] | Blood metals and vitamin D status in a pregnancy cohort: a bidirectional biomarker analysis (2022) | Cross-sectional | Canada | Pregnancy (N = 3554) | Blood/heavy metals and VD (ELISA and LIAISON, LC-MS/MS) | First trimester (n = 1905) Third trimester (n = 1649) Delivery (n = 1542) | No supplementation Concentration: ≥50 nmol/L First trimester (85% participants) Third trimester (87% participants) Delivery (84% participants) <30 nmol/L (4% participants) | Pb and Cd | VD concentrations were associated with lower metal concentration in blood during the third trimester, with a 9% reduction in Cd and a 3% reduction in Pb. These findings suggest that VD may play modulatory role in regulating Cd and Pb concentrations during pregnancy | Low |
[35] | A prospective study of maternal 25-hydroxyvitamin D in the first trimester of pregnancy and second trimester heavy metal levels (2021) | Cohort | Boston | Pregnancy (n = 322) | Blood/VD (LIAISON) Urine/heavy metals (SG) | First and second trimester | No supplementation The mean 25OHD was 26 ng/mL (34% presented low levels in first trimester) | As, Ba, Be, Cd, Hg, Pb, Sn, Tl, U, W, Cu, Cr, Mn, Mo, Ni, Se and Zn (second trimester) | Pregnant women with low VD levels exhibited significantly higher concentrations of Pb, Sn and W. In particular, Pb concentrations were 54% higher, and the detection rate of W was 1.58 times greater in women with insufficient VD levels compared to those with adequate VD levels. | Low |
[36] | Association of urine metals and mixtures during pregnancy with cord serum vitamin D levels: A cohort study with repeated measurements of maternal urinary metal concentrations (2021) | Cohort | China | Mother–newborn pairs (n = 598) | Mothers: urine/VD (ICP-MS) UCB/heavy metals (LC-MS/MS) | All trimesters of pregnancy and delivery | No supplementation The mean 25OHD was 16.76 ng/mL | Al, V, Cr, Mn, Co, Ni, Cu, Zn, As, Se, Rb, Sr, Ag, Cd, Cs, Ba, Tl, Pb, Th and U | Maternal exposure to Co, Tl and V during pregnancy is associated with decreased total VD levels in UCB, heightening the risk of neonatal VDD. Moreover, combined exposure to these metals shows a synergistic effect on VD status, suggesting a higher risk of deficiency in newborns exposed to multiple contaminants. | Low |
[37] | A metabolomic study on the association of exposure to heavy metals in the first trimester with primary tooth eruption (2020) | Cohort | China | Pregnancy (n = 244) Infants (n = 183) | Urine/heavy metals (ICP-MS) Oral examination | First trimester | Supplementation: Pregnancy (n = 88) Infants (n = 171) Concentration: not reported | Ti, V, Fe, Co, Cu, As, Se, Cd, Sn, Hg, Tl and U (Pregnancy) | No significant associations were identified between heavy metal exposure during the first trimester and the eruption of primary teeth, except for Co, Cd and As. Higher Co concentrations were positively linked to delayed eruption of the first tooth and negatively associated with the number of teeth at one year of age, as well as with VD supplementation. | Medium |
[38] | Vitamin D treatment during pregnancy and maternal and neonatal cord blood metal concentrations at delivery: results of a randomized controlled trial in Bangladesh (2020) | Randomized controlled trial | Bangladesh | Pregnancy (n = 619) Newborns (n = 516) | Maternal and UCB/VD and heavy metals (ICP-MS and LC-MS/MS) | Delivery | Supplementation: groups (4200, 16,800 and 28,000 UI VD3 for week/second and third trimesters) The median 25OHD level was 25 nmol/L | Cd, Pb, Hg and Mn | Mean Pb y Cd concentrations in UCB were higher in the supplemented groups compared to the placebo group, particularly those receiving higher VD treatments (16,800 and 28,000 IU). | Low |
[39] | The concentration of micronutrients and heavy metals in maternal serum, placenta, and cord blood: A cross-sectional study in preterm birth (2019) | Cross-sectional | Indonesia | Mother–infant pairs (n = 51) | Maternal serum, placenta and UCB/VD and heavy metals (ICP-MS and LC-MS/MS) | Delivery | No supplementation Concentration: not specified | Pb and Hg | Lower concentrations of Cu samples were observed in term infants than in PTB, also associated with lower levels of VD and higher concentrations of heavy metals. | Low |
[40] | Selected maternal, fetal and placental trace element and heavy metal and maternal vitamin levels in preterm deliveries with or without preterm premature rupture of membranes (2018) | Cohort | Argentina | PTB with PPROM: (n = 33) PTB without PPROM: (n = 35) | Maternal serum/VD and heavy metals (FAES, HPLC) Placental and UCB/heavy metals (FAES) | Third trimester Delivery | No supplementation Concentration: with PPROM: 0.0116 ± 0.0058 Without PPROM: 0.0163 ± 0.0088 | Mg, Pb, Zn, Cd | Compared to PTB with PPROM, it is associated with lower maternal serum Mg concentrations, increased placental Mg concentrations, and reduced Zn concentrations in both maternal and UCB. Additionally, patients with PPROM show elevated levels of VD. Cd and Pb concentrations did not differ between the two groups for maternal or UCB. | Low |
[41] | Exposure to lithium through drinking water and calcium homeostasis during pregnancy: A longitudinal study (2016) | Cohort | Argentina | Pregnancy (n = 178) | Urine/heavy metals (ICP-MS and LC-HG) Blood/VD and heavy metals (ICP-MS) | All trimesters of pregnancy | No supplementation The median 25OHD level was 41 nmol/L (58% or the women) 19% had <30 nmol/L | Li, As and Cs | Increased Li concentrations were associated with a fivefold higher risk of having VD concentrations < 30 nmol/L. Low VD levels are detrimental to both maternal and fetal health. | Low |
[42] | Maternal and fetal exposure to cadmium, lead, manganese and mercury: The MIREC study (2016) | Cohort | Canada | Pregnancy (n = 1938) | Blood/VD and heavy metals (ICP-MS) UCB/heavy metals (ICP-MS) Meconium/heavy metals (ICP-MS) | First and third trimester Delivery | Supplementation: yes, but not clear Concentrations: not clear | Pb, Cd, Mn and Hg | VD intake was significantly associated with lower levels of Cd, Pb and Mn in maternal blood, as well as reduced Pb levels in UCB. | Low |
[43] | Vitamin D receptor haplotypes affect lead levels during pregnancy (2010) | Observational | Brazil | Pregnancy (n = 256) | Blood/VD and heavy metals (PCR) UCB/VD and heavy metals (PCR) | Third trimester Delivery | Supplementation: not reported Concentrations: not reported | Pb | VDR H8 haplotype was associated with lower Pb levels in maternal serum. The H8 and H4 haplotypes were associated with lower %Pb-S/Pb-B ratios than the H1 haplotype. | Low |
[44] | Catalase activity, serum trace and heavy metal concentrations, vitamin A, vitamin D and vitamin E levels in hydatidiform mole (2009) | Observational | Turkey | HPW (n = 24) HNPW (n = 24) CHM (n = 24) | Blood/VD and heavy metals (HPLC and AAS) | First trimester | Supplementation: not reported Concentrations: not clear | Cd, Cu, Zn and Co | In CHM patients, low VD concentrations and significantly elevated Cd and Fe levels were observed when compared to the HPW and HNPW groups. | Medium |
[45] | Catalase activity, serum trace and heavy metal concentrations, vitamin A, D and E levels in preeclampsia (2008) | Observational | Turkey | HPW (n = 48) HNPW (n = 50) PE (n = 47) | Blood/VD and heavy metals (HPLC and AAS) | Third trimester | Supplementation: not reported Concentrations: not clear | Cd, Cu, Zn and Co | Serum levels of VD, A and E were significantly lower in the PE group compared to the HPW and HNPW groups. Likewise, the concentrations of Cd, Cu, and Fe were significantly higher in the PE group than in the HPW and HNPW groups. | Medium |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Flores-Bazán, T.; Izquierdo-Vega, J.A.; Guerrero-Solano, J.A.; Castañeda-Ovando, A.; Estrada-Luna, D.; Jiménez-Osorio, A.S. Interplay Between Vitamin D Levels and Heavy Metals Exposure in Pregnancy and Childbirth: A Systematic Review. Pathophysiology 2024, 31, 660-679. https://doi.org/10.3390/pathophysiology31040048
Flores-Bazán T, Izquierdo-Vega JA, Guerrero-Solano JA, Castañeda-Ovando A, Estrada-Luna D, Jiménez-Osorio AS. Interplay Between Vitamin D Levels and Heavy Metals Exposure in Pregnancy and Childbirth: A Systematic Review. Pathophysiology. 2024; 31(4):660-679. https://doi.org/10.3390/pathophysiology31040048
Chicago/Turabian StyleFlores-Bazán, Tania, Jeannett Alejandra Izquierdo-Vega, José Antonio Guerrero-Solano, Araceli Castañeda-Ovando, Diego Estrada-Luna, and Angélica Saraí Jiménez-Osorio. 2024. "Interplay Between Vitamin D Levels and Heavy Metals Exposure in Pregnancy and Childbirth: A Systematic Review" Pathophysiology 31, no. 4: 660-679. https://doi.org/10.3390/pathophysiology31040048
APA StyleFlores-Bazán, T., Izquierdo-Vega, J. A., Guerrero-Solano, J. A., Castañeda-Ovando, A., Estrada-Luna, D., & Jiménez-Osorio, A. S. (2024). Interplay Between Vitamin D Levels and Heavy Metals Exposure in Pregnancy and Childbirth: A Systematic Review. Pathophysiology, 31(4), 660-679. https://doi.org/10.3390/pathophysiology31040048