Estimating and Forecasting Generalized Fractional Long Memory Stochastic Volatility Models
Abstract
:1. Introduction
2. Review of Stochastic Volatility (SV) Models
- follows a stationary and invertible ARMA(p,q) process given by:
- follows a stationary and invertible ARFIMA(p,d,q) process given by:
3. Gegenbauer ARMA (GARMA) Model
- The power spectrum:
- The process in (5) is stationary and explains long memory when and , or and , with the stationary condition on . From (6), it is clear that the long memory features are characterized by an unbounded spectrum at the Gegenbauer frequency when , and at when in addition to the hyperbolic decay of the autocorrelation function (acf).For later reference, we consider a special case, namely, the class of GARMA given by:Following regularity conditions are useful for further analysis.
- Under the AR regularity conditions:
- (a1)
- and ; or
- (a2)
- and
the Wold representation of (7) is given as:These coefficients, , reduce to the corresponding standard long memory (or binomial) coefficients when , such that - Under the MA regularity conditions:
- (b1)
- and ; or
- (b2)
- and
(6) admits an invertible solution, such that:
4. Generalized Long Memory SV (GLMSV) Models
4.1. Properties of GLMSV
- and
- for all
- is a martingale difference.
4.2. Identification of GLMSV and LMSV
- Standard LMSV whenThe sdf of is given by:
- GLMSV whenThe sdf of is given by:
5. Estimation and Forecasting
5.1. Spectral-Likelihood Estimator
5.2. Finite Sample Properties
5.3. Estimating and Forecasting Volatility
6. Empirical Analysis
6.1. Data and Preliminary Results
6.2. Estimates and Forecasts for the GLMSV Model
7. Concluding Remarks
Acknowledgments
Author Contributions
Conflicts of Interest
Appendix A
References
- Andersen, Torben G., Tim Bollerslev, Francis X. Diebold, and Paul Labys. 2001. The distribution of realized exchange rate volatility. Journal of the American Statistical Association 96: 42–55. [Google Scholar] [CrossRef]
- Andersen, Torben G., Tim Bollerslev, Francis X. Diebold, and Paul Labys. 2003. Modeling and forecasting realized volatility. Econometrica 71: 529–626. [Google Scholar] [CrossRef]
- Artiach, Miguel, and Josu Arteche. 2012. Doubly Fractional Models for Dynamic Heteroscedastic Cycles. Computational Statistics & Data Analysis 56: 2139–58. [Google Scholar]
- Asai, Manabu, Michael McAleer, and Marcelo C. Medeiros. 2012. Asymmetry and long memory in volatility modeling. Journal of Financial Econometrics 10: 495–512. [Google Scholar] [CrossRef]
- Baillie, Richard T., Tim Bollerslev, and Hans Ole Mikkelsen. 1996. Fractionally integrated generalized autoregressive conditional heteroskedasticity. Journal of Econometrics 74: 3–30. [Google Scholar] [CrossRef]
- Barndorff-Nielsen, Ole E., and Neil Shephard. 2002. Econometric analysis of realized volatility and its use inestimating stochastic volatility models. Journal of the Royal Statistical Society, Series B 64: 253–80. [Google Scholar] [CrossRef]
- Bollerslev, Tim, and Hao Zhou. 2002. Estimating stochastic volatility diffusion using conditional moments of integrated volatility. Journal of Econometrics 109: 33–65. [Google Scholar] [CrossRef]
- Bollerslev, Tim, and Hans Ole Mikkelsen. 1996. Modeling and pricing long-memory in stock market volatility. Journal of Econometrics 73: 151–84. [Google Scholar] [CrossRef]
- Bordignon, Silvano, Massimiliano Caporin, and Francesco Lisi. 2007. Generalised Long-memory GARCH Models for Intra-daily Volatility. Computational Statistics & Data Analysis 51: 5900–12. [Google Scholar]
- Breidt, F. Jay, Nuno Crato, and Pedro de Lima. 1998. The detection and estimation of long memory. Journal of Econometrics 83: 325–48. [Google Scholar] [CrossRef]
- Candelon, Bertrand, Gilbert Colletaz, Christophe Hurlin, and Sessi Tokpavi. 2011. Backtesting value-at-risk: A GMM duration-based approach. Journal of Financial Econometrics 9: 314–43. [Google Scholar] [CrossRef]
- Chung, Ching-Fan. 1996a. Estimating a generalized long memory process. Journal of Econometrics 73: 237–59. [Google Scholar] [CrossRef]
- Chung, Ching-Fan. 1996b. A generalized fractionally integrated autoregressive moving-average process. Journal of Time Series Analysis 17: 111–40. [Google Scholar] [CrossRef]
- Clark, Peter K. 1973. A subordinated stochastic process model with fixed variance for speculative prices. Econometrica 41: 135–56. [Google Scholar] [CrossRef]
- Dissanayake, G., S. Peiris, and T. Proietti. 2016. State space modeling of Gegenbauer processes with long memory. Computational Statistics & Data Analysis 100: 115–30. [Google Scholar]
- Doornik, Jurgen A., and Marius Ooms. 2003. Computational aspects of maximum likelihood estimation of autoregressive fractionally integrated moving average models. Computational Statistics & Data Analysis 42: 333–48. [Google Scholar]
- Engle, Robert F. 1982. Autoregressive conditional heteroskedasticity with estimates of the variance of United Kingdom inflation. Econometrica 50: 987–1007. [Google Scholar] [CrossRef]
- Granger, C.W.J., and M. Morris. 1976. Time series modeling and interpretation. Journal of the Royal Statistical Society, Series A 139: 246–57. [Google Scholar] [CrossRef]
- Gray, Henry L., Nien-Fan Zhan, and Wayne A. Woodward. 1989. On generalized fractional processes. Journal of Time Series Analysis 10: 233–57. [Google Scholar] [CrossRef]
- Hansen, Peter Reinhard, Zhuo Huang, and Howard Howan Shek. 2012. Realized GARCH: A Complete Model of Returns and Realized Measures of Volatility. Journal of Applied Econometrics 27: 877–906. [Google Scholar] [CrossRef]
- Harvey, Andrew C. 1998. Long memory in stochastic volatility. In Forecasting Volatility in Financial Markets. Edited by J. Knight and S. Satchell. Oxford: Butterworth-Haineman, pp. 307–20. [Google Scholar]
- Koopman, Siem Jan, Borus Jungbacker, and Eugenie Hol. 2005. Forecasting daily variability of the S&P 100 stock index using historical, realised and implied volatility measurements. Journal of Empirical Finance 12: 445–75. [Google Scholar]
- McAleer, Michael. 2005. Automated inference and learning in modeling financial volatility. Econometric Theory 21: 232–61. [Google Scholar] [CrossRef]
- McElroy, Tucker S., and Scott H. Holan. 2012. On the computation of autocovariances for generalized Gegenbauer processes. Statistica Sinica 22: 1661–87. [Google Scholar] [CrossRef]
- Patton, Andrew J. 2011. Volatility forecast comparison using imperfect volatility proxies. Journal of Econometrics 160: 246–56. [Google Scholar] [CrossRef]
- Peiris, M. Shelton, and Manabu Asai. 2016. Generalized fractional processes with long memory and time dependent volatility revisited. Econometrics 4: 37. [Google Scholar] [CrossRef]
- Pong, Shiuyan, Mark B. Shackleton, Stephen J. Taylor, and Xinzhong Xu. 2004. Forecasting currency volatility: A comparison of implied volatilities and AR(FI)MA models. Journal of Banking and Finance 28: 2541–63. [Google Scholar] [CrossRef]
- Shephard, Neil. 2005. General introduction. In Stochastic Volatility. Edited by N. Shephard. Oxford: Oxford University Press, pp. 1–33. [Google Scholar]
- Shitan, Mahendran, and Shelton Peiris. 2008. Generalized autoregressive (GAR) model: A comparison of maximum likelihood and Whittle estimation procedures using a simulation study. Communications in Statistics—Theory and Methods 37: 560–70. [Google Scholar] [CrossRef]
- Shitan, Mahendran, and Shelton Peiris. 2013. Approximate asymptotic variance-covariance matrix for the Whittle estimators of GAR(1) parameters. Communications in Statistics—Theory and Methods 42: 756–70. [Google Scholar] [CrossRef] [Green Version]
- So, M.K.P. 1999. Time series with additive noise. Biometrika 86: 474–82. [Google Scholar] [CrossRef]
- So, M.K.P. 2002. Bayesian analysis of long memory stochastic volatility models. Sankhyā 24: 1–10. [Google Scholar]
- Taniguchi, Masanobu. 1982. On estimation of the integrals of the fourth order cumulant spectral density. Biometrika 69: 117–22. [Google Scholar] [CrossRef]
- Taniguchi, Masanobu, and Yosihihide Kakizawa. 2000. Asymptotic Theory of Statistical Inference for Time Series. New York: Springer. [Google Scholar]
- Taylor, Stephen J. 1982. Financial returns modeled by the product of two stochastic processes—A study of daily sugar prices 1961–1979. In Time Series Analysis: Theory and Practice. Edited by O. D. Anderson. Amsterdam: North-Holland, vol. 1, pp. 203–26. [Google Scholar]
- Taylor, Stephen J. 1986. Modelling Financial Time Series. Chichester: Wiley. [Google Scholar]
- Zaffaroni, Paolo. 2009. Whittle estimation of EGARCH and other exponential volatility models. Journal of Econometrics 151: 190–200. [Google Scholar] [CrossRef]
DGP | Parameters | |||||
---|---|---|---|---|---|---|
AR(1) | ||||||
True | 0 | 2.221 | 0.199 | 0.98 | 0 | 1 |
0.0091 | 2.1201 | 0.4863 | 0.9693 | −0.1086 | 0.8972 | |
(0.2967) | (0.1901) | (0.4455) | (0.0305) | (0.3847) | (0.0830) | |
[0.2967] | [0.2152] | [0.5297] | [0.0323] | [0.3993] | [0.1320] | |
0.0011 | 2.1666 | 0.4047 | 0.9753 | −0.0869 | 0.8986 | |
(0.2170) | (0.1137) | (0.3361) | (0.0119) | (0.3590) | (0.0797) | |
[0.2168] | [0.1261] | [0.3938] | [0.0128] | [0.3691] | [0.1289] | |
ARFIMA(1,2d,0) | ||||||
True | 0 | 2.221 | 0.572 | 0.30 | 0.2 | 1 |
0.0034 | 2.0796 | 0.5907 | 0.8551 | 0.1004 | 0.8901 | |
(0.4011) | (0.3942) | (0.6551) | (0.2127) | (0.3359) | (0.0824) | |
[0.4007] | [0.4185] | [0.6547] | [0.5944] | [0.3500] | [0.1373] | |
0.0063 | 2.2014 | 0.4303 | 0.8939 | 0.1568 | 0.9003 | |
(0.3394) | (0.1618) | (0.4617) | (0.1983) | (0.2928) | (0.0870) | |
[0.3391] | [0.1629] | [0.4826] | [0.6261] | [0.2957] | [0.1322] | |
GARMA(1,d,0), Case 1 | ||||||
True | 0 | 2.221 | 0.520 | 0.30 | 0.4 | 0.7 |
0.0027 | 1.9444 | 0.9212 | 0.0988 | 0.3301 | 0.6984 | |
(0.0684) | (0.5856) | (0.5432) | (0.3501) | (0.1072) | (0.0307) | |
[0.0684] | [0.6473] | [0.6749] | [0.4035] | [0.1280] | [0.0307] | |
−0.0017 | 2.0965 | 0.7608 | 0.1693 | 0.3572 | 0.7005 | |
(0.0564) | (0.3353) | (0.4068) | (0.3143) | (0.0797) | (0.0052) | |
[0.0564] | [0.3575] | [0.4724] | [0.3401] | [0.0904] | [0.0053] | |
GARMA(1,d,0), Case 2 | ||||||
True | 0 | 2.221 | 0.675 | 0.70 | 0.3 | 0.3 |
0.0037 | 2.0348 | 0.8180 | 0.6441 | 0.2668 | 0.3016 | |
(0.0871) | (0.5725) | (0.5207) | (0.2018) | (0.1481) | (0.0937) | |
[0.0871] | [0.6016] | [0.5395] | [0.2092] | [0.1516] | [0.0936] | |
−0.0014 | 2.1928 | 0.7022 | 0.6847 | 0.2905 | 0.3006 | |
(0.0696) | (0.2076) | (0.2269) | (0.1099) | (0.0747) | (0.0459) | |
[0.0696] | [0.2094] | [0.2283] | [0.1109] | [0.0752] | [0.0458] |
Data | Mean | Std. Dev. | Skewness | Kurtosis |
---|---|---|---|---|
YEN/USD | 0.0028 | 0.6617 | −0.3225 | 8.1747 |
EUR/USD | −0.0045 | 0.6383 | 0.1717 | 5.9683 |
GBP/USD | −0.0060 | 0.6163 | −0.3377 | 9.6188 |
Parameters | YEN/USD | EUR/USD | GBP/USD |
---|---|---|---|
w | 0.0045 | 0.0010 | 0.0018 |
(0.0010) | (0.0005) | (0.0008) | |
0.0342 | 0.0329 | 0.0394 | |
(0.0036) | (0.0046) | (0.0056) | |
0.9565 | 0.9647 | 0.9556 | |
(0.0047) | (0.0044) | (0.0065) |
Parameters | YEN/USD | EUR/USD | GBP/USD | |||
---|---|---|---|---|---|---|
FIEGARCH | GIEGARCH | FIEGARCH | GIEGARCH | FIEGARCH | GIEGARCH | |
−0.7736 | −0.8589 | −0.7916 | −0.9170 | −0.8771 | −1.0338 | |
(0.0474) | (0.0427) | (0.0715) | (0.0776) | (0.0809) | (0.0760) | |
−0.1084 | 0.9749 | −0.2401 | 0.9854 | −0.2006 | 0.9881 | |
(0.0278) | (0.0034) | (0.0509) | (0.0014) | (0.0379) | (0.0019) | |
−1.1991 | −0.0415 | −0.2439 | −0.0119 | −0.7873 | −0.0229 | |
(0.3571) | (0.0064) | (0.1325) | (0.0036) | (0.2147) | (0.0042) | |
0.7254 | 0.0321 | 0.5071 | 0.0140 | 0.4779 | 0.0108 | |
(0.2696) | (0.0043) | (0.1496) | (0.0023) | (0.1727) | (0.0027) | |
d | 0.1491 | 0.3350 | 0.2368 | 0.4988 | 0.2495 | 0.4996 |
(0.0345) | (0.0750) | (0.0365) | (0.0854) | (0.0431) | (0.0624) | |
1 | 0.3892 | 1 | 0.8583 | 1 | 0.8570 | |
(0.0026) | (0.0014) | (0.0006) | ||||
0 | 1.1710 | 0 | 0.5388 | 0 | 0.5414 |
Parameters | YEN/USD | EUR/USD | GBP/USD |
---|---|---|---|
−1.2366 | −1.2030 | −1.3069 | |
(0.0579) | (0.0544) | (0.0538) | |
2.5173 | 2.3482 | 2.2844 | |
(0.0414) | (0.0384) | (0.0368) | |
0.0868 | 0.1621 | 0.0974 | |
(0.0350) | (0.0378) | (0.0311) | |
0.9872 | 0.9939 | 0.9980 | |
(0.0066) | (0.0042) | (0.0039) | |
d | 0.3173 | 0.4702 | 0.4987 |
(0.1475) | (0.1029) | (0.1869) | |
0.8032 | 0.9597 | 0.8400 | |
(0.0001) | (0.0003) | (0.0009) | |
0.6381 | 0.2849 | 0.5735 |
Data | Parameter | GARCH | FIEGARCH | GIGARCH | GLMSV |
---|---|---|---|---|---|
YEN/USD | a | 0.0859 | 0.0715 | 0.0404 | −0.2356 |
(0.0676) | (0.0660) | (0.0687) | (0.0898) | ||
b | 0.5887 | 0.5906 | 0.7116 | 1.5406 | |
(0.1951) | (0.1765) | (0.1933) | (0.2596) | ||
S.E. | 0.6496 | 0.6482 | 0.6467 | 0.6335 | |
0.1609 | 0.1644 | 0.1682 | 0.2020 † | ||
EUR/USD | a | 0.0329 | −0.0493 | −0.0631 | 0.1012 |
(0.0448) | (0.0652) | (0.0563) | (0.0360) | ||
b | 0.8955 | 1.0968 | 1.1251 | 0.2704 | |
(0.1116) | (0.1729) | (0.1438) | (0.0307) | ||
S.E. | 0.5624 | 0.5748 | 0.5640 | 0.5560 | |
0.3226 | 0.2922 | 0.3187 | 0.3379 † | ||
GBP/USD | a | 0.0314 | 0.0464 | 0.0052 | −0.4764 |
(0.0317) | (0.0435) | (0.0398) | (0.1018) | ||
b | 0.7768 | 0.5747 | 0.7346 | 1.4038 | |
(0.1445) | (0.1704) | (0.1520) | (0.2140) | ||
S.E. | 0.3090 | 0.3143 | 0.3107 | 0.3050 | |
0.2950 | 0.2708 | 0.2875 | 0.3134 † |
Data | Loss Function | GARCH | FIEGARCH | GIGARCH | GLMSV |
---|---|---|---|---|---|
YEN/USD | (MSE) | 0.2129 | 0.2137 | 0.2106 | 0.1594 † |
0.4661 | 0.5006 | 0.4812 | 0.4232 † | ||
(QLIKE) | 284.45 † | 342.79 | 299.66 | 320.26 | |
EUR/USD | (MSE) | 0.1578 | 0.1648 | 0.1588 | 0.0849 † |
0.4565 † | 0.5245 | 0.5020 | 0.5787 | ||
(QLIKE) | 362.20 | 497.04 | 476.01 | 354.85 † | |
GBP/USD | (MSE) | 0.0479 | 0.0514 | 0.0502 | 0.0089 † |
0.2995 | 0.3804 | 0.3773 | 0.1983 † | ||
(QLIKE) | 35,926 † | 41,066 | 37,279 | 36,204 |
Data | VaR | GARCH | FIEGARCH | GIEGARCH | GLMSV | ||||
---|---|---|---|---|---|---|---|---|---|
5% | 1% | 5% | 1% | 5% | 1% | 5% | 1% | ||
YEN/USD | PV | 0.036 | 0.008 | 0.034 | 0.004 | 0.036 | 0.004 | 0.0040 | 0.010 |
UC | 0.6540 | 0.3168 | 0.9752 | 0.5989 | 0.5029 | 1.5034 | 0.0733 | 1.2558 | |
[0.4187] | [0.5735] | [0.3234] | [0.4390] | [0.4782] | [0.2201] | [0.7866] | [0.2625] | ||
IND | 1.7393 | 1.0694 | 8.1759 | 0.9347 | 2.1775 | 1.1999 | 5.2835 | 1.6877 | |
[0.7836] | [0.8991] | [0.0853] | [0.9195] | [0.732] | [0.8781] | [0.2594] | [0.7930] | ||
CC | 5.4979 | 3.3522 | 76.331 * | 2.0605 | 5.4058 | 3.7080 | 7.2375 | 1.6877 | |
[0.3582] | [0.6459] | [0.0000] | [0.8407] | [0.3684] | [0.5922] | [0.2036] | [0.8905] | ||
EUR/USD | PV | 0.036 | 0.008 | 0.058 | 0.010 | 0.054 | 0.008 | 0.044 | 0.018 |
UC | 0.6540 | 0.3168 | 20866 | 0.3457 | 0.3174 | 0.0097 | 0.6177 | 2.0001 | |
[0.4187] | [0.5735] | [0.1486] | [0.5566] | [0.5732] | [0.9214] | [0.4319] | [0.1573] | ||
IND | 1.7393 | 1.0694 | 1.3895 | 1.7610 | 0.0726 | 0.2397 | 3.5391 | 0.9180 | |
[0.7836] | [0.8991] | [0.8460] | [0.7796] | [0.9994] | [0.9934] | [0.4720] | [0.9220] | ||
CC | 5.4979 | 3.3522 | 3.0081 | 1.7610 | 0.3424 | 0.1625 | 6.6769 | 2.8541 | |
[0.3582] | [0.6459] | [0.6987] | [0.8811] | [0.9968] | [0.9995] | [0.2458] | [0.7225] | ||
GBP/USD | PV | 0.068 | 0.016 | 0.048 | 0.004 | 0.050 | 0.004 | 0.052 | 0.012 |
UC | 2.7886 | 2.8064 | 0.0193 | 04137 | 0.0281 | 2.0368 | 1.7100 | 2.3767 | |
[0.0949] | [0.0939] | [0.8894] | [0.5201] | [0.8669] | [0.1535] | [0.1910] | [0.1232] | ||
IND | 1..3485 | 1.7954 | 18.555 * | 0.8417 | 1.0782 | 1.2781 | 7.1894 | 2.7581 | |
[0.8531] | [0.7733] | [0.0010] | [0.9328] | [0.8977] | [0.8651] | [0.1262] | [0.5991] | ||
CC | 2.9997 | 4.0075 | 23.801 * | 1.7850 | 1.0782 | 4.6977 | 3.9607 | 3.8607 | |
[0.7000] | [0.5483] | [0.0002] | [0.8780] | [0.9560] | [0.4539] | [3.9607] | [3.8607] |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peiris, S.; Asai, M.; McAleer, M. Estimating and Forecasting Generalized Fractional Long Memory Stochastic Volatility Models. J. Risk Financial Manag. 2017, 10, 23. https://doi.org/10.3390/jrfm10040023
Peiris S, Asai M, McAleer M. Estimating and Forecasting Generalized Fractional Long Memory Stochastic Volatility Models. Journal of Risk and Financial Management. 2017; 10(4):23. https://doi.org/10.3390/jrfm10040023
Chicago/Turabian StylePeiris, Shelton, Manabu Asai, and Michael McAleer. 2017. "Estimating and Forecasting Generalized Fractional Long Memory Stochastic Volatility Models" Journal of Risk and Financial Management 10, no. 4: 23. https://doi.org/10.3390/jrfm10040023
APA StylePeiris, S., Asai, M., & McAleer, M. (2017). Estimating and Forecasting Generalized Fractional Long Memory Stochastic Volatility Models. Journal of Risk and Financial Management, 10(4), 23. https://doi.org/10.3390/jrfm10040023