A Survey on Efficiency and Profitable Trading Opportunities in Cryptocurrency Markets
Abstract
:1. Introduction
2. Studies about Efficiency in Bitcoin Markets
3. Studies about Efficiency in Cryptocurrency Markets in General
4. Conclusions
Funding
Conflicts of Interest
References
- Abdi, Farshid, and Angelo Ranaldo. 2017. A simple estimation of bid-ask spreads from daily close, high, and low prices. The Review of Financial Studies 30: 4437–80. [Google Scholar] [CrossRef]
- Aggarwal, M. Divya. 2019. Do bitcoins follow a random walk model? Research in Economics 73: 15–22. [Google Scholar] [CrossRef]
- Almudhaf, Fahad. 2018. Pricing efficiency of Bitcoin Trusts. Applied Economics Letters 25: 504–8. [Google Scholar] [CrossRef]
- Alvarez-Ramirez, Jose, Eduardo Rodriguez, and Carlos Ibarra-Valdez. 2018. Long-range correlations and asymmetry in the Bitcoin market. Physica A: Statistical Mechanics and Its Applications 492: 948–55. [Google Scholar] [CrossRef]
- Al-Yahyaee, Khamis Hamed, Walid Mensi, and Seong-Min Yoon. 2018. Efficiency, multifractality, and the long-memory property of the Bitcoin market: A comparative analysis with stock, currency, and gold markets. Finance Research Letters 27: 228–34. [Google Scholar] [CrossRef]
- Amihud, Yakov. 2002. Illiquidity and stock returns: cross-section and time-series effects. Journal of Financial Markets 5: 31–56. [Google Scholar] [CrossRef]
- Ammous, Saifedain. 2018. Can cryptocurrencies fulfil the functions of money? The Quarterly Review of Economics and Finance 70: 38–51. [Google Scholar] [CrossRef]
- Bai, Jushan, and Pierre Perron. 2003. Computation and analysis of multiple structural change models. Journal of Applied Econometrics 18: 1–22. [Google Scholar] [CrossRef]
- Baillie, Richard T., Tim Bollerslev, and Hans Ole Mikkelsen. 1996. Fractionally integrated generalized autoregressive conditional heteroskedasticity. Journal of Econometrics 74: 3–30. [Google Scholar] [CrossRef]
- Bariviera, Aurelio F. 2017. The inefficiency of Bitcoin revisited: A dynamic approach. Economics Letters 161: 1–4. [Google Scholar] [CrossRef]
- Bariviera, Aurelio F., María José Basgall, Waldo Hasperué, and Marcelo Naiouf. 2017. Some stylized facts of the Bitcoin market. Physica A: Statistical Mechanics and Its Applications 484: 82–90. [Google Scholar] [CrossRef]
- Bartels, Robert. 1982. The rank version of von Neumann’s ratio test for randomness. Journal of the American Statistical Association 77: 40–46. [Google Scholar] [CrossRef]
- Bashan, Amir, Ronny Bartsch, Jan W. Kantelhardt, and Shlomo Havlin. 2008. Comparison of detrending methods for fluctuation analysis. Physica A: Statistical Mechanics and Its Applications 387: 5080–90. [Google Scholar] [CrossRef]
- Baur, Dirk G., Thomas Dimpfl, and Konstantin Kuck. 2018a. Bitcoin, gold and the US dollar—A replication and extension. Finance Research Letters 25: 103–10. [Google Scholar] [CrossRef]
- Baur, Dirk G., Ki Hoon Hong, and Adrian D. Lee. 2018b. Bitcoin: Medium of exchange or speculative assets? Journal of International Financial Markets, Institutions and Money 54: 177–89. [Google Scholar] [CrossRef]
- Beneki, Christina, Alexandros Koulis, Nikolaos A. Kyriazis, and Stephanos Papadamou. 2019. Investigating volatility transmission and hedging properties between Bitcoin and Ethereum. Research in International Business and Finance 48: 219–27. [Google Scholar] [CrossRef]
- Bollerslev, Tim. 1986. Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics 31: 307–27. [Google Scholar] [CrossRef]
- Bouri, Elie, Naji Jalkh, Peter Molnár, and David Roubaud. 2017a. Bitcoin for energy commodities before and after the December 2013 crash: diversifier, hedge or safe haven? Applied Economics 49: 5063–73. [Google Scholar] [CrossRef]
- Bouri, Elie, Peter Molnár, Georges Azzi, David Roubaud, and Lars Ivar Hagfors. 2017b. On the hedge and safe haven properties of Bitcoin: Is it really more than a diversifier? Finance Research Letters 20: 192–98. [Google Scholar] [CrossRef]
- Bouri, Elie, Chi Keung Marco Lau, Brian Lucey, and David Roubaud. 2018. Trading volume and the predictability of return and volatility in the cryptocurrency market. Finance Research Letters. [Google Scholar] [CrossRef]
- Bouri, Elie, Luis A. Gil-Alana, Rangan Gupta, and David Roubaud. 2019. Modelling long memory volatility in the Bitcoin market: Evidence of persistence and structural breaks. International Journal of Finance & Economics 24: 412–26. [Google Scholar] [CrossRef]
- Brauneis, Alexander, and Roland Mestel. 2018. Price discovery of cryptocurrencies: Bitcoin and beyond. Economics Letters 165: 58–61. [Google Scholar] [CrossRef]
- Brock, W. A., J. A. Scheinkman, W. D. Dechert, and B. LeBaron. 1996. A test for independence based on the correlation dimension. Econometric Reviews 15: 197–235. [Google Scholar] [CrossRef]
- Caporale, Guglielmo Maria, Luis Gil-Alana, and Alex Plastun. 2018. Persistence in the cryptocurrency market. Research in International Business and Finance 46: 141–48. [Google Scholar] [CrossRef]
- Chaim, Pedro, and Márcio P. Laurini. 2018. Volatility and return jumps in bitcoin. Economics Letters 173: 158–63. [Google Scholar] [CrossRef]
- Chaim, Pedro, and Márcio P. Laurini. 2019. Nonlinear dependence in cryptocurrency markets. The North American Journal of Economics and Finance 48: 32–47. [Google Scholar] [CrossRef]
- Charfeddine, Lanouar, and Youcef Maouchi. 2018. Are shocks on the returns and volatility of cryptocurrencies really persistent? Finance Research Letters. [Google Scholar] [CrossRef]
- Cheah, Eng-Tuck, Tapas Mishra, Mamata Parhi, and Zhuang Zhang. 2018. Long memory interdependency and inefficiency in Bitcoin markets. Economics Letters 167: 18–25. [Google Scholar] [CrossRef]
- Chen, Willa W., and Rohit S. Deo. 2006. The variance ratio statistic at large horizons. Econometric Theory 22: 206–34. [Google Scholar] [CrossRef]
- Choi, In. 1999. Testing the random walk hypothesis for real exchange rates. Journal of Applied Econometrics 14: 293–308. [Google Scholar] [CrossRef]
- Chow, K. Victor, and Karen C. Denning. 1993. A simple multiple variance ratio test. Journal of Econometrics 58: 385–401. [Google Scholar] [CrossRef]
- Corbet, Shaen, Andrew Meegan, Charles Larkin, Brian Lucey, and Larisa Yarovaya. 2018. Exploring the dynamic relationships between cryptocurrencies and other financial assets. Economics Letters 165: 28–34. [Google Scholar] [CrossRef]
- Corbet, Shaen, Brian Lucey, Andrew Urquhart, and Larisa Yarovaya. 2019. Cryptocurrencies as a financial asset: A systematic analysis. International Review of Financial Analysis 62: 182–99. [Google Scholar] [CrossRef]
- Dickey, David A., and Wayne A. Fuller. 1979. Distribution of the estimators for autoregressive time series with a unit root. Journal of the American Statistical Association 74: 427–31. [Google Scholar]
- Durlauf, Steven N. 1991. Spectral based testing of the martingale hypothesis. Journal of Econometrics 50: 355–76. [Google Scholar] [CrossRef]
- Dyhrberg, Anne Haubo. 2016a. Bitcoin, gold and the dollar–A GARCH volatility analysis. Finance Research Letters 16: 85–92. [Google Scholar] [CrossRef]
- Dyhrberg, Anne Haubo. 2016b. Hedging capabilities of bitcoin. Is it the virtual gold? Finance Research Letters 16: 139–44. [Google Scholar] [CrossRef]
- El Alaoui, Marwane, Elie Bouri, and David Roubaud. 2018. Bitcoin price–volume: A multifractal cross-correlation approach. Finance Research Letters. [Google Scholar] [CrossRef]
- Engle, R. Fobert. 1982. Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation. Econometrica: Journal of the Econometric Society 50: 987–1007. [Google Scholar] [CrossRef]
- Escanciano, J. Carlos, and Carlos Velasco. 2006. Generalized spectral tests for the martingale difference hypothesis. Journal of Econometrics 134: 151–85. [Google Scholar] [CrossRef]
- Escanciano, J. Carlos, and Ignacio N. Lobato. 2009. An automatic portmanteau test for serial correlation. Journal of Econometrics 151: 140–49. [Google Scholar] [CrossRef]
- Fama, Eugene. F. 1970. Efficient Capital Markets: A Review of Theory and Empirical Work. Journal of Finance 25: 383–417. [Google Scholar] [CrossRef]
- Fry, John, and Eng-Tuck Cheah. 2016. Negative bubbles and shocks in cryptocurrency markets. International Review of Financial Analysis 47: 343–52. [Google Scholar] [CrossRef]
- Geweke, John, and Susan Porter-Hudak. 1983. The estimation and application of long memory time series models. Journal of Time Series Analysis 4: 221–38. [Google Scholar] [CrossRef]
- Giraitis, Liudas, Piotr Kokoszka, Remigijus Leipus, and Gilles Teyssière. 2003. Rescaled variance and related tests for long memory in volatility and levels. Journal of Econometrics 112: 265–94. [Google Scholar] [CrossRef]
- Glosten, Lawrence R., Ravi Jagannathan, and David E. Runkle. 1993. On the relation between the expected value and the volatility of the nominal excess return on stocks. The Journal of Finance 48: 1779–801. [Google Scholar] [CrossRef]
- Godfrey, Keith R. 2017. Toward a model-free measure of market efficiency. Pacific-Basin Finance Journal 44: 97–112. [Google Scholar] [CrossRef]
- Gray, Henry L., Nien-Fan Zhang, and Wayne A. Woodward. 1989. On generalized fractional processes. Journal of Time Series Analysis 10: 233–57. [Google Scholar] [CrossRef]
- Harris, Lawrence. 1991. Stock price clustering and discreteness. The Review of Financial Studies 4: 389–415. [Google Scholar] [CrossRef]
- Haslett, John, and Adrian E. Raftery. 1989. Space-time modelling with long-memory dependence: Assessing Ireland’s wind power resource. Journal of the Royal Statistical Society: Series C (Applied Statistics) 38: 1–21. [Google Scholar] [CrossRef]
- Hattori, Takahiro, and Ryo Ishida. 2019. Do Investors Arbitrage in the Cryptocurrency Market? Evidence from the Bitcoin Futures Market. February 8. Available online: https://ssrn.com/abstract=3209625 (accessed on 30 March 2019). [CrossRef]
- He, Ling-Yun, and Shu-Peng Chen. 2011. A new approach to quantify power-law cross-correlation and its application to commodity markets. Physica A: Statistical Mechanics and Its Applications 390: 3806–14. [Google Scholar] [CrossRef]
- Hou, Kewei, and Tobias J. Moskowitz. 2005. Market frictions, price delay, and the cross-section of expected returns. The Review of Financial Studies 18: 981–1020. [Google Scholar] [CrossRef]
- Huber, Peter J. 1964. Robust Estimation of a Location Parameter. The Annals of Mathematical Statistics 35: 73–101. [Google Scholar] [CrossRef]
- Hurst, Harold Ervin. 1951. Long-term storage capacity of reservoirs. Transactions of the American Society of Civil Engineers 116: 770–99. [Google Scholar]
- Ji, Qiang, Elie Bouri, Rangan Gupta, and David Roubaud. 2018. Network causality structures among Bitcoin and other financial assets: A directed acyclic graph approach. The Quarterly Review of Economics and Finance 70: 203–13. [Google Scholar] [CrossRef]
- Jiang, Yonghong, He Nie, and Weihua Ruan. 2018. Time-varying long-term memory in Bitcoin market. Finance Research Letters 25: 280–84. [Google Scholar] [CrossRef]
- Johansen, Søren, and Morten Ørregaard Nielsen. 2012. Likelihood inference for a fractionally cointegrated vector autoregressive model. Econometrica 80: 2667–732. [Google Scholar] [CrossRef]
- Kaiser, Lars. 2018. Seasonality in cryptocurrencies. Finance Research Letters. [Google Scholar] [CrossRef]
- Kantelhardt, Jan W., S. A. Zschiegner, Eva Koscielny-Bunde, Shlomo Havlin, Armin Bunde, and H. Eugene Stanley. 2002. Multifractal detrended fluctuation analysis of nonstationary time series. Physica A: Statistical Mechanics and its Applications 316: 87–114. [Google Scholar] [CrossRef]
- Katsiampa, Paraskevi. 2017. Volatility estimation for Bitcoin: A comparison of GARCH models. Economics Letters 158: 3–6. [Google Scholar] [CrossRef]
- Khuntia, Sashikanta, and J. K. Pattanayak. 2018. Adaptive market hypothesis and evolving predictability of bitcoin. Economics Letters 167: 26–28. [Google Scholar] [CrossRef]
- Kim, Jae H. 2009. Automatic variance ratio test under conditional heteroskedasticity. Finance Research Letters 6: 179–85. [Google Scholar] [CrossRef]
- Köchling, Gerrit, Janis Müller, and Peter N. Posch. 2018. Does the introduction of futures improve the efficiency of Bitcoin? Finance Research Letters. [Google Scholar] [CrossRef]
- Köchling, Gerrit, Janis Müller, and Peter N. Posch. 2019. Price delay and market frictions in cryptocurrency markets. Economics Letters 174: 39–41. [Google Scholar] [CrossRef]
- Kristoufek, Ladislav. 2018. On Bitcoin markets (in) efficiency and its evolution. Physica A: Statistical Mechanics and its Applications 503: 257–62. [Google Scholar] [CrossRef]
- Kristoufek, Ladislav, and Miloslav Vosvrda. 2013. Measuring capital market efficiency: Global and local correlations structure. Physica A: Statistical Mechanics and its Applications 392: 184–93. [Google Scholar] [CrossRef]
- Kuan, Chung-Ming, and Wei-Ming Lee. 2004. A new test of the martingale difference hypothesis. Studies in Nonlinear Dynamics & Econometrics 8: 1–26. [Google Scholar]
- Kurihara, Yutaka, and Akio Fukushima. 2017. The market efficiency of Bitcoin: A weekly anomaly perspective. Journal of Applied Finance and Banking 7: 57–64. [Google Scholar]
- Kwiatkowski, Denis, Peter C. Phillips, Peter Schmidt, and Yongcheol Shin. 1992. Testing the null hypothesis of stationarity against the alternative of a unit root: How sure are we that economic time series have a unit root? Journal of econometrics 54: 159–78. [Google Scholar] [CrossRef]
- Lahmiri, Selim, and Stelios Bekiros. 2018. Chaos, randomness and multi-fractality in Bitcoin market. Chaos, Solitons & Fractals 106: 28–34. [Google Scholar]
- Lahmiri, Salim, Stelios Bekiros, and Antonio Salvi. 2018. Long-range memory, distributional variation and randomness of bitcoin volatility. Chaos, Solitons & Fractals 107: 43–48. [Google Scholar]
- Laurini, Márcio Poletti, Mauad, Roberto Baltieri, and Fernando Antonio Aiube. 2016. Multivariate Stochastic Volatility-Double Jump Model: An application for oil assets. Banco Central do Brasil, Working Papers, 415. Brasília, Brazil: Central Bank of Brazil. [Google Scholar]
- Lee, Tae-Hwy, and Weiping Yang. 2014. Granger-causality in quantiles between financial markets: Using copula approach. International Review of Financial Analysis 33: 70–78. [Google Scholar] [CrossRef]
- Ljung, Greta M., and George E. Box. 1978. On a measure of lack of fit in time series models. Biometrika 65: 297–303. [Google Scholar] [CrossRef]
- Lo, Andrew W. 1991. Long-Term Memory in Stock Market Prices. Econometrica 59: 1279–313. [Google Scholar] [CrossRef]
- Lo, Andrew W., and A. Craig MacKinlay. 1988. Stock market prices do not follow random walks: Evidence from a simple specification test. The Review of Financial Studies 1: 41–66. [Google Scholar] [CrossRef]
- López, Fernando, Mariano Matilla-García, Jesús Mur, and Manuel Ruiz Marín. 2010. A non-parametric spatial independence test using symbolic entropy. Regional Science and Urban Economics 40: 106–15. [Google Scholar] [CrossRef]
- Massey, Frank J., Jr. 1951. The Kolmogorov-Smirnov test for goodness of fit. Journal of the American Statistical Association 46: 68–78. [Google Scholar] [CrossRef]
- Matilla-García, Mariano, and Manuel Ruiz Marín. 2008. A non-parametric independence test using permutation entropy. Journal of Econometrics 144: 139–55. [Google Scholar] [CrossRef]
- Mbanga, Cedric L. 2018. The day-of-the-week pattern of price clustering in bitcoin. Applied Economics Letters 1–5. [Google Scholar] [CrossRef]
- Nadarajah, Saralees, and Jeffrey Chu. 2017. On the inefficiency of Bitcoin. Economics Letters 150: 6–9. [Google Scholar] [CrossRef]
- Nakamoto, Satoshi. 2008. Bitcoin: A Peer-to-Peer Electronic Cash System. Cambridge: MIT Press. [Google Scholar]
- Nelson, Daniel B. 1991. Conditional heteroskedasticity in asset returns: A new approach. Econometrica: Journal of the Econometric Society 59: 347–70. [Google Scholar] [CrossRef]
- Peng, C. K., Shlomo Havlin, H. Eugene Stanley, and Ary L. Goldberger. 1995. Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series. Chaos: An Interdisciplinary Journal of Nonlinear Science 5: 82–87. [Google Scholar] [CrossRef] [PubMed]
- Phillip, Andrew, Jennifer S. Chan, and Shelton Peiris. 2018a. A new look at Cryptocurrencies. Economics Letters 163: 6–9. [Google Scholar] [CrossRef]
- Phillip, Andrew, Jennifer S. Chan, and Shelton Peiris. 2018b. On long memory effects in the volatility measure of Cryptocurrencies. Finance Research Letters 28. [Google Scholar] [CrossRef]
- Phillips, Peter C. 1987. Time series regression with a unit root. Econometrica: Journal of the Econometric Society 55: 277–301. [Google Scholar] [CrossRef]
- Robinson, Peter M. 1995a. Gaussian semiparametric estimation of long range dependence. The Annals of Statistics 23: 1630–61. [Google Scholar] [CrossRef]
- Robinson, Peter M. 1995b. Log-periodogram regression of time series with long range dependence. The Annals of Statstics 23: 1048–72. [Google Scholar] [CrossRef]
- Rogers, L. Chris G., and Steven E. Satchell. 1991. Estimating variance from high, low and closing prices. The Annals of Applied Probability 1: 504–12. [Google Scholar] [CrossRef]
- Selgin, George. 2015. Synthetic commodity money. Journal of Financial Stability 17: 92–99. [Google Scholar] [CrossRef]
- Sensoy, Ahmet. 2018. The inefficiency of Bitcoin revisited: A high-frequency analysis with alternative currencies. Finance Research Letters. [Google Scholar] [CrossRef]
- Shannon, Claude E. 1948. A note on the concept of entropy. Bell System Technical Journal 27: 379–423. [Google Scholar] [CrossRef]
- Shimotsu, Katsumi, and Peter C. Phillips. 2005. Exact local Whittle estimation of fractional integration. The Annals of Statistics 33: 1890–933. [Google Scholar] [CrossRef]
- Spirtes, Peter, Clark N. Glymour, Richard Scheines, David Heckerman, Christopher Meek, Gregory Cooper, and Thomas Richardson. 2000. Causation, Prediction, and Search. Cambridge: MIT Press. [Google Scholar]
- Takaishi, T. 2018. Statistical properties and multifractality of Bitcoin. Physica A: Statistical Mechanics and Its Applications 506: 507–19. [Google Scholar] [CrossRef]
- Takaishi, Tetsuya, and Takanori Adachi. 2018. Taylor effect in Bitcoin time series. Economics Letters 172: 5–7. [Google Scholar] [CrossRef]
- Taqqu, Murad S., Vadim Teverovsky, and Walter Willinger. 1995. Estimators for long-range dependence: an empirical study. Fractals 3: 785–98. [Google Scholar] [CrossRef]
- Taylor, Stephen J. 2007. Modelling Financial Time Series. Hackensack: World Scientific Publishing Co. Pte. Ltd. [Google Scholar]
- Tiwari, Aviral Kumar, R. K. Jana, Debojyoti Das, and David Roubaud. 2018. Informational efficiency of Bitcoin—An extension. Economics Letters 163: 106–9. [Google Scholar] [CrossRef]
- Urquhart, Andrew. 2016. The inefficiency of Bitcoin. Economics Letters 148: 80–82. [Google Scholar] [CrossRef]
- Urquhart, Andrew. 2017. Price clustering in Bitcoin. Economics letters 159: 145–48. [Google Scholar] [CrossRef]
- Vidal-Tomás, David, and Ana Ibañez. 2018. Semi-strong efficiency of Bitcoin. Finance Research Letters 27: 259–65. [Google Scholar] [CrossRef]
- Wald, Abraham, and Jacob Wolfowitz. 1940. On a test whether two samples are from the same population. The Annals of Mathematical Statistics 11: 147–62. [Google Scholar] [CrossRef]
- Wei, Wang Chun. 2018. Liquidity and market efficiency in cryptocurrencies. Economics Letters 168: 21–24. [Google Scholar] [CrossRef]
- Zakoian, Jean-Michel. 1994. Threshold heteroskedastic models. Journal of Economic Dynamics and control 18: 931–55. [Google Scholar] [CrossRef]
- Zargar, Faisal Nazir, and Dilip Kumar. 2019a. Informational inefficiency of Bitcoin: A study based on high-frequency data. Research in International Business and Finance 47: 344–53. [Google Scholar] [CrossRef]
- Zargar, Faisal Nazir, and Dilip Kumar. 2019b. Long range dependence in the Bitcoin market: A study based on high-frequency data. Physica A: Statistical Mechanics and Its Applications 515: 625–40. [Google Scholar] [CrossRef]
- Zhang, Wei, Pengfei Wang, Xiao Li, and Dehua Shen. 2018. The inefficiency of cryptocurrency and its cross-correlation with Dow Jones Industrial Average. Physica A: Statistical Mechanics and Its Applications 510: 658–70. [Google Scholar] [CrossRef]
- Zhou, Wei-Xing. 2008. Multifractal detrended cross-correlation analysis for two nonstationary signals. Physical Review E 77: 066211. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Ke, Philip L. Yu, and Wai Keung Li. 2014. Testing for the buffered autoregressive processes. Statistica Sinica 24: 971–84. [Google Scholar] [CrossRef]
- Zivot, Eric, and Donald W. K. Andrews. 2002. Further evidence on the great crash, the oil-price shock, and the unit-root hypothesis. Journal of Business & Economic Statistics 20: 25–44. [Google Scholar]
Study | Data Source | Methodology | Efficiency or Not |
---|---|---|---|
Aggarwal (2019) | www.coindesk.com | Augmented Dickey-Fuller test based on Dickey and Fuller (1979) Phillips-Perron test in Phillips (1987) Kwiatkowski et al. (1992) test Zivot and Andrews (2002) structural breakpoint test Lo and MacKinlay (1988) multiple variance ratio (MVR) test BDS test by Brock et al. (1996) ARCH by Engle (1982) GARCH by Bollerslev (1986) E-GARCH by Nelson (1991) TARCH by Zakoian (1994) | Inefficiency |
Almudhaf (2018) | http://grayscale.co/bitcoin-investment-trust | OLS with Newey-West’s covariance estimator | Inefficiency |
Alvarez-Ramirez et al. (2018) | www.coindesk.com | Detrended Fluctuation Analysis (DFA) Scaling Exponent over Sliding Window Asymmetric Scaling Exponent | Inefficiency |
Al-Yahyaee et al. (2018) | Datastream Coindesk Price Index website | Multifractal Detrended Fluctuation Analysis (MF-DFA) | Inefficiency |
Bariviera (2017) | Datastream | Hurst (1951) exponent Detrended Fluctuation Analysis (DFA) | Inefficiency but decreasing |
Bariviera et al. (2017) | Datastream | Hurst (1951) exponent Detrended Fluctuation Analysis (DFA) | Inefficiency/ Efficiency |
Bouri et al. (2019) | Bitstamp Coindesk Price Index website | ARIMA (parametric, semiparametric d estimations) Bai and Perron’s (2003) structural break tests | Inefficiency |
Bouri et al. (2018) | www.coinmarketcap.com | Copula-Granger Causality in Distribution (CGCD) by Lee and Yang (2014) | Inefficiency |
Brauneis and Mestel (2018) | Coinmarketcap.com | Ljung and Box (1978) test Wald and Wolfowitz (1940) runs-test Variance ratio test by Lo and MacKinlay (1988) Kim (2009) wild bootstrap automatic variance ratio test based on Chow and Denning (1993) Bartels (1982) test Hurst (1951) exponent | Higher efficiency in Bitcoin |
Caporale et al. (2018) | Coinmarketcap.com | R/S analysis Fractional integration | Inefficiency |
Chaim and Laurini (2018) | Coinmetrics.io FRED database | Laurini et al. (2016) model | Inefficiency |
Chaim and Laurini (2019) | Coinmetrics.io | Laurini et al. (2016) model | Inefficiency |
Charfeddine and Maouchi (2018) | Coinmarketcap.com | Geweke and Porter-Hudak (1983) (GHP) test Gaussian semi parametric (GSP) test of Robinson (1995a) Local Whittle (LW) of Robinson (1995b) Exact Local Whittle (ELW) of Shimotsu and Phillips (2005) R/S test of Lo (1991) Rescaled Variance (V/S) test of Giraitis et al. (2003) | Inefficiency, Efficiency (ETH) |
Cheah et al. (2018) | www.bitcoincharts.com | FCVAR by Johansen and Nielsen (2012) | Inefficiency |
El Alaoui et al. (2018) | www.cryptocompare.com | Multifractal Detrended Cross-correlations Analysis (MF-DCCA) by Zhou (2008) | Inefficiency |
Hattori and Ishida (2019) | Bloomberg | Regression | Inefficiency |
Ji et al. (2018) | www.coindesk.com | Directed Acyclical Graph (DAG) by Spirtes et al. (2000) Vector Autoregression (VAR) Error Correction Model (ECM) Forecast Error Variance Decomposition (FEVD) | Very weak inefficiency |
Jiang et al. (2018) | www.bitcoinaverage.com | Hurst (1951) exponent and rolling windows Ljung -Box test AVR test | Inefficiency |
Kaiser (2018) | Coinmarketcap.com | Bid-ask spread estimation as by Abdi and Ranaldo (2017) Volatility estimation as by Rogers and Satchell (1991) GARCH by Bollerslev (1986) | Efficiency |
Khuntia and Pattanayak (2018) | www.coindesk.com | Dominguez- Lobato (DL) test Generalized Spectral (GS) test | Efficiency evolving-(Adaptive Market) |
Köchling et al. (2018) | www.bitcoinaverage.com | Ljung and Box (1978) test Escanciano and Lobato (2009) automatic portmanteau test Wald and Wolfowitz (1940) runs-test Bartels (1982) Durlauf (1991) spectral shape test Escanciano and Velasco (2006) generalized spectral test Kim (2009) wild bootstrap automatic variance ratio test Brock et al. (1996) BDS test Hurst (1951) exponent | Inefficiency but decreasing |
Köchling et al. (2019) | Coimarketcap.com | 3 delay measures by Hou and Moskowitz (2005) | Inefficiency but decreasing |
Kristoufek (2018) | www.coindesk.com | Efficiency Index of Kristoufek and Vosvrda (2013) | Inefficiency Efficiency only after cooling down of bubbles |
Kurihara and Fukushima (2017) | www.bitcoinaverage.com | Ordinary Least Squares (OLS) Robust Least Squares (RLS) | Inefficiency |
Lahmiri and Bekiros (2018) | www.coindesk.com | Largest Lyapunov Exponent (LLE) Shannon entropy (SE) Multi-fractal Detrended Fluctuation Analysis (MF-DFA) | Inefficiency |
Lahmiri et al. (2018) | data.Bitcoinity.org | Fractionally integrated GARCH (FIGARCH) by Baillie et al. (1996) Shannon entropy by Shannon (1948) | Inefficiency |
Mbanga (2018) | www.bitcoincharts.com | Huber (1964) M estimations | Inefficiency |
Nadarajah and Chu (2017) | www.bitcoinaverage.com | Ljung and Box (1978) test Runs test by Wald and Wolfowitz (1940) Bartels (1982) test Wild-bootstrapped AVR test by Kim (2009) Spectral shape tests by Durlauf (1991) and Choi (1999) BDS test by Brock et al. (1996) Portmanteau test by Escanciano and Lobato (2009) Generalized spectral test by Escanciano and Velasco (2006) | Inefficiency |
Phillip et al. (2018a) | Brave New Coin (BNC) Digital Currency indices | Ljung and Box (1978) test Kolmogorov-Smirnov test by Massey (1951) Generalized long-term memory by Gray et al. (1989) Generalized long memory (GLM)- stochastic volatility (SV)- leverage (LVG) and heavy tails (HT) model | Inefficiency |
Phillip et al. (2018b) | Brave New Coin (BNC) Digital Currency indices | Jump BAR SV Gegenbauer Log Range (JBAR-SV-GLR) model, as combination of Zhu et al. (2014) and Taylor (2007) | Inefficiency |
Sensoy (2018) | 64 Bitcoin exchanges | Matilla-García and Marín (2008) López et al. (2010) | Inefficiency More efficient since 2016 |
Takaishi and Adachi (2018) | www.coindesk.comHistdata.com | Autocorrelation tests | Inefficiency |
Tiwari et al. (2018) | www.coindesk.com | Hurst (1951) exponent DFA CMA-1 and CMA-2 by Bashan et al. (2008) Periodogram-LAD and Periodogram-LS by Taqqu et al. (1995) GPH by Geweke and Porter-Hudak (1983) MLE estimators by Haslett and Raftery (1989) | Inefficiency |
Urquhart (2016) | www.bitcoinaverage.com | Ljung and Box (1978) test Runs test by Wald and Wolfowitz (1940) Automatic variance test (AVR) Wild-bootstrapped AVR test by Kim (2009) BDS test by Brock et al. (1996) Hurst (1951) exponent | Inefficiency |
Urquhart (2017) | www.bitcoincharts.com | Clustering test Probit model | Inefficiency |
Vidal-Tomás and Ibañez (2018) | Bitstamp and Mt.Gox | CGARCH, AR-CGARCH-M | Inefficiency but decreasing |
Wei (2018) | www.coinmarketcap.com | Ljung and Box (1978) test Runs test by Wald and Wolfowitz (1940) Bartels test Automatic variance test (AVR) Wild-bootstrapped AVR test by Kim (2009) BDS test by Brock et al. (1996) Hurst (1951) exponent Amihud’s (2002) illiquidity ratio | Inefficiency |
Zargar and Kumar (2019a) | Bloomberg | Variance ratio (VR) test by Lo and MacKinlay (1988) Multiple Variance Ratio (MVR) test by Chow and Denning (1993) Automatic Variance Ratio (AVR) test by Choi (1999) Joint Variance Ratio (JVR) test by Chen and Deo (2006) Kuan and Lee (2004) (KL) test | Inefficiency at higher data frequencies |
(Zargar and Kumar (2019b) | Bloomberg | Local Whittle (LW) estimator Exact Local Whittle (ELW) estimator ARFIMA | Inefficiency |
Zhang et al. (2018) | Coinmarketcap.com | Autocorrelation tests, GARCH by Bollerslev (1986), GJR model by Glosten et al. (1993), Detrended Fluctuation Analysis (DFA) by Peng et al. (1995), Detrended Moving Average Correlation Analysis (DMCA) by He and Chen (2011) Hurst (1951) exponent | Inefficiency |
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kyriazis, N.A. A Survey on Efficiency and Profitable Trading Opportunities in Cryptocurrency Markets. J. Risk Financial Manag. 2019, 12, 67. https://doi.org/10.3390/jrfm12020067
Kyriazis NA. A Survey on Efficiency and Profitable Trading Opportunities in Cryptocurrency Markets. Journal of Risk and Financial Management. 2019; 12(2):67. https://doi.org/10.3390/jrfm12020067
Chicago/Turabian StyleKyriazis, Nikolaos A. 2019. "A Survey on Efficiency and Profitable Trading Opportunities in Cryptocurrency Markets" Journal of Risk and Financial Management 12, no. 2: 67. https://doi.org/10.3390/jrfm12020067
APA StyleKyriazis, N. A. (2019). A Survey on Efficiency and Profitable Trading Opportunities in Cryptocurrency Markets. Journal of Risk and Financial Management, 12(2), 67. https://doi.org/10.3390/jrfm12020067