The Impact of Urbanization on Income Inequality: A Study in Vietnam
Abstract
:1. Introduction
2. Literature Review
2.1. How Does Urbanization Affect Income Inequality?
2.2. Previous Related Studies
3. Methodology and Data
3.1. Empirical Framework
3.2. Data
4. Empirical Results
4.1. Descriptive Statistics of Variables in the Research Model
4.2. Correlation Matrix and Multicollinearity
4.3. Assessing the Impact of Urbanization on Income Inequality
5. Discussion of Results
6. Conclusions and Policy Implications
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Variables | (2) | (3) | (4) | (5) | (6) |
---|---|---|---|---|---|
INEQ | INEQ | INEQ | INEQ | INEQ | |
URB | −0.00142 | 0.0299 | 0.00526 | 0.00115 | −0.00203 |
(0.0191) | (0.0585) | (0.0194) | (0.0184) | (0.0573) | |
URB_sq | −0.0371 | 0.00174 | |||
(0.0654) | (0.0637) | ||||
GRDPpc | 0.0146* | 0.0140 * | −0.0219 | −0.415 *** | −0.421 *** |
(0.00822) | (0.00830) | (0.0222) | (0.0787) | (0.0804) | |
GRDPpc_sq | 0.0106 * | −0.00286 | |||
(0.00598) | (0.00636) | ||||
initialINEQGRDPpc | 1.036 *** | 1.074 *** | |||
(0.189) | (0.209) | ||||
rEXP | −0.00500 | −0.00521 | −0.00406 | 0.00191 | 0.00193 |
(0.00431) | (0.00433) | (0.00434) | (0.00434) | (0.00438) | |
rGOV | 0.0799 *** | 0.0803 *** | 0.0763 *** | 0.0699 *** | 0.0705 *** |
(0.0111) | (0.0112) | (0.0113) | (0.0109) | (0.0110) | |
rEDU | −0.642 * | −0.647 ** | −0.854 ** | −1.021 *** | −0.977 *** |
(0.328) | (0.328) | (0.348) | (0.323) | (0.338) | |
rAGR | 0.0507 ** | 0.0493 ** | 0.0351 | 0.0246 | 0.0279 |
(0.0234) | (0.0235) | (0.0249) | (0.0230) | (0.0243) | |
Constant | 0.356 *** | 0.352 *** | 0.374 *** | 0.388 *** | 0.384 *** |
(0.0191) | (0.0204) | (0.0218) | (0.0193) | (0.0222) | |
Observations | 378 | 378 | 378 | 378 | 378 |
R-squared | 0.189 | 0.189 | 0.195 | 0.250 | 0.250 |
Variables | (2) | (3) | (4) | (5) | (6) |
---|---|---|---|---|---|
INEQ | INEQ | INEQ | INEQ | INEQ | |
URB | −0.0314 | 0.0527 | −0.0217 | −0.0193 | 0.0273 |
(0.0258) | (0.0812) | (0.0262) | (0.0239) | (0.0745) | |
URB_sq | −0.0990 | −0.0514 | |||
(0.0896) | (0.0822) | ||||
GRDPpc | −0.00198 | −0.00349 | −0.0510 ** | −0.388 *** | −0.376 *** |
(0.0100) | (0.0101) | (0.0230) | (0.0903) | (0.0931) | |
GRDPpc_sq | 0.0135 ** | 0.00272 | |||
(0.00574) | (0.00637) | ||||
initialINEQGRDPpc | 0.949 *** | 0.895 *** | |||
(0.219) | (0.245) | ||||
rEXP | −0.00627 | −0.00682 | −0.00557 | −0.00156 | −0.00185 |
(0.00456) | (0.00459) | (0.00454) | (0.00455) | (0.00459) | |
rGOV | 0.0564 *** | 0.0568 *** | 0.0520 *** | 0.0535 *** | 0.0544 *** |
(0.0136) | (0.0136) | (0.0136) | (0.0129) | (0.0129) | |
rEDU | −0.682 * | −0.668 * | −1.110 ** | −1.125 *** | −1.166 *** |
(0.395) | (0.397) | (0.434) | (0.388) | (0.408) | |
rAGR | 0.0153 | 0.0130 | −0.0126 | −0.00103 | −0.00458 |
(0.0286) | (0.0288) | (0.0308) | (0.0276) | (0.0290) | |
Constant | 0.388 *** | 0.377 *** | 0.420 *** | 0.413 *** | 0.409 *** |
(0.0226) | (0.0253) | (0.0261) | (0.0226) | (0.0266) | |
Observations | 378 | 378 | 378 | 378 | 378 |
Number of id | 63 | 63 | 63 | 63 | 63 |
Statistical Parameters | (2) | (3) | (4) | (5) | (6) |
---|---|---|---|---|---|
Chi2 | 58.27 | 58.63 | 55.59 | 49.78 | 68.39 |
Prob > chi2 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
Statistical Parameters | (2) | (3) | (4) | (5) | (6) |
---|---|---|---|---|---|
Chi2 | 8920.95 | 12,922.50 | 6332.03 | 9820.80 | 16,898.79 |
Prob > chi2 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
Statistical Parameters | (2) | (3) | (4) | (5) | (6) |
---|---|---|---|---|---|
F(1,62) | 6.297 | 5.556 | 6.457 | 5.997 | 5.207 |
Prob>F | 0.0147 | 0.0216 | 0.0136 | 0.0172 | 0.0259 |
Statistical Parameters | (2) | (3) | (4) | (5) | (6) |
---|---|---|---|---|---|
Pesaran’s test | 3.915 | 3.520 | 3.945 | 3.979 | 3.675 |
Prob > z | 0.0001 | 0.0004 | 0.0001 | 0.0001 | 0.0002 |
abs | 0.401 | 0.403 | 0.395 | 0.403 | 0.397 |
Variables | (2) | (3) | (4) | (5) | (6) |
---|---|---|---|---|---|
URB | |||||
Chi-sq | 0.36863 | 0.41196 | 0.37807 | 0.21610 | 0.19385 |
p-value | 0.54375 | 0.52098 | 0.53864 | 0.64203 | 0.65973 |
URB_sq | |||||
Chi-sq | 0.61870 | 0.30912 | |||
p-value | 0.43153 | 0.57822 | |||
GRDPpc | |||||
Chi-sq | 0.37675 | 0.38193 | 0.02666 | 0.88462 | 0.67078 |
p-value | 0.53935 | 0.53657 | 0.87030 | 0.34694 | 0.41278 |
GRDPpc_sq | |||||
Chi-sq | 0.75805 | 0.05507 | |||
p-value | 0.38394 | 0.81446 | |||
initial INEQGRDPpc | |||||
Chi-sq | 0.64876 | 0.46360 | |||
p-value | 0.42056 | 0.49595 | |||
rEXP | |||||
Chi-sq | 3.67900 | 3.65990 | 4.37889 | 7.78901 | 7.89755 |
p-value | 0.05510 | 0.05574 | 0.03639 | 0.00526 | 0.00495 |
rGOV | |||||
Chi-sq | 3.91847 | 3.93987 | 3.64679 | 3.52257 | 3.44806 |
p-value | 0.04776 | 0.04715 | 0.05618 | 0.06054 | 0.06333 |
rEDU | |||||
Chi-sq | 0.02895 | 0.02656 | 0.12883 | 0.09891 | 0.13693 |
p-value | 0.86490 | 0.87053 | 0.71965 | 0.75314 | 0.71135 |
rAGR | |||||
Chi-sq | 0.07408 | 0.07707 | 0.00048 | 0.03788 | 0.06896 |
p-value | 0.78548 | 0.78131 | 0.98260 | 0.84569 | 0.79286 |
References
- Akita, Takahiro, Rizal Affandi Lukman, and Yukino Yamada. 1999. Inequality in the Distribution of Household Expenditures in Indonesia: A Theil Decomposition Analysis. The Developing Economies 37: 197–221. [Google Scholar] [CrossRef]
- Angeles, Luis. 2010. An alternative test of Kuznets’ hypothesis. The Journal of Economic Inequality 8: 463–73. [Google Scholar] [CrossRef]
- Behrens, Kristian, and Frédéric Robert-Nicoud. 2014. Survival of the fittest in cities: agglomeration, polarization, and inequality. The Economic Journal 124: 1371–400. [Google Scholar] [CrossRef]
- Beladi, Hamid, Chi-Chur Chao, Mong Shan Ee, and Daniel Hollas. 2017. Urban Development, Excessive Entry of Firms and Wage Inequality in Developing Countries. ADBI Working Paper Series, ADBI Working Paper 653; Tokyo: Asian Development Bank Institute. [Google Scholar]
- Bloom, David E., David Canning, Günther Fink, Tarun Khanna, and Patrick Salyer. 2010. Urban Settlement: Data, Measures, and Trends. UNU-WIDER Working Paper. Helsinki: World Institute for Development Economic Research (UNU-WIDER). [Google Scholar]
- Bourguignon, François, and Christian Morrisson. 1998. Inequality and Development: The Role of Dualism. Journal of Development Economics 57: 233–57. [Google Scholar] [CrossRef]
- Brülhart, Marius, and Federica Sbergami. 2009. Agglomeration and growth: cross-country evidence. Journal of Urban Economics 65: 48–63. [Google Scholar] [CrossRef]
- Driscoll, John C., and Aart C. Kraay. 1998. Consistent Covariance Matrix Estimation with Spatially Dependent Panel Data. Review of Economics and Statistics 80: 549–60. [Google Scholar] [CrossRef]
- Gini, Corrado. 1913. Variabilita e Mutabilita. Journal of the Royal Statistical Society 76: 326–27. [Google Scholar]
- Gini, Corrado. 1921. Measurement of inequality of incomes. The Economic Journal 31: 124–26. [Google Scholar] [CrossRef]
- Gotham, Kevin Fox. 2012. Urbanization. In The Wiley-Blackwell Companion to Sociology. Edited by G. Ritzer Malden. Hoboken: Wiley-Blackwell, pp. 488–503. [Google Scholar]
- Hardoon, Deborah, Sophia Ayele, and Ricardo Fuentes-Nieva. 2016. An Economy for the 1%. Nairobi: Oxfam. [Google Scholar]
- Harris, John R., and Michael P. Todaro. 1970. Migration, Unemployment, and Development: A Two Sector Analysis. American Economic Review 60: 126–42. [Google Scholar]
- Jin, Furong. 2009. Foreign Direct Investment and Income Inequality in China. Seoul Journal of Economics 22: 311–39. [Google Scholar]
- Johansson, Anders C., and Xun Wang. 2014. Financial sector policies and income inequality. China Economic Review 31: 367–78. [Google Scholar] [CrossRef]
- Kanbur, Ravi, and Juzhong Zhuang. 2013. Urbanization and inequality in Asia. Asian Development Review 30: 131–47. [Google Scholar] [CrossRef]
- Krugman, Paul R. 1991. Geography and Trade. Cambridge: MIT Press. [Google Scholar]
- Kuznets, Simon. 1955. Economic Growth and Income Inequality. American Economic Review 45: 1–28. [Google Scholar]
- Lewis, W. Arthur. 1954. Economic Development with Unlimited Supplies of Labor. Manchester School 22: 139–91. [Google Scholar] [CrossRef]
- Lorenz, Max O. 1905. Methods of Measuring the Concentration of Wealth. Publications of the American Statistical Association 9: 209–19. [Google Scholar] [CrossRef]
- Nguyen, Ha Minh, and Le Dang Nguyen. 2018. The relationship between urbanization and economic growth: An empirical study on ASEAN countries. International Journal of Social Economics 45: 316–39. [Google Scholar] [CrossRef]
- Oyvat, C. 2016. Agrarian Structures, Urbanization, and Inequality. World Development 83: 207–30. [Google Scholar] [CrossRef]
- Pesaran, M. Hashem, and Ron Smith. 1995. Estimating Long-run Relationships from Dynamic Heterogeneous Panels. Journal of Econometrics 68: 79–113. [Google Scholar] [CrossRef]
- Pesaran, M. Hashem, Yongcheol Shin, and Ron P. Smith. 1999. Pooled Mean Group Estimation of Dynamic Heterogeneous Panels. Journal of the American Statistical Association 94: 621–34. [Google Scholar] [CrossRef]
- Piketty, Thomas. 2006. The Kuznets Curve, Yesterday and Tomorrow. In Understanding Poverty. Edited by Abhijit Banerjee, Roland Benabou and Dilip Mookherjee. New York: Oxford University Press, pp. 63–72. [Google Scholar]
- Rauch, James E. 1993. Economic development, urban underemployment, and income inequality. Canadian Journal of Economics 26: 901–18. [Google Scholar] [CrossRef]
- Ross, Jaime. 2000. Development Theory and the Economics of Growth. Ann Arbor: The University of Michigan Press. [Google Scholar]
- Sagala, Perdamen, Takahiro Akita, and Arief Anshori Yusuf. 2014. Urbanization and expenditure inequality in Indonesia: Testing the Kuznets hypothesis with provincial panel data. Letters in Spatial and Resource Sciences 7: 133–47. [Google Scholar] [CrossRef]
- Stiglitz, Joseph. 2009. The global crisis, social protection and jobs. International Labour Review 148: 1–2. [Google Scholar] [CrossRef]
- Todaro, Michael P. 1989. Economic development in the Third World, 4th ed. London and New York: Longman. [Google Scholar]
- Wu, Dongjie, and Prasada Rao. 2017. Urbanization and Income Inequality in China: An Empirical Investigation at Provincial Level. Social Indicators Research 131: 189–214. [Google Scholar] [CrossRef]
1 | The results of estimating OLS and RE regression, Hausman test, and post-regression tests are detailed in the Appendix A. |
Variable Label | Definition | Expected Sign |
---|---|---|
Dependent variable | ||
INEQ | Gini index | |
Independent variable | ||
URB | Urban population as a share of the average population in the province | + |
URB_sq | Square of URB | − |
GRDPpc | Gross regional domestic product per capita | + |
GRDPpc_sq | Square of GRDPpc | − |
initialINEQGRDPpc | Variable interaction between initial inequality and GRDPpc | |
rEXP | Export value as a share of the province’s GRDP | − |
rGOV | Public expenditure as a share of the province’s GRDP | − |
rEDU | Students entering high school as a share of the average population in the province | − |
rAGR | Agricultural value as a share of the province’s GRDP | − |
Variable | Obs. | Mean | S.D. | Min. | Max. |
---|---|---|---|---|---|
INEQ | 378 | 0.3794 | 0.0537 | 0.2498 | 0.5883 |
URB | 378 | 0.2597 | 0.1640 | 0.0736 | 0.8746 |
GRDPpc | 378 | 0.3002 | 0.3693 | 0.0356 | 3.9169 |
rEXP | 378 | 0.4413 | 0.6613 | 0.7863 | 6.2757 |
rGOV | 378 | 0.3450 | 0.2512 | 0.1322 | 1.8091 |
rEDU | 378 | 0.0313 | 0.0082 | 0.0123 | 0.0575 |
rAGR | 378 | 0.2870 | 0.1444 | 0.0083 | 0.6241 |
Variable | URB | GRDPpc | rEXP | rGOV | rEDU | rAGR |
---|---|---|---|---|---|---|
URB | 1.000 | |||||
GRDPpc | 0.4223 * | 1.000 | ||||
rEXP | 0.2164 * | 0.2254 * | 1.000 | |||
rGOV | −0.2579 * | −0.2675 * | −0.3093 * | 1.000 | ||
rEDU | −0.100 | −0.1489 * | −0.1449 * | −0.050 | 1.000 | |
rAGR | −0.5279 * | −0.4605 * | −0.3387 * | 0.1350 * | −0.101 | 1.000 |
Variable | VIF | SQRT VIF | Tolerance | R-Squared |
---|---|---|---|---|
URB | 1.56 | 1.25 | 0.6417 | 0.3583 |
GRDPpc | 1.46 | 1.21 | 0.6855 | 0.3145 |
rEXP | 1.29 | 1.14 | 0.7753 | 0.2247 |
rGOV | 1.24 | 1.11 | 0.8074 | 0.1926 |
rEDU | 1.15 | 1.07 | 0.8678 | 0.1322 |
rAGR | 1.80 | 1.34 | 0.555 | 0.445 |
Mean VIF | 1.42 |
Variables | (2) | (3) | (4) | (5) | (6) |
---|---|---|---|---|---|
INEQ | INEQ | INEQ | INEQ | INEQ | |
URB | −0.307 *** | −0.00200 | −0.247 *** | −0.323 *** | 0.0657 |
(0.0680) | (0.237) | (0.0727) | (0.0728) | (0.238) | |
URB_sq | −0.319 | −0.353 | |||
(0.237) | (0.234) | ||||
GRDPpc | −0.0233 | −0.0229 | −0.0891 *** | 0.0631 | 0.289 * |
(0.0151) | (0.0150) | (0.0327) | (0.144) | (0.158) | |
GRDPpc_sq | 0.0150 ** | 0.0281 *** | |||
(0.00662) | (0.00824) | ||||
initialINEQGRDPpc | −0.215 | −1.083 ** | |||
(0.356) | (0.439) | ||||
rEXP | −0.00584 | −0.00753 | −0.00527 | −0.00619 | −0.00843 |
(0.00504) | (0.00518) | (0.00501) | (0.00507) | (0.00513) | |
rGOV | 0.00847 | 0.00820 | 0.00416 | 0.00934 | 0.00440 |
(0.0202) | (0.0202) | (0.0202) | (0.0203) | (0.0200) | |
rEDU | −1.302 ** | −1.006 | −2.133 *** | −1.182 * | −1.932 ** |
(0.658) | (0.692) | (0.750) | (0.687) | (0.766) | |
rAGR | −0.0839 * | −0.0746 | −0.124 ** | −0.0821 * | −0.140 *** |
(0.0468) | (0.0472) | (0.0497) | (0.0469) | (0.0505) | |
Constant | 0.531 *** | 0.470 *** | 0.570 *** | 0.528 *** | 0.527 *** |
(0.0339) | (0.0563) | (0.0380) | (0.0342) | (0.0578) | |
Observations | 378 | 378 | 378 | 378 | 378 |
F-test (p-value) | 0.0000 | 0.0000 | 0.0000 | 0.0001 | 0.0000 |
R-squared | 0.093 | 0.098 | 0.108 | 0.094 | 0.132 |
F-test ui = 0 (p-value) | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
Number of id | 63 | 63 | 63 | 63 | 63 |
Variables | (2) | (3) | (4) | (5) | (6) |
---|---|---|---|---|---|
INEQ | INEQ | INEQ | INEQ | INEQ | |
URB | −0.307 *** | −0.00200 | −0.247 ** | −0.323 *** | 0.0657 |
(0.0729) | (0.0489) | (0.0907) | (0.0708) | (0.0419) | |
URB_sq | −0.319 ** | −0.353 ** | |||
(0.0920) | (0.103) | ||||
GRDPpc | −0.0233 ** | −0.0229 ** | −0.0891 * | 0.0631 | 0.289 |
(0.00884) | (0.00882) | (0.0370) | (0.194) | (0.194) | |
GRDPpc_sq | 0.0150 | 0.0281 *** | |||
(0.00771) | (0.00675) | ||||
initialINEQGRDPpc | −0.215 | −1.083 * | |||
(0.484) | (0.484) | ||||
rEXP | −0.00584 | −0.00753 | −0.00527 | −0.00619 | −0.00843 |
(0.00579) | (0.00615) | (0.00619) | (0.00638) | (0.00693) | |
rGOV | 0.00847 | 0.00820 | 0.00416 | 0.00934 | 0.00440 |
(0.0121) | (0.0127) | (0.00794) | (0.0107) | (0.00804) | |
rEDU | −1.302 | −1.006 | −2.133 *** | −1.182 * | −1.932 *** |
(0.722) | (0.696) | (0.302) | (0.469) | (0.338) | |
rAGR | −0.0839 *** | −0.0746 *** | −0.124 ** | −0.0821 ** | −0.140 ** |
(0.0197) | (0.0166) | (0.0459) | (0.0218) | (0.0437) | |
Constant | 0.531 *** | 0.470 *** | 0.570 *** | 0.528 *** | 0.527 *** |
(0.0297) | (0.0219) | (0.0111) | (0.0266) | (0.0160) | |
Observations | 378 | 378 | 378 | 378 | 378 |
Number of groups | 63 | 63 | 63 | 63 | 63 |
Variables | Long Run | Short Run |
---|---|---|
__ec | −0.889 *** | |
(0.0959) | ||
D.URB | −1.199 | |
(1.940) | ||
URB | −0.500 *** | |
(0.0129) | ||
Constant | 0.457 *** | |
(0.0466) | ||
Observations | 315 | 315 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ha, N.M.; Le, N.D.; Trung-Kien, P. The Impact of Urbanization on Income Inequality: A Study in Vietnam. J. Risk Financial Manag. 2019, 12, 146. https://doi.org/10.3390/jrfm12030146
Ha NM, Le ND, Trung-Kien P. The Impact of Urbanization on Income Inequality: A Study in Vietnam. Journal of Risk and Financial Management. 2019; 12(3):146. https://doi.org/10.3390/jrfm12030146
Chicago/Turabian StyleHa, Nguyen Minh, Nguyen Dang Le, and Pham Trung-Kien. 2019. "The Impact of Urbanization on Income Inequality: A Study in Vietnam" Journal of Risk and Financial Management 12, no. 3: 146. https://doi.org/10.3390/jrfm12030146
APA StyleHa, N. M., Le, N. D., & Trung-Kien, P. (2019). The Impact of Urbanization on Income Inequality: A Study in Vietnam. Journal of Risk and Financial Management, 12(3), 146. https://doi.org/10.3390/jrfm12030146