Dynamic Spillovers between Gulf Cooperation Council’s Stocks, VIX, Oil and Gold Volatility Indices
Abstract
:1. Introduction
2. Literature Review
3. Methodology
4. Data and Empirical Results
4.1. Data
4.2. Empirical Results
4.3. Diagnostic Checks
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
Lag | Log-Likelihood | p(LR) | AIC | BIC | HQC |
---|---|---|---|---|---|
1 | 10,205.229 | −28.669 | −28.398 * | −28.564 * | |
2 | 10,245.906 | 0.0001 | −28.682 * | −28.180 | −28.488 |
3 | 10,278.286 | 0.002 | −28.672 | −27.938 | −28.388 |
4 | 10,306.856 | 0.013 | −28.651 | −27.685 | −28.278 |
5 | 10,323.628 | 0.585 | −28.597 | −27.399 | −28.134 |
6 | 10,354.731 | 0.004 | −28.583 | −27.154 | −28.031 |
7 | 10,386.258 | 0.003 | −28.570 | −26.909 | −27.928 |
8 | 10,413.702 | 0.022 | −28.546 | −26.653 | −27.815 |
9 | 10,426.620 | 0.894 | −28.481 | −26.357 | −27.660 |
10 | 10,459.463 | 0.001 | −28.472 | −26.116 | −27.562 |
ADF Test | SaudiArabia | ld_SaudiArabia | Kuwait | ld_Kuwait | UAE | ld_UAE | Qatar | ld_Qatar | Bahrain | ld_Bahrain | Oman | ld_Oman |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Test with constant | ||||||||||||
Test Statistic: | −2.545 | −13.435 | −2.641 | −5.868 | −2.572 | −9.633 | −2.585 | −25.498 | −1.551 | −6.324 | −3.856 | −4.902 |
Asymptotic critical p. | 0.104 | 0.001 | 0.084 | 0.001 | 0.098 | 0.001 | 0.096 | 0.001 | 0.507 | 0.001 | 0.002 | 0.001 |
Test with constant and Trend | ||||||||||||
Test Statistic: | −2.831 | −13.437 | −3.505 | −5.872 | −2.635 | −9.630 | −2.512 | −25.495 | −2.437 | −6.316 | −3.877 | −5.380 |
Asymptotic critical p. | 0.185 | 0.001 | 0.038 | 0.001 | 0.2645 | 0.001 | 0.322 | 0.001 | 0.360 | 0.001 | 0.012 | 0.001 |
KPSS | ||||||||||||
Truncation Delay Parameter | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 |
Test Statistic: | 1.940 | 0.092 | 4.184 | 0.233 | 1.863 | 0.118 | 2.499 | 0.099 | 6.311 | 0.267 | 0.756 | 0.367 |
Critical p. | <0.01 | >0.10 | <0.01 | >0.10 | <0.01 | >0.10 | <0.01 | >0.10 | <0.01 | >0.10 | <0.01 | 0.091 |
GCC Countries: | GCC Stock Data was retrieved from Bloomberg https://www.bloomberg.com/professional/solution/bloomberg-terminal/ |
Brent: | Data was retrieved from Bloomberg https://www.bloomberg.com/professional/solution/bloomberg-terminal/ |
OPEC: | Data was retrieved from Bloomberg https://www.bloomberg.com/professional/solution/bloomberg-terminal/ |
STLSFI: | Link: https://fred.stlouisfed.org |
OVX | http://www.cboe.com/products/vix-index-volatility/volatility-on-etfs/cboe-crude-oil-etf-volatility-index-ovx |
Stock Market SMU | http://www.ub.edu/rfa/uncertainty-index/#Reference |
VIX | http://www.cboe.com/vix |
GVZ | Gold Price Uncertainty http://www.cboe.com/products/vix−index−volatility/volatility−on−etfs/cboe−gold−etf−volatility−index−gvz |
References
- Akoum, Ibrahim, Michael Graham, Jarno Kivihaho, Jussi Nikkinen, and Mohammed Omran. 2012. Co-movement of oil and stock prices in the GCC region: A wavelet analysis. Quarterly Review of Economics and Finance 52: 385–94. [Google Scholar] [CrossRef]
- Alqahtani, Abdullah. 2019. Do Global Financial, Oil, and Gold Volatility Shocks Affect the GCC Stock Markets? Emerging Economy Studies 5: 157–75. [Google Scholar] [CrossRef]
- Alqahtani, Abdullah, Tony Klein, and Ali Khalid. 2019. The impact of oil price uncertainty on GCC stock markets. Resources Policy 64: 101526. [Google Scholar] [CrossRef]
- Alqahtani, Abdullah, Amine Lahiani, and Ali Salem. 2020. Crude oil and GCC stock markets: New evidence from GARCH co-integration and Granger causality approaches. International Journal of Energy Sector Management. [Google Scholar] [CrossRef]
- Ardia, David. 2008. Bayesian estimation of the GARCH (1, 1) model with normal innovations. Financial Risk Management with Bayesian Estimation of GARCH Models. Theory and Applications 612: 17–37. [Google Scholar]
- Arouri, Mohamed, and Christophe Rault. 2012. Oil prices and stock markets in GCC countries: Empirical evidence from panel analysis. International Journal of Finance & Economics 17: 242–53. [Google Scholar]
- Arouri, Mohamed, Amine Lahiani, and Duc Khuong Nguyen. 2011. Return and volatility transmission between world oil prices and stock markets of the GCC countries. Economic Modelling 28: 1815–25. [Google Scholar] [CrossRef] [Green Version]
- Ausín, María Concepción, and Pedro Galeano. 2007. Bayesian estimation of the Gaussian mixture GARCH model. Computational Statistics & Data Analysis 51: 2636–52. [Google Scholar]
- Aziz, Omar Ghazy. 2018. Institutional quality and FDI inflows in Arab economies. Finance Research Letters 25: 111–23. [Google Scholar] [CrossRef]
- Baba, Yoshihisa, Robert F. Engle, Dennis F. Kraft, and Kenneth F. Kroner. 1990. Multivariate Simultaneous Generalized ARCH. Working Paper. San Diego: Department of Economics, University of California. [Google Scholar]
- Bilan, Yuriy, Stanislaw Gedek, and Grzegorz Mentel. 2018. The analysis of oil price and ruble exchange rate. Transformations in Business & Economics 17: 195–205. [Google Scholar]
- Bley, Jorg, and Mohsen Saad. 2019. An analysis of technical trading rules: The case of MENA markets. Finance Research Letters. [Google Scholar] [CrossRef]
- Bollerslev, Tim, and Jeffrey M. Wooldridge. 1992. Quasi-maximum likelihood estimation and inference in dynamic models with time-varying covariances. Econometric Reviews 1: 143–73. [Google Scholar] [CrossRef]
- Delcoure, Natalya, and Harmeet Singh. 2018. Oil and equity: Too deep into each other. Journal of Economics and Finance 42: 89–111. [Google Scholar] [CrossRef]
- Dkhili, Hichem, and Lassad Dhiab. 2018. The Relationship between Economic Freedom and FDI versus Economic Growth: Evidence from the GCC Countries. Journal of Risk and Financial Management 11: 81. [Google Scholar] [CrossRef] [Green Version]
- Doan, Tom. 2013. RATS Handbook for ARCH/GARCH and Volatility Models. Evanston: Estima WINRATS. [Google Scholar]
- Engle, Robert. 2002. Dynamic conditional correlation: A simple class of multivariate generalized autoregressive conditional heteroskedasticity models. Journal of Business and Economic Statistics 20: 339–50. [Google Scholar] [CrossRef]
- Engle, Robert. 2009. Anticipating Correlations: A New Paradigm for Risk Management. Princeton: Princeton University Press. [Google Scholar]
- Engle, Robert, and Kevin Sheppard. 2001. Theoretical and Empirical Properties of Dynamic Conditional Correlation Multivariate GARCH. Working Paper NBER (No. w8554). Cambridge: National Bureau of Economic Research. [Google Scholar]
- Fayyad, Abdallah, and Kevin James Daly. 2011. The impact of oil price shocks on stock market returns: Comparing GCC countries with the UK and USA. Emerging Markets Review 12: 61–78. [Google Scholar] [CrossRef]
- Guesmi, Khaled, and Salma Fattoum. 2014. The relationship between oil price and OECD stock markets: A multivariate approach. Economics Bulletin 34: 510–19. [Google Scholar]
- Hammoudeh, Shawkat, and Kyongwook Choi. 2006. Behavior of GCC stock markets and impacts of US oil and financial markets. Research in International Business and Finance 20: 22–44. [Google Scholar] [CrossRef]
- Hammoudeh, Shawkat, Tengdong Liu, Chia-Lin Chang, and Michael McAleer. 2013. Risk spillovers in oil−related CDS, stock, and credit markets. Energy Economics 36: 526–35. [Google Scholar] [CrossRef] [Green Version]
- Khalfaoui, Rabeh, Mohamed Boutahar, and Heni Boubaker. 2015. Analyzing volatility spillovers and hedging between oil and stock markets: Evidence from wavelet analysis. Energy Economics 49: 540–49. [Google Scholar] [CrossRef]
- Kumar, Surender, Shunsuke Managi, and Akimi Matsuda. 2012. Stock prices of clean energy firms, oil, and carbon markets: A vector autoregressive analysis. Energy Economics 34: 215–26. [Google Scholar] [CrossRef]
- Loganathan, Nanthakumar, Dalia Štreimikienė, Tirta Nugraha Mursitama, Muhammad Shahbaz, and Abbas Mardani. 2018. How Real Oil Prices and Domestic Financial Instabilities are Good for GCC Countries Tourism Demand in Malaysia? Economics & Sociology 11: 112–25. [Google Scholar]
- Maghyereh, Aktham, and Ahmad Al-Kandari. 2007. Oil prices and stock markets in GCC countries: New evidence from nonlinear cointegration analysis. Managerial Finance 33: 449–60. [Google Scholar] [CrossRef]
- Maghyereh, Aktham, Basel Awartani, and Panagiotis Tziogkidis. 2017. Volatility spillovers and cross−hedging between gold, oil, and equities: Evidence from the Gulf Cooperation Council countries. Energy Economics 68: 440–53. [Google Scholar] [CrossRef] [Green Version]
- Malik, Farooq, and Shawkat Hammoudeh. 2007. Shock and volatility transmission in the oil, US, and Gulf equity markets. International Review of Economics and Finance 16: 357–68. [Google Scholar] [CrossRef]
- Mensi, Walid, Makram Beljid, Adel Boubaker, and Shunsuke Managi. 2013. Correlations and volatility spillovers across commodity and stock markets: Linking energies, food, and gold. Economic Modelling 32: 15–22. [Google Scholar] [CrossRef] [Green Version]
- Mensi, Walid, Shawkat Hammoudeh, and Aviral Kumar Tiwari. 2016. New evidence on hedges and safe havens for Gulf stock markets using the wavelet-based quantile. Emerging Markets Review 28: 155–83. [Google Scholar] [CrossRef]
- Mohanty, Sunil K., Mohan Nandha, Abdullah Q. Turkistani, and Muhammed Y. Alaitani. 2011. Oil price movements and stock market returns: Evidence from Gulf Cooperation Council (GCC) countries. Global Finance Journal 22: 42–55. [Google Scholar] [CrossRef]
- Muharam, Harjum, Wisnu Mawardi, Erman Denny Arfinto, and Najmudin Najmudin. 2019. Volatility spillovers under difference in the degree of market integration: Evidence from the selected Asian and Eastern European stock markets. Journal of International Studies 12: 134–50. [Google Scholar] [CrossRef]
- Nasreen, Samia, Syed Asif Ali Naqvi, Aviral Kumar Tiwari, Shawkat Hammoudeh, and Syed Ale Raza Shah. 2020. Wavelet−Based Analysis of the Co−Movement between Sukuk Bonds and Shariah Stock Indices in the GCC Region: Implications for Risk Diversification. Journal of Risk and Financial Management 13: 63. [Google Scholar] [CrossRef] [Green Version]
- Pandey, Vikas. 2018. Volatility spillover from crude oil and gold to BRICS equity markets. Journal of Economic Studies 45: 426–40. [Google Scholar] [CrossRef]
- Sadorsky, Perry. 2012. Correlations and volatility spillovers between oil prices and the stock prices of clean energy and technology companies. Energy Economics 34: 248–55. [Google Scholar] [CrossRef]
- Zarour, Bashar Abu. 2006. Wild oil prices, but brave stock markets! The case of GCC stock markets. Operational Research 6: 145–62. [Google Scholar] [CrossRef]
1 | See, inter alia, Guesmi and Fattoum (2014) and Maghyereh et al. (2017) for the sampled application of DCC-GARCH in similar studies. |
2 | The problem of multivariate conditional variance estimation can be simplified by estimating univariate GARCH models for each asset, and then using transformed residuals resulting from the first stage, estimating a conditional correlation estimator. |
3 | The interested reader can fin in the Appendix A Table related to “VAR Lag Selection criteria (up to ten lags)”, which points to lag 1 for two criteria (BIC and Hannan-Quinn), whereas the AIC indicates lag 2. |
4 | Newest estimation developments regarding Bayesian methods applied to GARCH models can be found in Ausín and Galeano (2007), Ardia (2008). |
5 | This was the largest we could gather in terms of availability at the time of writing the paper. |
6 | Unformatted diagnostic tests for other series can be sent upon reasonable request. |
(A) Crude Oil Volatility Index-Gulf Cooperation Council (OVX-GCC) Countries | ||||||
Mean | SD | Skewness | Kurtosis | Ljung-Box | Jarque-Bera | |
OVX | 0.001 | 9.431 | 0.902 | 7.272 | 13.031 *** | 477.001 *** |
Saudi Arabia | 0.006 | 3.334 | −1.050 | 8.784 | 0.143 *** | 839.470 *** |
Kuwait | −0.083 | 2.121 | −1.818 | 12.734 | 32.699 *** | 2393.800 *** |
UAE | 0.071 | 2.986 | −1.957 | 16.753 | 7.020 *** | 4532.600 *** |
Qatar | 0.053 | 3.625 | −1.654 | 14.745 | 1.312 *** | 3300.600 *** |
Bahrain | −0.091 | 1.492 | −1.118 | 9.592 | 9.316 *** | 1074.300 *** |
Oman | −0.057 | 2.894 | −2.049 | 22.917 | 9.686 *** | 9166.100 *** |
(B) Gold Volatility Index-GCC (GVZ-GCC) Countries | ||||||
Mean | SD | Skewness | Kurtosis | Ljung-Box | Jarque-Bera | |
GVZ | −0.113 | 11.100 | 0.671 | 5.422 | 33.292 *** | 154.140 *** |
Saudi Arabia | −0.042 | 3.180 | −0.864 | 7.180 | 0.0233 *** | 411.110 *** |
Kuwait | −0.156 | 2.170 | −1.791 | 12.50 | 30.256 *** | 2073.300 *** |
UAE | −0.010 | 2.993 | −2.211 | 17.358 | 9.427 *** | 4533.200 *** |
Qatar | −0.047 | 3.621 | −1.812 | 15.718 | 2.605 *** | 3512.700 *** |
Bahrain | −0.159 | 1.489 | −1.204 | 10.107 | 6.327 *** | 1131.100 *** |
Oman | −0.207 | 2.923 | −2.123 | 23.704 | 16.795 *** | 8971.300 *** |
(C) S&P 500 Volatility Index-GCC (VIX-GCC) Countries | ||||||
Mean | SD | Skewness | Kurtosis | Ljung-Box | Jarque-Bera | |
VIX | −0.011 | 13.646 | 0.581 | 6.341 | 32.733 *** | 348.520 *** |
Saudi Arabia | 0.043 | 3.775 | −1.412 | 9.538 | 7.097 *** | 1412.100 *** |
Kuwait | 0.038 | 2.151 | −1.514 | 10.869 | 43.561 *** | 1979 *** |
UAE | 0.124 | 3.213 | −1.201 | 12.398 | 0.022 *** | 2619.200 *** |
Qatar | 0.100 | 3.782 | −1.075 | 11.472 | 0.022 *** | 2126.700 *** |
Bahrain | −0.018 | 1.565 | −0.456 | 8.789 | 11.775 *** | 956.180 *** |
Oman | 0.036 | 2.765 | −1.840 | 22.510 | 4.767 *** | 10,972 *** |
(A) OVX-GCC Countries | |||||||
OVX | Saudi Arabia | Kuwait | UAE | Qatar | Bahrain | Oman | |
OVX | 1 | ||||||
Saudi Arabia | −0.242 | 1 | |||||
Kuwait | −0.170 | 0.426 | 1 | ||||
UAE | −0.203 | 0.477 | 0.419 | 1 | |||
Qatar | −0.173 | 0.535 | 0.496 | 0.502 | 1 | ||
Bahrain | −0.022 | 0.323 | 0.523 | 0.466 | 0.364 | 1 | |
Oman | −0.125 | 0.534 | 0.494 | 0.646 | 0.590 | 0.510 | 1 |
(B) GVZ-GCC Countries | |||||||
GVZ | Saudi Arabia | Kuwait | UAE | Qatar | Bahrain | Oman | |
GVZ | 1 | ||||||
Saudi Arabia | −0.198 | 1 | |||||
Kuwait | −0.081 | 0.467 | 1 | ||||
UAE | −0.078 | 0.490 | 0.424 | 1 | |||
Qatar | −0.117 | 0.546 | 0.506 | 0.505 | 1 | ||
Bahrain | 0.026 | 0.347 | 0.544 | 0.483 | 0.366 | 1 | |
Oman | −0.041 | 0.555 | 0.505 | 0.647 | 0.590 | 0.515 | 1 |
(C) VIX-GCC Countries | |||||||
VIX | Saudi Arabia | Kuwait | UAE | Qatar | Bahrain | Oman | |
VIX | 1 | ||||||
Saudi Arabia | −0.215 | 1 | |||||
Kuwait | −0.109 | 0.408 | 1 | ||||
UAE | −0.131 | 0.451 | 0.431 | 1 | |||
Qatar | −0.223 | 0.398 | 0.423 | 0.444 | 1 | ||
Bahrain | −0.029 | 0.267 | 0.482 | 0.398 | 0.334 | 1 | |
Oman | −0.149 | 0.438 | 0.460 | 0.563 | 0.501 | 0.463 | 1 |
Shock from: | Model I | Model II | Model III | |||
---|---|---|---|---|---|---|
OVX | GVZ | VIX | ||||
Coefficient | p-Value | Coefficient | p-Value | Coefficient | p-Value | |
Panel A: estimates of | ||||||
Shock | 0.062 | 0.303 | 0.004 | 0.371 | 0.016 *** | 0.008 |
Saudi Arabia | 0.265 *** | 0.001 | 0.252 ** | 0.016 | 0.312 *** | 0.000 |
Kuwait | 0.451 *** | 0.001 | 0.451 ** | 0.017 | 0.470 *** | 0.001 |
UAE | 0.118 ** | 0.020 | 0.133 ** | 0.017 | 0.164 *** | 0.002 |
Qatar | 0.127 *** | 0.001 | 0.127 *** | 0.000 | 0.157 *** | 0.006 |
Bahrain | 0.118 | 0.298 | 0.143 ** | 0.080 | 0.155 * | 0.064 |
Oman | 0.202 *** | 0.001 | 0.189 *** | 0.005 | 0.224 *** | 0.001 |
Panel B: estimates of | ||||||
Shock | 0.826 *** | 0.001 | 0.994 *** | 0.001 | 0.982 *** | 0.001 |
Saudi Arabia | 0.691 *** | 0.001 | 0.706 *** | 0.001 | 0.686 *** | 0.001 |
Kuwait | 0.465 *** | 0.001 | 0.418 *** | 0.007 | 0.456 *** | 0.001 |
UAE | 0.836 *** | 0.001 | 0.825 *** | 0.001 | 0.806 *** | 0.001 |
Qatar | 0.866 *** | 0.001 | 0.864 *** | 0.001 | 0.841 *** | 0.001 |
Bahrain | 0.777 *** | 0.002 | 0.774 *** | 0.001 | 0.759 *** | 0.001 |
Oman | 0.748 *** | 0.001 | 0.742 *** | 0.001 | 0.725 *** | 0.001 |
Panel C: | ||||||
a | 0.010 ** | 0.012 | 0.014 ** | 0.040 | 0.009 *** | 0.001 |
b | 0.945 *** | 0.001 | 0.887 *** | 0.001 | 0.964 *** | 0.001 |
Panel A: Ljung-Box Q Statistics in the Standardized Residuals of the GARCH (Estimated Model during Step #1 of the DCC) | |||||
Saudi Arabia | |||||
Lag | ACF | PACF | Q [p. crit.] | ||
−0.030 | −0.028 | 19.13 | [0.208] | ||
Kuwait | |||||
Lag | ACF | PACF | Q [p. crit.] | ||
0.002 | 0.009 | 18.441 | [0.187] | ||
UAE | |||||
Lag | ACF | PACF | Q [p. crit.] | ||
0.051 | 0.054 | 21.086 | [0.175] | ||
Qatar | |||||
Lag | ACF | PACF | Q [p. crit.] | ||
0.014 | 0.006 | 17.004 | [0.149] | ||
Bahrain | |||||
Lag | ACF | PACF | Q [p. crit.] | ||
0.040 | 0.040 | 1.202 | [0.273] | ||
Oman | |||||
Lag | ACF | PACF | Q [p. crit.] | ||
−0.002 | −0.004 | 1.206 | [0.547] | ||
Panel B: Engle and Sheppard (2001)Test of CCC versus DCC (Estimated Model during Step #2 of the DCC) | |||||
Bahrain & GVZ | H0: Lambda = 0 | Bahrain & OVX | H0: Lambda = 0 | Bahrain & VIX | H0: Lambda = 0 |
CCC log-likelihood: | 8652 | CCC log-likelihood: | 5543 | CCC log-likelihood: | 5856 |
DCC log-likelihood: | 8550 | DCC log-likelihood: | 5525 | DCC log-likelihood: | 5754 |
Chi2 value: | 204 | Chi2 value: | 36 | Chi2 value: | 204 |
p-value | 0.001 | p-value | 0.001 | p-value | 0.001 |
Kuwait & GVZ | H0: Lambda = 0 | Kuwait & OVX | H0: Lambda = 0 | Kuwait & VIX | H0: Lambda = 0 |
CCC log-likelihood: | 5732 | CCC log-likelihood: | 5470 | CCC log-likelihood: | 5554 |
DCC log-likelihood: | 5609 | DCC log-likelihood: | 5122 | DCC log-likelihood: | 5463 |
Chi2 value: | 246 | Chi2 value: | 696 | Chi2 value: | 182 |
p-value | 0.001 | p-value | 0.001 | p-value | 0.001 |
UAE & GVZ | H0: Lambda = 0 | UAE & OVX | H0: Lambda = 0 | UAE & VIX | H0: Lambda = 0 |
CCC log-likelihood: | 9843 | CCC log-likelihood: | 5170 | CCC log-likelihood: | 5855 |
DCC log-likelihood: | 9737 | DCC log-likelihood: | 5122 | DCC log-likelihood: | 5546 |
Chi2 value: | 212 | Chi2 value: | 96 | Chi2 value: | 618 |
p-value | 0.001 | p-value | 0.001 | p-value | 0.001 |
Oman & GVZ | H0: Lambda = 0 | Oman & OVX | H0: Lambda = 0 | Oman & VIX | H0: Lambda = 0 |
CCC log-likelihood: | 9284 | CCC log-likelihood: | 7071 | CCC log-likelihood: | 7976 |
DCC log-likelihood: | 8427 | DCC log-likelihood: | 6707 | DCC log-likelihood: | 7609 |
Chi2 value: | 1714 | Chi2 value: | 728 | Chi2 value: | 734 |
p-value | 0.001 | p-value | 0.001 | p-value | 0.001 |
Qatar & GVZ | H0: Lambda = 0 | Qatar & OVX | H0: Lambda = 0 | Qatar & VIX | H0: Lambda = 0 |
CCC log-likelihood: | 10,825 | CCC log-likelihood: | 17,334 | CCC log-likelihood: | 1479 |
DCC log-likelihood: | 10,607 | DCC log-likelihood: | 16,913 | DCC log-likelihood: | 1066 |
Chi2 value: | 436 | Chi2 value: | 842 | Chi2 value: | 826 |
p-value | 0.001 | p-value | 0.001 | p-value | 0.001 |
Saudi Arabia & GVZ | H0: Lambda = 0 | Saudi Arabia & OVX | H0: Lambda = 0 | Saudi Arabia & VIX | H0: Lambda = 0 |
CCC log-likelihood: | 9048 | CCC log-likelihood: | 6373 | CCC log-likelihood: | 2647 |
DCC log-likelihood: | 8880 | DCC log-likelihood: | 6188 | DCC log-likelihood: | 2287 |
Chi2 value: | 336 | Chi2 value: | 370 | Chi2 value: | 720 |
p-value | 0.001 | p-value | 0.001 | p-value | 0.001 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alqahtani, A.; Chevallier, J. Dynamic Spillovers between Gulf Cooperation Council’s Stocks, VIX, Oil and Gold Volatility Indices. J. Risk Financial Manag. 2020, 13, 69. https://doi.org/10.3390/jrfm13040069
Alqahtani A, Chevallier J. Dynamic Spillovers between Gulf Cooperation Council’s Stocks, VIX, Oil and Gold Volatility Indices. Journal of Risk and Financial Management. 2020; 13(4):69. https://doi.org/10.3390/jrfm13040069
Chicago/Turabian StyleAlqahtani, Abdullah, and Julien Chevallier. 2020. "Dynamic Spillovers between Gulf Cooperation Council’s Stocks, VIX, Oil and Gold Volatility Indices" Journal of Risk and Financial Management 13, no. 4: 69. https://doi.org/10.3390/jrfm13040069
APA StyleAlqahtani, A., & Chevallier, J. (2020). Dynamic Spillovers between Gulf Cooperation Council’s Stocks, VIX, Oil and Gold Volatility Indices. Journal of Risk and Financial Management, 13(4), 69. https://doi.org/10.3390/jrfm13040069