Pricing American Options with a Non-Constant Penalty Parameter
Abstract
:1. Introduction
2. Mathematical Modeling
2.1. Transformation
2.2. The Penalty Term
3. Discretization
4. Numerical Results
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Company, Rafael, Vera N. Egorova, and Lucas Jódar. 2014. Solving American option pricing models by the front-fixing method: Numerical analysis and computing. Abstract and Applied Analysis 2014: 146745. [Google Scholar] [CrossRef]
- Cryer, Colin W. 1971. The solution of a quadratic programming problem using systematic overrelaxation. SIAM Journal on Control 9: 385–92. [Google Scholar] [CrossRef]
- Evans, Jonathan D., Rachel Kuske, and Joseph Bishop Keller. 2002. American options on assets with dividends near expiry. Mathematical Finance 12: 219–37. [Google Scholar] [CrossRef]
- Fazio, Riccardo, Alessandra Insana, and Alessandra Jannelli. 2019. Front-fixing finite difference schemes for American put options model. AIP Conference Proceedings 1738: 480123. [Google Scholar] [CrossRef]
- Günther, Michael, and Ansgar Jüngel. 2010. Finanzderivate mit MATLAB: Mathematische Modellierung und Numerische Simulation, 2nd ed. Wiesbaden: Vieweg. [Google Scholar]
- Han, Houde, and Xiaonan Wu. 2003. A fast numerical method for the Black-Scholes equation of American options. SIAM Journal on Numerical Analysis 41: 2081–95. [Google Scholar] [CrossRef]
- Lauko, Martin, and Daniel Ševčovič. 2010. Comparison of numerical and analytical approximation of the early boundary of American put options. The ANZIAM Journal 51: 430–48. [Google Scholar] [CrossRef] [Green Version]
- Nielsen, Bjørn Fredrik, Ola Skavhaug, and Aslak Tveito. 2002. Penalty and front-fixing methods for the numerical solution of American option problems. Journal of Computational Finance 5: 69–97. [Google Scholar] [CrossRef]
- Schwartz, Eduardo S. 1977. The valuation of warrants: Implementing a new approach. Journal of Financial Economics 4: 79–93. [Google Scholar] [CrossRef]
- Stamicar, Robert, Daniel Ševčovič, and John Chadam. 1999. The early exercise boundary for the American put near expiry: Numerical approximation. Canadian Applied Mathematics Quaterly 7: 427–44. [Google Scholar]
- Wang, Song, Xiao-qi Yang, and Kok Lay Teo. 2006. Power penalty method for a linear complementarity problem arising from American option valuation. Journal of Optimization Theory and Applications 129: 227–54. [Google Scholar] [CrossRef]
- Wilmott, Paul, Jeff Dewynne, and Sam Howison. 1993. Option Pricing: Mathematical Models and Computation. Oxford: Oxford Financial Press. [Google Scholar]
- Zhu, Song-Ping. 2006. A new analytical approximation formula for the optimal exercise boundary of American put options. International Journal of Theoretical and Applied Finance 9: 1141–77. [Google Scholar] [CrossRef]
Example | T | K | r | N | (×10−4) | MSE | ||
---|---|---|---|---|---|---|---|---|
1 | 3 | 100 | 0.08 | 0.2 | 1000 | 7.5 | 81.87 | |
2500 | 7.4 | 82.00 | ||||||
2 | 1 | 1 | 0.1 | 0.2 | 1000 | 10.2 | 0.862 | |
2500 | 10.0 | 0.863 | ||||||
3 | 0.05 | 10 | 0.1 | 0.25 | 1000 | 8.0 | 9.158 | |
2500 | 8.5 | 9.142 | ||||||
4 | 0.1 | 100 | 0.1 | 0.3 | 1000 | 5.5 | 86.59 | |
2500 | 5.4 | 86.87 | ||||||
5 | 1 | 100 | 0.1 | 0.4 | 1000 | 2.6 | 66.49 | |
2500 | 2.63 | 66.60 | ||||||
6 | 0.05 | 50 | 0.1 | 0.4 | 1000 | 3.0 | 42.61 | |
2500 | 3.1 | 42.61 |
1 | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Clevenhaus, A.; Ehrhardt, M.; Günther, M.; Ševčovič, D. Pricing American Options with a Non-Constant Penalty Parameter. J. Risk Financial Manag. 2020, 13, 124. https://doi.org/10.3390/jrfm13060124
Clevenhaus A, Ehrhardt M, Günther M, Ševčovič D. Pricing American Options with a Non-Constant Penalty Parameter. Journal of Risk and Financial Management. 2020; 13(6):124. https://doi.org/10.3390/jrfm13060124
Chicago/Turabian StyleClevenhaus, Anna, Matthias Ehrhardt, Michael Günther, and Daniel Ševčovič. 2020. "Pricing American Options with a Non-Constant Penalty Parameter" Journal of Risk and Financial Management 13, no. 6: 124. https://doi.org/10.3390/jrfm13060124
APA StyleClevenhaus, A., Ehrhardt, M., Günther, M., & Ševčovič, D. (2020). Pricing American Options with a Non-Constant Penalty Parameter. Journal of Risk and Financial Management, 13(6), 124. https://doi.org/10.3390/jrfm13060124