Uncertainty and Risk in the Cryptocurrency Market
Abstract
:1. Introduction
2. Literature Review
3. Materials and Methods
4. Results
4.1. Preliminary Results
4.2. Entropy: Uncertainty Assessment
4.3. Value-At-Risk (VaR) and Conditional Value-At-Risk (CVaR): Risk Assessment
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Agosto, Arianna, and Alessia Cafferata. 2020. Financial bubbles: A study of co-explosivity in the cryptocurrency market. Risks 8: 34. [Google Scholar] [CrossRef] [Green Version]
- Alexander, Carol. 2008. Market Risk Analysis IV: Value-at-Risk Models. New York: John Wiley & Sons Ltd. [Google Scholar]
- Ardia, David, Keven Bluteau, and Maxime Rüede. 2019. Regime changes in Bitcoin GARCH volatility dynamics. Finance Research Letters 29: 266–71. [Google Scholar] [CrossRef]
- Artzner, Philippe, Freddy Delbaen, Jean-Marc Eber, and David Heath. 1999. Coherent measures of risk. Mathematical Finance 9: 203–28. [Google Scholar] [CrossRef]
- Aslam, Faheem, Saqib Aziz, Duc Nguyen, Khurrum Mughal, and Maaz Khan. 2020. On the efficiency of foreign exchange markets in times of the COVID-19 pandemic. Technological Forecasting and Social Change 161: 120261. [Google Scholar] [CrossRef]
- Balcilar, Mehmet, Elie Bouri, Rangan Gupta, and David Roubaud. 2017. Can volume predict Bitcoin returns and volatility? A quantiles-based approach. Economic Modelling 64: 74–81. [Google Scholar] [CrossRef] [Green Version]
- Bentes, Sonia, and Rui Menezes. 2012. Entropy: A new measure of stock market volatility? Journal of Physics: Conference Series 394: 012033. [Google Scholar] [CrossRef] [Green Version]
- Borri, Nicola. 2019. Conditional tail-risk in cryptocurrency markets. Journal of Empirical Finance 50: 1–19. [Google Scholar] [CrossRef]
- Bouri, Elie, Luis Gil-Alana, Rangan Gupta, and David Roubaud. 2018. Modelling long memory volatility in the Bitcoin market: Evidence of persistence and structural breaks. International Journal of Finance and Economics 24: 1–15. [Google Scholar] [CrossRef] [Green Version]
- Cagli, Efe. 2019. Explosive behavior in the prices of Bitcoin and altcoins. Finance Research Letters 29: 398–403. [Google Scholar] [CrossRef]
- Chaim, Pedro, and Márcio Laurini. 2019. Nonlinear dependence in cryptocurrency markets. North American Journal of Economics and Finance 48: 32–47. [Google Scholar] [CrossRef]
- Cheah, Eng-Tuck, and John Fry. 2015. Speculative bubbles in Bitcoin markets? An empirical investigation into the fundamental value of Bitcoin. Economics Letters 130: 32–36. [Google Scholar] [CrossRef] [Green Version]
- Chu, Jeffrey, Stephen Chan, Saralees Nadarajah, and Joerg Osterrieder. 2017. GARCH Modelling of Cryptocurrencies. Journal of Risk and Financial Management 10: 17. [Google Scholar] [CrossRef]
- Corbet, Shaen, Andrew Meegan, Charles Larkin, Brian Lucey, and Larisa Yarovaya. 2018. Exploring the dynamic relationships between cryptocurrencies and other financial assets. Economics Letters 165: 28–34. [Google Scholar] [CrossRef] [Green Version]
- Corbet, Shaen, Brian Lucey, Andrew Urquhart, and Larisa Yarovaya. 2019. Cryptocurrencies as a financial asset: A systematic analysis. International Review of Financial Analysis 62: 182–99. [Google Scholar] [CrossRef] [Green Version]
- Corbet, Shaen, Yang Hou, Yang Hu, Charles Larkin, Brian Lucey, and Les Oxley. 2021. Cryptocurrency liquidity and volatility interrelationships during the COVID-19 pandemic. Finance Research Letters 45: 102137. [Google Scholar] [CrossRef]
- Danielsson, Jón, Bjorn Jorgensen, Gennady Samorodnitsky, Mandira Sarma, and Casper De Vries. 2013. Fat tails, VaR and subadditivity. Journal of Econometrics 172: 283–91. [Google Scholar] [CrossRef]
- Dionísio, Aandreia, Rui Menezes, and Diana Mendes. 2006. An econophysics approach to analyse uncertainty in financial markets: An application to the Portuguese stock market. European Physical Journal B 50: 161–64. [Google Scholar] [CrossRef] [Green Version]
- Enoksen, Fredrik A., Ch J. Landsnes, Katarina Lučivjanská, and Peter Molnár. 2020. Understanding risk of bubbles in cryptocurrencies. Journal of Economic Behavior and Organization 176: 129–44. [Google Scholar] [CrossRef]
- Fry, John, and Eng-Tuck Cheah. 2016. Negative bubbles and shocks in cryptocurrency markets. International Review of Financial Analysis 47: 343–52. [Google Scholar] [CrossRef] [Green Version]
- Fry, John. 2018. Booms, busts and heavy-tails: The story of Bitcoin and cryptocurrency markets? Economics Letters 171: 225–29. [Google Scholar] [CrossRef]
- Goodell, John W., and Stephane Goutte. 2021. Co-movement of COVID-19 and Bitcoin: Evidence from wavelet coherence analysis. Finance Research Letters 38: 101625. [Google Scholar] [CrossRef]
- Griffin, John, and Amin Shams. 2020. Is Bitcoin Really Untethered? The Journal of Finance 75: 1913–64. [Google Scholar] [CrossRef]
- Hsieh, Ying-Ying, Jean-Phillipe Vergne, and Sha Wang. 2017. The internal and external governance of blockchain-based organizations: Evidence from cryptocurrencies. In Bitcoin and Beyond: Cryptocurrencies, Blockchains, and Global Governance. Edited by Malcolm Campbell-Verduyn. London: Routledge, pp. 48–68. [Google Scholar] [CrossRef]
- Ji, Qiang, Elie Bouri, Chi Lau, and David Roubaud. 2019. Dynamic connectedness and integration in cryptocurrency markets. International Review of Financial Analysis 63: 257–72. [Google Scholar] [CrossRef]
- Kajtazi, Anton, and Andrea Moro. 2019. The role of bitcoin in well diversified portfolios: A comparative global study. International Review of Financial Analysis 61: 143–57. [Google Scholar] [CrossRef] [Green Version]
- Katsiampa, Paraskevi. 2017. Volatility estimation for Bitcoin: A comparison of GARCH models. Economics Letters 158: 3–6. [Google Scholar] [CrossRef] [Green Version]
- Knight, Frank. 1921. Risk, Uncertainty and Profit. Boston and New York: The Riverside Press Cambridge. [Google Scholar]
- Lahmiri, Salim, Stelios Bekiros, and Antonio Salvi. 2018. Long-range memory, distributional variation and randomness of bitcoin volatility. Chaos, Solitons and Fractals 107: 43–48. [Google Scholar] [CrossRef]
- Likitratcharoen, Danai, Teerasak Ranong, Ratikorn Chuengsuksomboon, Norrasate Sritanee, and Ariyapong Pansriwong. 2018. Value at Risk Performance in Cryptocurrencies. The Journal of Risk Management and Insurance 22: 11–28. [Google Scholar]
- Maciel, Leandro. 2020. Cryptocurrencies value-at-risk and expected shortfall: Do regime-switching volatility models improve forecasting? International Journal of Finance and Economics 26: 4840–55. [Google Scholar] [CrossRef]
- Mandelbrot, Benoit. 2003. Heavy Tails in Finance for Independent or Multifractal Price Increments. In Handbook of Heavy Tailed Distributions in Finance. Edited by Svetlozar T. Rachev. Amsterdam: Elsevier Science, pp. 1–34. [Google Scholar]
- Mensi, Walid, Ahmet Sensoy, Aylin Aslan, and Sang Kang. 2019. High-frequency asymmetric volatility connectedness between Bitcoin and major precious metals markets. North American Journal of Economics and Finance 50: 101031. [Google Scholar] [CrossRef]
- Mensi, Walid, Besma Hkiri, Khamis Al-Yahyaee, and Sang Kang. 2018. Analyzing time–frequency co-movements across gold and oil prices with BRICS stock markets: A VaR based on wavelet approach. International Review of Economics and Finance 54: 74–102. [Google Scholar] [CrossRef]
- Mokni, Khaled, Manel Youssef, and Ahdi Ajmi. 2022. COVID-19 pandemic and economic policy uncertainty: The first test on the hedging and safe haven properties of cryptocurrencies. Research in International Business and Finance 60: 101573. [Google Scholar] [CrossRef]
- Nadarajah, Saralees, Bo Zhang, and Stephen Chan. 2014. Estimation methods for expected shortfall. Quantitative Finance 14: 271–91. [Google Scholar] [CrossRef]
- Pele, Daniel, and Miruna Mazurencu-Marinescu-Pele. 2019. Using high-frequency entropy to forecast Bitcoin’s daily value at risk. Entropy 21: 102. [Google Scholar] [CrossRef] [Green Version]
- Phillip, Andrew, Jennifer Chan, and Shelton Peiris. 2018. A new look at Cryptocurrencies. Economics Letters 163: 6–9. [Google Scholar] [CrossRef]
- Poon, Ser-Huang, and Clive Granger. 2003. Forecasting volatility in financial markets: A Review. Journal of Economic Literature 41: 478–539. [Google Scholar] [CrossRef]
- Shannon, Claude. 1948. A Mathematical Theory of Communication. Bell System Technical Journal 27: 623–56. [Google Scholar] [CrossRef]
- Syuhada, Khreshna, and Arief Hakim. 2020. Modeling risk dependence and portfolio VaR forecast through vine copula for cryptocurrencies. PLoS ONE 15: e0242102. [Google Scholar] [CrossRef]
- Takada, Hellinton, Sylvio Azevedo, Julio Stern, and Celma Ribeiro. 2019. Using Entropy to Forecast Bitcoin’s Daily Conditional Value at Risk. Proceedings 33: 7. [Google Scholar] [CrossRef] [Green Version]
- Trucíos, Carlos, Aviral Tiwari, and Faisal Alqahtani. 2020. Value-at-risk and expected shortfall in cryptocurrencies’ portfolio: A vine copula–based approach. Applied Economics 52: 2580–93. [Google Scholar] [CrossRef]
- Vukovic, Darko, Moinak Maiti, Zoran Grubisic, Elena Grigorieva, and Michael Frömmel. 2021. COVID-19 pandemic: Is the crypto market a safe haven? the impact of the first wave. Sustainability 13: 12484. [Google Scholar] [CrossRef]
- Wei, Wang. 2018. Liquidity and market efficiency in cryptocurrencies. Economics Letters 168: 21–24. [Google Scholar] [CrossRef]
- Zhang, Wei, Yi Li, Xiong Xiong, and Pengfei Wang. 2021. Downside risk and the cross-section of cryptocurrency returns. Journal of Banking and Finance 133: 106246. [Google Scholar] [CrossRef]
Cryptocurrency | MC | Launch Year | Properties | ||
---|---|---|---|---|---|
1 | Bitcoin | BTC | 90804613601 | 2009 | Mined; pure financial asset |
2 | Ethereum | ETH | 12366138225 | 2015 | Mined; service platform |
3 | Ripple | XRP | 6118533337 | 2012 | Unmined; service platform |
4 | Tether | USDT | 4891126961 | 2014 | Unmined; stable cryptocurrency |
5 | Litecoin | LTC | 1988180694 | 2011 | Mined; pure financial asset |
6 | Stellar | XLM | 677492669 | 2015 | Unmined; service platform |
7 | Monero | XMR | 577030303 | 2014 | Mined; pure financial asset |
Period | Returns | ||
---|---|---|---|
t_1 | 8 August 2015 | 7 August 2016 | 366 |
t_2 | 8 August 2016 | 7 August 2017 | 365 |
t_3 | 8 August 2017 | 7 August 2018 | 365 |
t_4 | 8 August 2018 | 7 August 2019 | 365 |
t_5 | 8 August 2019 | 7 August 2020 | 366 |
t_6 | 8 August 2020 | 7 August 2021 | 365 |
t_7 | 8 August 2021 | 13 October 2021 | 67 |
Total | 2259 |
Cryptocurrency | BTC | ETH | XRP | USDT | |||||||||||||
D.Stat. | Mean | Stdev. | Kurtosis | Skewness | Mean | Stdev. | Kurtosis | Skewness | Mean | Stdev. | Kurtosis | Skewness | Mean | Stdev. | Kurtosis | Skewness | |
Period | |||||||||||||||||
t_1 | 0.0021 | 0.0324 | 8.1478 | −0.9954 | 0.0037 | 0.1095 | 55.7676 | −4.3573 | −0.0008 | 0.0392 | 8.6502 | 1.3647 | 0.0000 | 0.0000 | 39.8160 | −2.2803 | |
t_2 | 0.0051 | 0.0357 | 6.1916 | −0.0410 | 0.0099 | 0.0673 | 7.0218 | 1.3669 | 0.0098 | 0.0970 | 39.7127 | 3.3631 | 0.0000 | 0.0072 | 12.7282 | 0.1475 | |
t_3 | 0.0019 | 0.0517 | 2.2617 | −0.0623 | 0.0009 | 0.0574 | 2.6579 | −0.2936 | 0.0021 | 0.0838 | 12.8829 | 1.8047 | 0.0000 | 0.0079 | 12.3461 | 0.4981 | |
t_4 | 0.0016 | 0.0373 | 3.6743 | −0.1559 | −0.0014 | 0.0502 | 2.5965 | −0.4071 | −0.0005 | 0.0509 | 7.6885 | 1.1777 | 0.0000 | 0.0057 | 1.4470 | 0.1360 | |
t_5 | −0.0001 | 0.0403 | 49.2708 | −3.7816 | 0.0014 | 0.0503 | 40.7387 | −3.5042 | −0.0002 | 0.0412 | 24.8958 | −2.3456 | 0.0000 | 0.0068 | 15.5926 | 0.1184 | |
t_6 | 0.0037 | 0.0403 | 2.1242 | −0.1639 | 0.0058 | 0.0563 | 4.2358 | −0.5622 | 0.0028 | 0.0861 | 9.5673 | 0.0279 | 0.0000 | 0.0017 | 75.6404 | −3.5385 | |
t_7 | 0.0038 | 0.0372 | 1.3994 | −0.3432 | 0.0020 | 0.0469 | 0.8544 | −0.2065 | 0.0049 | 0.0626 | 2.0132 | −0.0666 | 0.0000 | 0.0001 | 7.9432 | 0.5887 | |
Cryptocurrency | LTC | XLM | XMR | ||||||||||||||
D.Stat. | Mean | Stdev. | Kurtosis | Skewness | Mean | Stdev. | Kurtosis | Skewness | Mean | Stdev. | Kurtosis | Skewness | |||||
Period | |||||||||||||||||
t_1 | −0.0003 | 0.0357 | 7.5704 | −0.3116 | −0.0007 | 0.0514 | 5.1586 | 0.9217 | 0.0026 | 0.0619 | 3.6733 | 0.3502 | |||||
t_2 | 0.0074 | 0.0621 | 15.9106 | 2.4310 | 0.0075 | 0.1006 | 16.5463 | 2.5942 | 0.0097 | 0.0811 | 10.6655 | 2.0154 | |||||
t_3 | 0.0011 | 0.0720 | 6.9620 | 0.6624 | 0.0064 | 0.1004 | 6.7239 | 1.1823 | 0.0021 | 0.0751 | 2.6975 | 0.2480 | |||||
t_4 | 0.0008 | 0.0518 | 3.2326 | 0.5418 | −0.0029 | 0.0472 | 2.1164 | 0.0582 | −0.0003 | 0.0501 | 2.4050 | −0.3511 | |||||
t_5 | −0.0013 | 0.0474 | 23.1362 | −2.2304 | 0.0007 | 0.0485 | 16.3698 | −1.0093 | −0.0001 | 0.0472 | 32.8282 | −3.1450 | |||||
t_6 | 0.0027 | 0.0627 | 7.9882 | −1.1750 | 0.0030 | 0.0755 | 11.9551 | 1.2866 | 0.0029 | 0.0626 | 17.6864 | −1.4901 | |||||
t_7 | 0.0020 | 0.0529 | 3.5610 | −0.5790 | 0.0027 | 0.0584 | 2.9431 | −0.9180 | 0.0002 | 0.0458 | 3.4543 | −0.8862 |
Cryptocurrency | ||||||||||||||||||||||||||
BTC | ETH | XRP | USDT | |||||||||||||||||||||||
D1 | D2 | D3 | D4 | D5 | D6 | D1 | D2 | D3 | D4 | D5 | D6 | D1 | D2 | D3 | D4 | D5 | D6 | D1 | D2 | D3 | D4 | D5 | D6 | |||
Uncertainty | Entropy | ▼ | ▲ | ▼ | ▲ | ▼ | ▲ | ▲ | ▲ | ▲ | ▼ | ▼ | ▲ | ▲ | ▲ | ▼ | ▲ | ▼ | ▼ | ▲ | ▲ | ▼ | ▼ | ▼ | ▲ | |
Risk | VaR(95) | Empirical | ▲ | ▲ | ▼ | ▼ | ▲ | ▼ | ▼ | ▲ | ▼ | ▼ | ▲ | ▼ | ▲ | ▲ | ▼ | ▼ | ▲ | ▼ | ▲ | ▲ | ▲ | ▲ | ▼ | ▲ |
Normal | ▲ | ▲ | ▼ | ▲ | ▼ | ▼ | ▼ | ▼ | ▼ | ▼ | ▲ | ▼ | ▲ | ▼ | ▼ | ▼ | ▲ | ▼ | ▲ | ▲ | ▼ | ▲ | ▼ | ▼ | ||
Student’s t | ▲ | ▲ | ▼ | ▲ | ▼ | ▼ | ▼ | ▼ | ▼ | ▼ | ▲ | ▼ | ▲ | ▼ | ▼ | ▼ | ▲ | ▼ | ▲ | ▲ | ▼ | ▲ | ▼ | ▼ | ||
Var(99) | Empirical | ▲ | ▲ | ▼ | ▼ | ▲ | ▼ | ▼ | ▲ | ▼ | ▼ | ▲ | ▼ | ▲ | ▲ | ▼ | ▼ | ▲ | ▼ | ▲ | ▼ | ▼ | ▲ | ▼ | ▼ | |
Normal | ▲ | ▲ | ▼ | ▲ | ▼ | ▼ | ▼ | ▼ | ▼ | ▼ | ▲ | ▼ | ▲ | ▼ | ▼ | ▼ | ▲ | ▼ | ▲ | ▲ | ▼ | ▲ | ▼ | ▼ | ||
Student’s t | ▲ | ▲ | ▼ | ▲ | ▼ | ▼ | ▼ | ▼ | ▼ | ▼ | ▲ | ▼ | ▲ | ▼ | ▼ | ▼ | ▲ | ▼ | ▲ | ▲ | ▼ | ▲ | ▼ | ▼ | ||
CVaR(95) | ▲ | ▲ | ▼ | ▼ | ▲ | ▼ | ▼ | ▲ | ▼ | ▼ | ▲ | ▼ | ▲ | ▲ | ▼ | ▼ | ▲ | ▼ | ▲ | ▼ | ▼ | ▲ | ▼ | ▼ | ||
CVaR(99) | ▼ | ▲ | ▼ | ▲ | ▼ | ▲ | ▼ | ▲ | ▼ | ▲ | ▼ | ▼ | ▲ | ▼ | ▼ | ▲ | ▲ | ▼ | ▲ | ▼ | ▼ | ▲ | ▼ | ▼ | ||
Cryptocurrency | ||||||||||||||||||||||||||
LTC | XLM | XMR | ||||||||||||||||||||||||
D1 | D2 | D3 | D4 | D5 | D6 | D1 | D2 | D3 | D4 | D5 | D6 | D1 | D2 | D3 | D4 | D5 | D6 | |||||||||
Uncertainty | Entropy | ▼ | ▲ | ▼ | ▲ | ▼ | ▲ | ▲ | ▲ | ▼ | ▲ | ▼ | ▼ | ▼ | ▼ | ▲ | ▲ | ▼ | ▲ | |||||||
Risk | VaR(95) | Empirical | ▲ | ▲ | ▼ | ▼ | ▲ | ▼ | ▲ | ▲ | ▼ | ▼ | ▲ | ▼ | ▲ | ▲ | ▼ | ▼ | ▲ | ▼ | ||||||
Normal | ▲ | ▲ | ▼ | ▼ | ▲ | ▼ | ▲ | ▲ | ▼ | ▼ | ▲ | ▼ | ▲ | ▼ | ▼ | ▼ | ▲ | ▼ | ||||||||
Student’s t | ▲ | ▲ | ▼ | ▼ | ▲ | ▼ | ▲ | ▲ | ▼ | ▼ | ▲ | ▼ | ▲ | ▼ | ▼ | ▼ | ▲ | ▼ | ||||||||
Var(99) | Empirical | ▲ | ▲ | ▼ | ▲ | ▲ | ▲ | ▲ | ▼ | ▼ | ▼ | ▲ | ▲ | ▼ | ▲ | ▼ | ▼ | ▲ | ▲ | |||||||
Normal | ▲ | ▲ | ▼ | ▼ | ▲ | ▼ | ▲ | ▲ | ▼ | ▼ | ▲ | ▼ | ▲ | ▼ | ▼ | ▼ | ▲ | ▼ | ||||||||
Student’s t | ▲ | ▲ | ▼ | ▼ | ▲ | ▼ | ▲ | ▲ | ▼ | ▼ | ▲ | ▼ | ▲ | ▼ | ▼ | ▼ | ▲ | ▼ | ||||||||
CVaR(95) | ▲ | ▲ | ▼ | ▲ | ▲ | ▼ | ▲ | ▲ | ▼ | ▼ | ▲ | ▼ | ▼ | ▲ | ▼ | ▼ | ▲ | ▼ | ||||||||
CVaR(99) | ▲ | ▲ | ▼ | ▲ | ▲ | ▲ | ▲ | ▼ | ▼ | ▲ | ▲ | ▲ | ▼ | ▲ | ▼ | ▲ | ▲ | ▼ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almeida, D.; Dionísio, A.; Vieira, I.; Ferreira, P. Uncertainty and Risk in the Cryptocurrency Market. J. Risk Financial Manag. 2022, 15, 532. https://doi.org/10.3390/jrfm15110532
Almeida D, Dionísio A, Vieira I, Ferreira P. Uncertainty and Risk in the Cryptocurrency Market. Journal of Risk and Financial Management. 2022; 15(11):532. https://doi.org/10.3390/jrfm15110532
Chicago/Turabian StyleAlmeida, Dora, Andreia Dionísio, Isabel Vieira, and Paulo Ferreira. 2022. "Uncertainty and Risk in the Cryptocurrency Market" Journal of Risk and Financial Management 15, no. 11: 532. https://doi.org/10.3390/jrfm15110532
APA StyleAlmeida, D., Dionísio, A., Vieira, I., & Ferreira, P. (2022). Uncertainty and Risk in the Cryptocurrency Market. Journal of Risk and Financial Management, 15(11), 532. https://doi.org/10.3390/jrfm15110532