Multifactor Market Indexes
Abstract
:1. Introduction
2. Multifactor Market Indexes
3. Empirical Tests
3.1. Descriptive Statistics
3.2. Time-Series Tests of Multifactor Market Indexes
3.3. Cross-Sectional Fama-MacBeth Tests of Multifactor Market Indexes
3.4. Cross-Sectional Fama-MacBeth Tests of Multifactors
3.5. Robustness Tests with Different Test Asset Portfolios
3.6. Index Construction with Industry Factors
3.7. Is Momentum a Strong Factor?
3.8. Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
1 | See also Lettau and Pelger (2020), who utilized Principal Component Analysis (PCA) methods to reduce the number of potential factors to a parsimonious set of latent factors. They found that five factors with economic content help to explain the cross-section and time-series of returns. |
2 | For example, the three moment CAPM (Rubinstein (1973) and Kraus and Litzenberger (1976)), consumption CAPM (Breeden 1979), conditional CAPM (Jagannathan and Wang (1996) and Ferson and Harvey (1999)), liquidity-based models (Pastor and Stambaugh (2003), Acharya and Pedersen (2005), and Li et al. (2019)), intertemporal CAPM (ICAPM) (Petkova 2006), interest-rate-based models Campbell (1996), cross-factor models Fama and French (2020), among others. |
3 | As such, the intercept equals zero, and the beta factor loading matrix is unchanged. |
4 | Numerous papers have found that various long-only market indexes are not mean-variance efficient portfolios (e.g., see Gibbons et al. (1989); Gibbons (1982); Jobson and Korkie (1982); Kandel (1984); Shanken (1985, 1986); Kandel and Stambaugh (1987a, 1987b); Gibbons et al. (1989); Haugen and Baker (1991); MacKinlay and Richardson (1991); Zhou (1993); Brière et al. (2013), and others). According to Brennan and Lo (2010), it is virtually impossible for long-only market indexes to be efficient portfolios. Supporting this proposition, many studies have found that short positions are needed to achieve efficiency (e.g., see Pulley (1981); Levy (1983); Kallberg and Ziemba (1983); Kroll et al. (1984); Green and Hollifield (1992); Jagannathan and Ma (2003); Brennan and Lo (2010); Levy and Ritov (2010), and others). More generally, Kothari et al. (1995) have argued that the equity portfolio most highly correlated with the market portfolio is efficient. |
5 | Also, if the expected return of the zero-cost factor portfolio is zero, the Sharpe ratio will not be increased by adding it to a candidate market index. Note that any zero-cost asset that is uncorrelated with the tangency portfolio has an expected return equal to the riskless rate such that its excess return is zero. |
6 | As shown there, the definitions of the multifactors are as follows: size (SMB) is the average return on the nine small stock portfolios minus the average return on the nine big stock portfolios; value (HML) is the average return on the two value portfolios minus the average return on the two growth portfolios; profit (RMW) is the average return on the two robust operating profitability portfolios minus the average return on the two weak operating profitability portfolios; capital investment (CMA) is the average return on the two conservative investment portfolios minus the average return on the two aggressive investment portfolios; and momentum (MOM) is the average return on the two high prior return portfolios minus the average return on the two low prior return portfolios. |
7 | These weights are averages using different orders of entry in forming indexes based on a rotation of factors. For example, can be formed by starting with CRSP, adding SMB, and then adding HML. Alternatively, we can start with SMB, add HML, and then CRSP. Finally, we could add them in the order HML, SMB, and CRSP. We average weights for each factor across these rotational combinations of order entry. While the order in which portfolios is combined changes their relative weights, the Sharpe ratios and other performance metrics of respective aggregate indexes as well as forthcoming cross-sectional tests were little changed. |
8 | Rearranging terms, we have: . Since both and are deleveraged portfolios, we can deleverage by dividing its return by . |
9 | See also Roll (1977, p. 130), who also observed that most proxies for the market portfolio are very highly correlated. |
10 | They also included a time-varying market factor to capture beta instability over time (i.e., the BAA minus AAA bond yield spread), which was found to be significantly priced. Hence, they concluded that, even though the static CAPM assuming constant beta over time is not supported, the conditional CAPM allowing betas and expected returns to vary over time is supported. |
11 | The GRS test statistic has a noncentral F distribution with degrees of freedom N (25 portfolios) and (T 654 months). As the noncentrality parameter increases, the probability of rejecting a false null hypothesis tends to increase. According to tests in Gibbons et al. (1989, pp. 1130–38), the power of our tests should be sufficient to detect deviations from the efficiency of the index. |
12 | Following standard practice, adjusted values are estimated by regressing the average excess returns for test asset portfolios in the full sample period on their full sample beta estimates. |
13 | By contrast, CMA is positive but not significantly priced for market indexes and based on the CRSP index and CRSP + SML market index, respectively, but it is significantly priced with market indexes and containing the CMA portfolio. These unexpected results for CMA are difficult to interpret due to being negatively (rather than positively) priced when significant. |
14 | Multifactor market index does not eliminate the significance of the SMB, HML, RMW, and MOM factors even though these factors are contained in this index. However, the markedly lower value of 42 percent for this market index indicates that these factors’ residual explanatory power is substantially diminished by market index . |
15 | |
16 | Unreported in Table 9, we also tested a two-factor model with the excess return on the CRSP index () and industry factor (IND). Using 30 industry portfolios as test assets, both factors are significantly priced with t-values of 2.12 and 2.98, respectively. The correlation between these two factors was relatively high at 0.60. |
References
- Acharya, Viral V., and Lasse H. Pedersen. 2005. Asset pricing with liquidity risk. Journal of Financial Economics 77: 375–410. [Google Scholar] [CrossRef] [Green Version]
- Barillas, Francisco, and Jay Shanken. 2018. Comparing asset pricing models. Journal of Finance 73: 715–54. [Google Scholar] [CrossRef] [Green Version]
- Black, Fischer. 1972. Capital market equilibrium with restricted borrowing. Journal of Business 45: 444–54. [Google Scholar] [CrossRef] [Green Version]
- Black, Fischer. 1995. Estimating expected return. Financial Analysts Journal 49: 168–71. [Google Scholar] [CrossRef]
- Breeden, Douglas T. 1979. An intertemporal asset pricing model with stochastic consumption and investment opportunities. Journal of Financial Economics 7: 265–96. [Google Scholar] [CrossRef]
- Brennan, Douglas T., and Andrew W. Lo. 2010. Impossible frontiers. Management Science 56: 905–23. [Google Scholar] [CrossRef] [Green Version]
- Brière, Marie, Bastien Drut, Valerie Mignon, Kim Oosterlink, and Ariane Szafarz. 2013. Is the market portfolio efficient? A new test to of mean-variance efficiency when all assets are risky. Finance 34: 7–41. [Google Scholar] [CrossRef] [Green Version]
- Campbell, John Y. 1996. Understanding risk and return. Journal of Political Economy 104: 298–345. [Google Scholar] [CrossRef] [Green Version]
- Carhart, Mark M. 1997. On persistence in mutual fund performance. Journal of Finance 52: 57–82. [Google Scholar] [CrossRef]
- Chen, Long, and Lu Zhang. 2010. A better three-factor model that explains more anomalies. Journal of Finance 65: 563–94. [Google Scholar]
- Chordia, Tarun, Amit Goyal, and Alessio Saretto. 2020. Anomalies and false rejections. Review of Financial Studies 33: 2134–79. [Google Scholar] [CrossRef]
- Cochrane, John H. 2011. Presidential address: Discount rates. Journal of Finance 56: 1047–108. [Google Scholar] [CrossRef] [Green Version]
- Fama, Eugene F. 1996. Multifactor portfolio efficiency and multifactor asset pricing. Journal of Financial and Quantitative Analysis 31: 441–65. [Google Scholar] [CrossRef]
- Fama, Eugene F. 2017. Cross-Section versus Time-Series Tests of Asset Pricing Models. Working Paper. Chicago: University of Chicago. [Google Scholar]
- Fama, Eugene F., and James D. MacBeth. 1973. Risk, return, and equilibrium: Empirical tests. Journal of Political Economy 81: 607–36. [Google Scholar] [CrossRef]
- Fama, Eugene F., and Kenneth R. French. 1992. The cross-section of expected stock returns. Journal of Finance 47: 427–65. [Google Scholar] [CrossRef]
- Fama, Eugene F., and Kenneth R. French. 1993. The cross-section of expected returns. Journal of Financial Economics 33: 3–56. [Google Scholar] [CrossRef]
- Fama, Eugene F., and Kenneth R. French. 1995. Size and book-to-market factors in earnings and returns. Journal of Finance 50: 131–56. [Google Scholar] [CrossRef]
- Fama, Eugene F., and Kenneth R. French. 1996a. The CAPM is wanted, dead or alive. Journal of Finance 51: 1947–58. [Google Scholar] [CrossRef]
- Fama, Eugene F., and Kenneth R. French. 1996b. Multifactor explanations of asset pricing anomalies. Journal of Finance 51: 55–84. [Google Scholar] [CrossRef]
- Fama, Eugene F., and Kenneth R. French. 2015. A five-factor asset pricing model. Journal of Financial Economics 116: 1–22. [Google Scholar] [CrossRef] [Green Version]
- Fama, Eugene F., and Kenneth R. French. 2018. Choosing factors. Journal of Financial Economics 128: 234–52. [Google Scholar] [CrossRef]
- Fama, Eugene F., and Kenneth R. French. 2020. Comparing cross-section and time-series factor models. Review of Financial Studies 33: 1892–926. [Google Scholar] [CrossRef]
- Ferson, Wayne E. 1995. Theory and empirical testing of asset pricing models. In Handbooks in Operations Research and Management Science. Edited by Robert A. Jarrow, Vojislav Maksimovic and William T. Ziemba. Amsterdam: Elsevier, pp. 145–200. [Google Scholar]
- Ferson, Wayne E. 2019. Empirical Asset Pricing Models and Methods. Cambridge: MIT Press. [Google Scholar]
- Ferson, Wayne, and Campbell R. Harvey. 1999. Conditioning variables and the cross-section of stock returns. Journal of Finance 54: 1325–60. [Google Scholar] [CrossRef]
- Ferson, Wayne E., and Andrew F. Siegel. 2009. Testing portfolio efficiency with conditioning informaiton. Review of Financial Studies 22: 2735–58. [Google Scholar] [CrossRef] [Green Version]
- Gibbons, Michael R. 1982. Multivariate tests of financial models: A new approach. Journal of Financial Economics 10: 3–27. [Google Scholar] [CrossRef]
- Gibbons, Michael R., Stephen A. Ross, and Jay Shanken. 1989. A test of the efficiency of a given portfolio. Econometrica 57: 1121–52. [Google Scholar] [CrossRef] [Green Version]
- Green, Richard C., and Burton Hollifield. 1992. When will mean-variance efficient portfolios be well diversified? Journal of Finance 47: 1785–809. [Google Scholar] [CrossRef]
- Grinblatt, Mark, and Sheridan Titman. 1987. The relation between mean-variance efficiency and arbitrage pricing. Journal of Business 60: 97–112. [Google Scholar] [CrossRef]
- Harvey, Campbell R., Yang Liu, and Heqing Zhu. 2016. …and the cross-section of expected returns. Review of Financial Studies 29: 5–68. [Google Scholar] [CrossRef] [Green Version]
- Haugen, Robert A., and Nardin L. Baker. 1991. The efficient market inefficiency of capitalization-weighted stock portfolios. Journal of Portfolio Managment 17: 35–40. [Google Scholar] [CrossRef]
- Hou, Kewei, Chen Xue, and Lu Zhang. 2014. Digesting anomalies: An investment approach. Review of Financial Studies 28: 650–705. [Google Scholar] [CrossRef] [Green Version]
- Hou, Kewei, Haitao Mo, Chen Xue, and Lu Zhang. 2018. q5. Working Paper. Columbus: Ohio State University. [Google Scholar]
- Huberman, Gur, and Shmuel Kandel. 1987. Mean-variance spanning. Journal of Finance 42: 873–88. [Google Scholar] [CrossRef]
- Huberman, Gur, Shmuel Kandel, and Roger Stambaugh. 1987. Mimicking portfolios and exact arbitrage pricing. Journal of Finance 42: 1–9. [Google Scholar] [CrossRef]
- Jagannathan, Ravi, and Tongshu Ma. 2003. Risk reduction in large portfolios: A role for portfolio weight constraints. Journal of Finance 58: 1651–84. [Google Scholar] [CrossRef] [Green Version]
- Jagannathan, Ravi, and Zhenyu Wang. 1996. The conditional CAPM and the cross-section of expected returns. Journal of Finance 51: 3–53. [Google Scholar] [CrossRef]
- Jobson, John D., and Bob Korkie. 1982. Potential performance and tests of portfolio efficiency. Journal of Financial Economics 10: 433–65. [Google Scholar] [CrossRef]
- Kallberg, Jerry G., and William T. Ziemba. 1983. Comparison of alternative utility functions in portfolio selection problems. Management Science 29: 1257–76. [Google Scholar] [CrossRef]
- Kan, Raymond, and Guofu Zhou. 2008. Tests of mean-variance spanning. Annals of Economics and Finance 13: 145–93. [Google Scholar]
- Kandel, Shmuel. 1984. On the exclusion of assets from tests of the mean variance efficiency of the market portfolio. Journal of Finance 39: 63–75. [Google Scholar] [CrossRef]
- Kandel, Shmuel, and Roger F. Stambaugh. 1987a. A mean variance framework for tests of asset pricing models. Review of Financial Studies 2: 125–56. [Google Scholar] [CrossRef]
- Kandel, Shmuel, and Roger F. Stambaugh. 1987b. On correlations and inferences about mean/variance efficiency. Journal of Financial Economics 18: 61–90. [Google Scholar] [CrossRef]
- King, Benjamin F. 1966. Market and industry factors in stock price behavior. Journal of Business 39: 139–90. [Google Scholar] [CrossRef] [Green Version]
- Kothari, Sagar P., Jay Shanken, and Richard G. Sloan. 1995. Another look at the cross-section of expected stock returns. Journal of Finance 50: 185–224. [Google Scholar] [CrossRef]
- Kraus, Alan, and Robert H. Litzenberger. 1976. Skewness preference and the valuation of risk assets. Journal of Finance 31: 1085–100. [Google Scholar]
- Kroll, Yoram, Haim Levy, and Harry Markowitz. 1984. Mean-variance versus direct utility maximization. Journal of Finance 39: 47–61. [Google Scholar] [CrossRef]
- Lettau, Martin, and Marcus Pelger. 2020. Factors that fit the time series and cross-section of stock returns. Review of Financial Studies 33: 2274–325. [Google Scholar] [CrossRef]
- Levy, Haim. 1983. The capital asset pricing model: Theory and empiricism. Economic Journal 93: 145–65. [Google Scholar] [CrossRef]
- Levy, Moshe, and Yaacov Ritov. 2010. Mean-variance efficient portfolios with many assets: 50% short. Quantitative Finance 10: 1641–71. [Google Scholar] [CrossRef]
- Li, Hongtao, Robert Novy-Marx, and Mikhail Velikov. 2019. Liquidity risk and asset pricing. Critical Finance Review 8: 223–55. [Google Scholar] [CrossRef]
- Lintner, John. 1965. The valuation of risk assets and the selection of risky investments in stock portfolios and capital budgets. Review of Economics and Statistics 47: 13–37. [Google Scholar] [CrossRef]
- MacKinlay, A. Craig. 1993. Multifactor Models Do Not Explain Deviations from the CAPM. Working Paper. Philadelphia: University of Pennsylvania. [Google Scholar]
- MacKinlay, A. Craig, and Matthew P. Richardson. 1991. Using generalized method of moments to test mean/variance efficiency. Journal of Finance 46: 511–27. [Google Scholar] [CrossRef]
- Markowitz, Harry M. 1959. Portfolio Selection: Efficient Diversification of Investments. New York: John Wiley & Sons. [Google Scholar]
- Merton, Robert C. 1973. An intertemporal capital asset pricing model. Econometrica 41: 867–87. [Google Scholar] [CrossRef]
- Meyers, Stewart L. 1973. A re-examination of market and industry factors in stock price behavior. Journal of Finance 28: 695–705. [Google Scholar] [CrossRef]
- Mossin, Jan. 1966. Equilibrium in a capital asset market. Econometrica 34: 768–83. [Google Scholar] [CrossRef]
- Pastor, Lubos, and Robert F. Stambaugh. 2003. Liquidity risk and expected stock returns. Journal of Political Economy 111: 642–85. [Google Scholar] [CrossRef] [Green Version]
- Petkova, Ralitsa. 2006. Do the Fama-French factors proxy for innovations in predictive variables? Journal of Finance 61: 581–612. [Google Scholar] [CrossRef]
- Pulley, Larry B. 1981. General mean-variance approximation to expected utility for short holding periods. Journal of Financial and Quantitative Analysis 16: 361–73. [Google Scholar] [CrossRef]
- Roll, Richard. 1977. A critique of the asset pricing theory’s tests, part I: On past and potential future testability of the theory. Journal of Financial Economics 4: 129–76. [Google Scholar] [CrossRef]
- Ross, Stephen A. 1976. The arbitrage theory of capital asset pricing. Journal of Economic Theory 13: 341–60. [Google Scholar] [CrossRef]
- Rubinstein, Mark E. 1973. The fundamental theorem of parameter-preference security valuation. Journal of Financial and Quantitative Analysis 8: 61–69. [Google Scholar] [CrossRef]
- Shanken, Jay. 1985. Multivariate tests of the zero-beta CAPM. Journal of Financial Economics 14: 327–48. [Google Scholar] [CrossRef]
- Shanken, Jay. 1986. On the exclusion of assets from tests of the mean variance efficieny of the market. Journal of Finance 41: 331–37. [Google Scholar] [CrossRef]
- Shanken, Jay. 1987. Multivariate proxies and asset pricing relations: Living with the Roll critique. Journal of Financial Economics 18: 91–110. [Google Scholar] [CrossRef]
- Shanken, Jay, and Mark I. Weinstein. 2006. Economic forces and the stock market revisited. Journal of Empirical Finance 13: 129–44. [Google Scholar] [CrossRef]
- Sharpe, William F. 1964. Capital asset prices: A theory of market equilibrium under conditions of risk. Journal of Finance 19: 425–42. [Google Scholar]
- Stambaugh, Roger F. 1982. On the exclusion of assets from tests of the two-parameter model. Journal of Financial Economics 10: 237–68. [Google Scholar] [CrossRef]
- Stambaugh, Roger F., and Yu Yuan. 2017. Mispricing factors. Review of Financial Studies 30: 1270–315. [Google Scholar] [CrossRef] [Green Version]
- Treynor, Jack L. 1961. Market Value, Time, and Risk. Rochester: SSRN, August 8. [Google Scholar]
- Treynor, Jack L. 1962. Toward a theory of market value of risky assets. Unpublished manuscript. [Google Scholar]
- Zhou, Guofu. 1993. Asset pricing tests under alternative distributions. Journal of Finance 48: 1927–42. [Google Scholar] [CrossRef]
Portfolios | Mean | Std. Dev. | Sharpe Ratio |
---|---|---|---|
= CRSP | 0.51 | 4.42 | 0.12 |
SMB | 0.27 | 3.04 | 0.09 |
HML | 0.37 | 2.81 | 0.13 |
RMW | 0.24 | 2.23 | 0.11 |
CMA | 0.31 | 2.01 | 0.15 |
MOM | 0.66 | 4.22 | 0.16 |
= CRSP + SMB | 0.64 | 4.94 | 0.13 |
= CRSP + SMB + HML | 1.71 | 8.10 | 0.21 |
= CRSP + SMB + HML + RMW | 2.66 | 10.09 | 0.26 |
= CRSP + SMB + HML + RMW + CMA | 2.98 | 10.69 | 0.28 |
= CRSP + SMB + HML + RMW + CMA + MOM | 4.49 | 13.13 | 0.34 |
= CRSP + SMB + HML + RMW + MOM | 4.22 | 12.72 | 0.33 |
= CRSP + SMB + HML + RMW + CMA + MOM + 30 Industry Factors | 6.19 | 15.41 | 0.40 |
Portfolios | Mean | Std. Dev. | Sharpe Ratio |
---|---|---|---|
= CRSP | 0.51 | 4.42 | 0.12 |
SMB | 0.27 | 3.04 | 0.09 |
HML | 0.37 | 2.81 | 0.13 |
RMW | 0.24 | 2.23 | 0.11 |
CMA | 0.31 | 2.01 | 0.15 |
MOM | 0.66 | 4.22 | 0.16 |
= CRSP + SMB | 0.40 | 3.07 | 0.13 |
= CRSP + SMB + HML | 0.38 | 1.82 | 0.21 |
= CRSP + SMB + HML + RMW | 0.33 | 1.27 | 0.26 |
= CRSP + SMB + HML + RMW + CMA | 0.33 | 1.18 | 0.28 |
= CRSP + SMB + HML + RMW + CMA + MOM | 0.38 | 1.11 | 0.34 |
= CRSP + SMB + HML + RMW + MOM | 0.39 | 1.18 | 0.33 |
= CRSP + SMB + HML + RMW + CMA + MOM + 30 Industry Factors | 0.40 | 0.98 | 0.40 |
CRSP | SMB | HML | RMW | CMA | MOM | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.00 | 0.28 | −0.26 | −0.23 | −0.38 | −0.13 | 0.90 | 0.51 | 0.33 | 0.15 | 0.06 | 0.21 | 0.27 | |
SMB | 1.00 | −0.08 | −0.35 | −0.10 | −0.02 | 0.68 | 0.48 | 0.23 | 0.16 | 0.13 | 0.19 | 0.18 | |
HML | 1.00 | 0.07 | 0.69 | −0.19 | −0.24 | 0.63 | 0.63 | 0.78 | 0.59 | 0.45 | 0.12 | ||
RMW | 1.00 | −0.04 | 0.11 | −0.34 | −0.21 | 0.41 | 0.34 | 0.37 | 0.43 | 0.26 | |||
CMA | 1.00 | −0.01 | −0.34 | 0.29 | 0.25 | 0.55 | 0.49 | 0.21 | 0.38 | ||||
MOM | 1.00 | −0.11 | −0.24 | −0.16 | −0.14 | 0.46 | 0.47 | 0.50 | |||||
1.00 | 0.61 | 0.36 | 0.19 | 0.11 | 0.25 | 0.29 | |||||||
1.00 | 0.80 | 0.79 | 0.57 | 0.56 | 0.33 | ||||||||
1.00 | 0.94 | 0.75 | 0.79 | 0.47 | |||||||||
1.00 | 0.81 | 0.75 | 0.53 | ||||||||||
1.00 | 0.96 | 0.77 | |||||||||||
1.00 | 0.73 | ||||||||||||
1.00 |
= CRSP | ||||||||
---|---|---|---|---|---|---|---|---|
F-value | 4.78 | 4.70 | 3.85 | 3.38 | 3.55 | 2.86 | 2.77 | 2.81 |
Indexes | Adj. | ||
---|---|---|---|
= CRSP | 1.20 | −0.43 | 0.09 |
(3.19) | (−1.06) | ||
= CRSP + SMB | 0.73 | 0.00 | 0.00 |
(2.970 | (0.00) | ||
= CRSP + SMB + HML | 0.08 | 0.34 | 0.54 |
(0.34) | (3.80) | ||
= CRSP + SMB + HML + RMW | 0.22 | 0.28 | 0.61 |
(0.86) | (3.70) | ||
= CRSP + SMB + HML + RMW + CMA | 0.48 | 0.21 | 0.56 |
(2.06) | (3.27) | ||
= CRSP + SMB + HML + RMW + CMA + MOM | 0.54 | 0.26 | 0.61 |
(2.44) | (3.43) | ||
= CRSP + SMB + HML + RMW + MOM | 0.24 | 0.38 | 0.71 |
(0.95) | (4.04) |
Index | Adj. | |||||||
---|---|---|---|---|---|---|---|---|
CAPM | 1.20 | −0.43 | 0.09 | |||||
(3.19) | (−1.06) | |||||||
Three-factor | 1.27 | −0.73 | 0.22 | 0.40 | 0.67 | |||
(4.83) | (−2.31) | (1.78) | (3.50) | |||||
Five-factor | 1.02 | −0.53 | 0.30 | 0.36 | 0.48 | −0.02 | 0.74 | |
(3.56) | (−1.58) | (2.47) | (3.15) | (2.82) | (−0.10) | |||
Five-factor + MOM | 0.28 | 0.26 | 0.33 | 0.39 | 0.61 | −0.14 | 2.94 | 0.83 |
(0.82) | (0.69) | (2.68) | (3.47) | (3.44) | (−0.80) | (4.71) |
Index | Adj. | ||||||
---|---|---|---|---|---|---|---|
0.03 | 0.11 | 0.59 | 0.76 | 0.08 | 3.42 | 0.90 | |
(1.21) | (0.83) | (4.91) | (4.30) | (0.38) | (6.01) | ||
0.09 | −0.33 | 0.61 | 0.87 | 0.09 | 3.34 | 0.91 | |
(5.39) | (−1.59) | (4.93) | (4.88) | (0.40) | (5.98) | ||
0.15 | −0.20 | −0.25 | 0.79 | −0.35 | 3.50 | 0.72 | |
(2.81) | (−1.02) | (−1.13) | (4.37) | (−2.17) | (6.11) | ||
0.63 | 0.22 | 0.17 | 0.38 | −0.12 | 2.44 | 0.66 | |
(3.60) | (1.31) | (0.57) | (1.70) | (−0.86) | (4.18) | ||
0.24 | 0.14 | −0.47 | 0.32 | −0.58 | 3.23 | 0.80 | |
(1.39) | (0.97) | (−1.45) | (1.38) | (−2.74) | (5.48) | ||
0.83 | 0.35 | 0.57 | 0.62 | −0.01 | 1.51 | 0.70 | |
(3.63) | (2.40) | (1.69) | (2.63) | (−0.03) | (2.63) | ||
0.90 | 0.37 | 0.53 | 0.58 | 0.03 | 1.25 | 0.42 | |
(3.94) | (2.27) | (2.10) | (2.37) | (0.17) | (2.34) |
Panel A: 25 Value-Investment Portfolios | |||||
---|---|---|---|---|---|
Indexes | -Value | -Value | Adj. | ||
= CRSP | 0.77 | 2.93 | −0.11 | −0.34 | −0.04 |
= CRSP + SMB | 0.49 | 2.41 | 0.13 | 0.75 | −0.01 |
= CRSP + SMB + HML | 0.32 | 1.60 | 0.21 | 2.40 | 0.51 |
= CRSP + SMB + HML + RMW | 0.33 | 1.60 | 0.19 | 2.32 | 0.48 |
= CRSP + SMB + HML + RMW + CMA | 0.45 | 2.40 | 0.16 | 2.47 | 0.54 |
= CRSP + SMB + HML + RMW + CMA + MOM | 0.49 | 2.60 | 0.21 | 2.52 | 0.53 |
= CRSP + SMB + HML + RMW + MOM | 0.30 | 1.38 | 0.29 | 2.39 | 0.50 |
Panel B: 25 Profit-Investment Portfolios | |||||
Indexes | -Value | -Value | Adj. | ||
= CRSP | 1.29 | 4.91 | −0.69 | −2.23 | 0.25 |
= CRSP + SMB | 1.05 | 5.13 | −0.35 | −1.95 | 0.19 |
= CRSP + SMB + HML | 0.45 | 2.10 | 0.09 | 0.74 | −0.02 |
= CRSP + SMB + HML + RMW | 0.00 | 0.01 | 0.43 | 3.61 | 0.52 |
= CRSP + SMB + HML + RMW + CMA | 0.36 | 1.70 | 0.26 | 3.36 | 0.54 |
= CRSP + SMB + HML + RMW + CMA + MOM | 0.46 | 2.32 | 0.29 | 3.34 | 0.59 |
= CRSP + SMB + HML + RMW + MOM | 0.17 | 0.65 | 0.44 | 3.40 | 0.56 |
Panel C: 25 Size-Investment Portfolios | |||||
Indexes | -Value | -Value | Adj. | ||
= CRSP | 1.04 | 3.83 | −0.28 | −0.84 | 0.01 |
= CRSP + SMB | 0.62 | 2.94 | 0.07 | 0.43 | −0.03 |
= CRSP + SMB + HML | 0.20 | 0.94 | 0.30 | 2.32 | 0.39 |
= CRSP + SMB + HML + RMW | 0.07 | 0.31 | 0.41 | 4.16 | 0.60 |
= CRSP + SMB + HML + RMW + CMA | 0.42 | 1.90 | 0.30 | 4.52 | 0.62 |
= CRSP + SMB + HML + RMW + CMA + MOM | 0.53 | 2.43 | 0.34 | 4.54 | 0.64 |
= CRSP + SMB + HML + RMW + MOM | 0.16 | 0.70 | 0.48 | 4.35 | 0.63 |
Panel D: 25 Size-Profit Portfolios | |||||
Indexes | -Value | -Value | Adj. | ||
= CRSP | 0.47 | 1.41 | 0.21 | 0.55 | −0.02 |
= CRSP + SMB | 0.31 | 1.37 | 0.24 | 1.40 | 0.15 |
= CRSP + SMB + HML | 0.18 | 0.83 | 0.29 | 2.12 | 0.39 |
= CRSP + SMB + HML + RMW | 0.19 | 0.91 | 0.30 | 3.86 | 0.85 |
= CRSP + SMB + HML + RMW + CMA | 0.39 | 1.87 | 0.30 | 3.85 | 0.75 |
= CRSP + SMB + HML + RMW + CMA + MOM | 0.52 | 2.54 | 0.31 | 3.85 | 0.75 |
= CRSP + SMB + HML + RMW + MOM | 0.32 | 1.57 | 0.32 | 3.89 | 0.84 |
Panel E: 32 Size-Value-Investment Portfolios | |||||
Indexes | -Value | -Value | Adj. | ||
= CRSP | 0.51 | 1.53 | 0.22 | 0.56 | −0.01 |
= CRSP + SMB | 0.33 | 1.49 | 0.27 | 1.63 | 0.19 |
= CRSP + SMB + HML | 0.22 | 1.11 | 0.29 | 3.06 | 0.58 |
= CRSP + SMB + HML + RMW | 0.29 | 1.39 | 0.25 | 3.33 | 0.46 |
= CRSP + SMB + HML + RMW + CMA | 0.48 | 2.40 | 0.20 | 3.40 | 0.44 |
= CRSP + SMB + HML + RMW + CMA + MOM | 0.52 | 2.64 | 0.27 | 3.61 | 0.48 |
= CRSP + SMB + HML + RMW + MOM | 0.26 | 1.27 | 0.36 | 3.56 | 0.54 |
Panel F: 32 Size-Value-Profit Portfolios | |||||
Indexes | -Value | -Value | Adj. | ||
= CRSP | 1.17 | 3.54 | −0.42 | −1.15 | 0.02 |
= CRSP + SMB | 0.60 | 2.71 | 0.08 | 0.48 | −0.02 |
= CRSP + SMB + HML | −0.01 | −0.05 | 0.40 | 4.23 | 0.56 |
= CRSP + SMB + HML + RMW | 0.13 | 0.58 | 0.32 | 4.79 | 0.73 |
= CRSP + SMB + HML + RMW + CMA | 0.40 | 1.87 | 0.26 | 4.49 | 0.66 |
= CRSP + SMB + HML + RMW + CMA + MOM | 0.49 | 2.38 | 0.31 | 4.54 | 0.67 |
= CRSP + SMB + HML + RMW + MOM | 0.21 | 0.92 | 0.40 | 4.91 | 0.75 |
Panel G: 32 Size-Profit-Investment Portfolios | |||||
Indexes | -Value | -Value | Adj. | ||
= CRSP | 1.04 | 3.62 | −0.33 | −0.94 | 0.00 |
= CRSP + SMB | 0.57 | 2.78 | 0.08 | 0.50 | −0.02 |
= CRSP + SMB + HML | 0.15 | 0.75 | 0.32 | 2.59 | 0.26 |
= CRSP + SMB + HML + RMW | −0.03 | −0.12 | 0.45 | 5.85 | 0.67 |
= CRSP + SMB + HML + RMW + CMA | 0.30 | 1.45 | 0.37 | 6.20 | 0.69 |
= CRSP + SMB + HML + RMW + CMA + MOM | 0.43 | 2.16 | 0.42 | 6.53 | 0.75 |
= CRSP + SMB + HML + RMW + MOM | 0.10 | 0.50 | 0.51 | 6.36 | 0.76 |
Panel H: 30 Industry Portfolios | |||||
Indexes | -Value | -Value | Adj. | ||
= CRSP | 0.67 | 2.99 | −0.06 | −0.20 | −0.03 |
= CRSP + SMB | 0.66 | 3.64 | −0.03 | −0.18 | −0.03 |
= CRSP + SMB + HML | 0.71 | 4.24 | −0.06 | −0.52 | 0.01 |
= CRSP + SMB + HML + RMW | 0.60 | 3.42 | 0.01 | 0.11 | −0.03 |
= CRSP + SMB + HML + RMW + CMA | 0.61 | 3.31 | 0.00 | −0.01 | −0.04 |
= CRSP + SMB + HML + RMW + CMA + MOM | 0.60 | 3.04 | 0.03 | 0.35 | −0.02 |
= CRSP + SMB + HML + RMW + MOM | 0.55 | 2.88 | 0.05 | 0.59 | −0.01 |
Test Assets | Adj. | ||
---|---|---|---|
30 industry portfolios | 0.06 | 0.82 | 0.65 |
(0.19) | (2.50) | ||
25 size-value portfolios | 2.08 | −2.23 | 0.29 |
(5.26) | (−3.71) | ||
25 value-investment portfolios | 1.63 | −1.54 | 0.32 |
(3.56) | (−2.28) | ||
25 profit-investment portfolios | 0.47 | 0.19 | −0.04 |
(1.24) | (0.32) | ||
25 size-investment portfolios | 2.47 | −2.85 | 0.57 |
(5.46) | (−4.27) | ||
25 size-profit portfolios | −0.15 | 1.39 | 0.12 |
(0.416) | (2.74) | ||
32 size-value-investment portfolios | 2.45 | −2.79 | 0.49 |
(5.11) | (−4.11) | ||
32 size-value-profit portfolios | 1.92 | −1.94 | 0.07 |
(3.98) | (−2.50) | ||
32 size-profit-investment portfolios | 1.53 | −1.37 | 0.04 |
(4.43) | (−2.69) |
Test Assets | Adj. | ||
---|---|---|---|
30 industry portfolios | 0.64 | −0.03 | −0.03 |
(2.98) | (−0.09) | ||
25 size-value portfolios | 0.89 | −0.16 | −0.03 |
(2.27) | (−0.34) | ||
25 value-investment portfolios | 0.51 | 0.16 | −0.03 |
(3.56) | (−2.28) | ||
25 profit-investment portfolios | 1.21 | −0.67 | 0.16 |
(4.45) | (−1.89) | ||
25 size-investment portfolios | 0.81 | −0.08 | −0.04 |
(2.78) | (−0.20) | ||
25 size-profit portfolios | 0.06 | 0.62 | 0.14 |
(0.17) | (1.52) | ||
32 size-value-investment portfolios | 0.23 | 0.51 | 0.08 |
(0.66) | (1.22) | ||
32 size-value-profit portfolios | 0.63 | 0.08 | −0.03 |
(1.83) | (0.20) | ||
32 size-profit-investment portfolios | 0.67 | 0.02 | −0.03 |
(2.23) | (0.05) |
Test Assets | Adj. | ||
---|---|---|---|
30 industry portfolio | 0.33 | 0.20 | 0.41 |
(1.27) | (2.01) | ||
25 size-value portfolios | −0.20 | 0.59 | 0.63 |
(−0.82) | (4.43) | ||
25 value-investment portfolios | 0.36 | 0.20 | 0.12 |
(1.49) | (2.11) | ||
25 profit-investment portfolios | 0.06 | 0.39 | 0.76 |
(0.25) | (4.15) | ||
25 size-investment portfolios | −0.02 | 0.47 | 0.65 |
(−0.08) | (4.02) | ||
25 size-profit portfolios | 0.12 | 0.38 | 0.79 |
(0.56) | (3.51) | ||
32 size-value-investment portfolios | −0.00 | 0.46 | 0.62 |
(−0.02) | (3.82) | ||
32 size-value-profit portfolios | −0.17 | 0.59 | 0.68 |
(−0.71) | (5.03) | ||
32 size-profit-investment portfolios | −0.07 | 0.49 | 0.71 |
(−0.34) | (5.91) |
Panel A: 25 Size-Value Portfolios | |||||||
---|---|---|---|---|---|---|---|
Factors | -Value | -Value | -Value | Adj. | |||
, MOM | 0.74 | 3.43 | 0.25 | 3.82 | 1.87 | 3.42 | 0.65 |
, MOM | 0.74 | 3.43 | 0.50 | 4.50 | 1.87 | 3.42 | 0.65 |
, MOM | 0.37 | 1.43 | 0.73 | 5.43 | 2.47 | 3.93 | 0.79 |
, MOM | −0.27 | −1.02 | 0.48 | 2.65 | 0.55 | 0.66 | 0.64 |
Panel B: 25 Value-Investment Portfolios | |||||||
Factors | -Value | -Value | -Value | Adj. | |||
, MOM | 0.46 | 2.65 | 0.17 | 2.36 | 0.06 | 0.10 | 0.52 |
, MOM | 0.46 | 2.65 | 0.15 | 1.20 | 0.06 | 0.10 | 0.52 |
, MOM | 0.30 | 1.36 | 0.27 | 1.48 | 0.43 | 0.64 | 0.48 |
, MOM | 0.18 | 0.73 | 0.08 | 0.73 | −0.57 | −1.10 | 0.44 |
Panel C: 25 Profit-Investment Portfolios | |||||||
Factors | -Value | -Value | -Value | Adj. | |||
, MOM | 0.47 | 2.46 | 0.25 | 3.27 | 0.53 | 1.02 | 0.57 |
, MOM | 0.47 | 2.46 | 0.29 | 2.74 | 0.53 | 1.02 | 0.57 |
, MOM | 0.09 | 0.36 | 0.42 | 2.99 | 0.45 | 0.86 | 0.55 |
, MOM | 0.00 | 0.01 | 0.37 | 3.47 | 0.59 | 1.11 | 0.76 |
Panel D: 25 Size-Investment Portfolios | |||||||
Factors | -Value | -Value | -Value | Adj. | |||
, MOM | 0.51 | 2.94 | 0.29 | 4.49 | 0.49 | 0.74 | 0.62 |
, MOM | 0.51 | 2.94 | 0.32 | 2.76 | 0.49 | 0.74 | 0.62 |
, MOM | 0.16 | 0.76 | 0.48 | 3.82 | 0.82 | 1.43 | 0.62 |
, MOM | 0.03 | 0.14 | 0.57 | 4.02 | 1.66 | 2.65 | 0.65 |
Panel E: 25 Size-Profit Portfolios | |||||||
Factors | -Value | -Value | -Value | Adj. | |||
, MOM | 0.44 | 2.50 | 0.29 | 3.65 | 0.11 | 0.19 | 0.75 |
, MOM | 0.44 | 2.50 | 0.26 | 2.67 | 0.11 | 0.19 | 0.75 |
, MOM | 0.25 | 1.35 | 0.27 | 2.70 | 0.16 | 0.27 | 0.84 |
, MOM | −0.03 | −0.14 | 0.30 | 3.15 | 0.10 | 0.17 | 0.81 |
Panel F: 32 Size-Value-Investment Portfolios | |||||||
Factors | -Value | -Value | -Value | Adj. | |||
, MOM | 0.60 | 3.25 | 0.26 | 4.18 | 1.27 | 2.56 | 0.49 |
, MOM | 0.60 | 3.25 | 0.41 | 4.05 | 1.27 | 2.56 | 0.49 |
, MOM | 0.30 | 1.45 | 0.68 | 4.08 | 2.15 | 3.29 | 0.60 |
, MOM | −0.14 | −0.57 | 0.33 | 2.82 | 0.02 | 0.04 | 0.70 |
Panel G: 32 Size-Value-Profit Portfolios | |||||||
Factors | -Value | -Value | -Value | Adj. | |||
, MOM | 0.46 | 2.26 | 0.26 | 4.56 | 0.31 | 0.53 | 0.66 |
, MOM | 0.46 | 2.27 | 0.27 | 2.56 | 0.31 | 0.53 | 0.66 |
, MOM | 0.20 | 0.85 | 0.38 | 3.42 | 0.57 | 1.04 | 0.74 |
, MOM | −0.34 | −1.26 | 0.35 | 2.91 | −0.26 | −0.44 | 0.77 |
Panel H: 32 Size-Profit-Investment Portfolios | |||||||
Factors | -Value | -Value | -Value | Adj. | |||
, MOM | 0.54 | 3.02 | 0.34 | 5.54 | 1.36 | 2.85 | 0.76 |
, MOM | 0.54 | 3.02 | 0.50 | 6.20 | 1.36 | 2.85 | 0.76 |
, MOM | 0.21 | 1.09 | 0.59 | 6.96 | 1.51 | 3.30 | 0.76 |
, MOM | −0.04 | −0.18 | 0.51 | 7.01 | 1.24 | 2.81 | 0.71 |
Panel I: 30 Industry Portfolios | |||||||
Factors | -Value | -Value | -Value | Adj. | |||
, MOM | 0.65 | 3.79 | 0.02 | 0.28 | 0.32 | 0.65 | −0.01 |
, MOM | 0.65 | 3.79 | 0.06 | 0.61 | 0.32 | 0.65 | −0.01 |
, MOM | 0.60 | 3.36 | 0.11 | 0.96 | 0.43 | 0.87 | 0.03 |
, MOM | 0.30 | 1.34 | 0.20 | 1.98 | 0.37 | 0.84 | 0.39 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, W.; Kolari, J.W. Multifactor Market Indexes. J. Risk Financial Manag. 2022, 15, 155. https://doi.org/10.3390/jrfm15040155
Liu W, Kolari JW. Multifactor Market Indexes. Journal of Risk and Financial Management. 2022; 15(4):155. https://doi.org/10.3390/jrfm15040155
Chicago/Turabian StyleLiu, Wei, and James W. Kolari. 2022. "Multifactor Market Indexes" Journal of Risk and Financial Management 15, no. 4: 155. https://doi.org/10.3390/jrfm15040155
APA StyleLiu, W., & Kolari, J. W. (2022). Multifactor Market Indexes. Journal of Risk and Financial Management, 15(4), 155. https://doi.org/10.3390/jrfm15040155