COVID-19 Pandemic & Financial Market Volatility; Evidence from GARCH Models
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data
2.2. GARCH Model
2.3. GJR-GARCH Model
2.4. EGARCH Model
3. Results
4. Discussion and Conclusions
4.1. Implications
4.2. Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Adrian, Tobias, Tara Iyer, and Mahvash S. Qureshi. 2022. Crypto Prices Move More in Sync with Stocks, Posing New Risks. IMF Blog. Available online: https://www.imf.org/en/Blogs/Articles/2022/01/11/crypto-prices-move-more-in-sync-with-stocks-posing-new-risks/ (accessed on 11 January 2022).
- Al-Awadhi, Abdullah M., Khaled Alsaifi, Ahmad Al-Awadhi, and Salah Alhammadi. 2020. Death and contagious infectious diseases: Impact of the COVID-19 virus on stock market returns. Journal of Behavioral and Experimental Finance 20: 100326. [Google Scholar] [CrossRef] [PubMed]
- Alfaro, Laura, Anusha Chari, Andrew N. Greenland, and Peter K. Schott. 2020. Aggregate and Firm-Level Stock Returns during Pandemics, in Real Time. Cambridge: National Bureau of Economic Research. [Google Scholar]
- Ali, Mohsin, Nafis Alam, and Syed Aun R. Rizvi. 2020. Coronavirus (COVID-19)—An epidemic or pandemic for financial markets. Journal of Behavioral and Experimental Finance 27: 100341. [Google Scholar] [CrossRef] [PubMed]
- Amankwah-Amoah, Joseph, Zaheer Khan, and Geoffrey Wood. 2021. COVID-19 and business failures: The paradoxes of experience, scale, and scope for theory and practice. European Management Journal 39: 179–84. [Google Scholar] [CrossRef]
- Amonlirdviman, Kevin, and Carlos Carvalho. 2010. Loss aversion, asymmetric market comovements, and the home bias. Journal of International Money and Finance 29: 1303–20. [Google Scholar] [CrossRef] [Green Version]
- Ang, Beng Wah, and Na Liu. 2007. Negative-value problems of the logarithmic mean Divisia index decomposition approach. Energy Policy 35: 739–42. [Google Scholar] [CrossRef]
- Aslam, Faheem, Ahmed Imran Hunjra, Elie Bouri, Khurrum Shahzad Mughal, and Mrestyal Khan. 2022. Dependence structure across equity sectors: Evidence from vine copulas. Borsa Istanbul Review. [Google Scholar] [CrossRef]
- Aslam, Faheem, Saqib Aziz, Duc Khuong Nguyen, Khurrum S Mughal, and Maaz Khan. 2020a. On the efficiency of foreign exchange markets in times of the COVID-19 pandemic. Technological Forecasting and Social Change 161: 120261. [Google Scholar] [CrossRef]
- Aslam, Faheem, Yasir Tariq Mohmand, Paulo Ferreira, Bilal Ahmed Memon, Maaz Khan, and Mrestyal Khan. 2020b. Network analysis of global stock markets at the beginning of the coronavirus disease (Covid-19) outbreak. Borsa Istanbul Review 20: S49–S61. [Google Scholar] [CrossRef]
- Baker, Scott R., Nicholas Bloom, Steven J. Davis, Kyle J. Kost, Marco C. Sammon, and Tasaneeya Viratyosin. 2020. The Unprecedented Stock Market Impact of COVID-19. Cambridge: National Bureau of Economic Research. [Google Scholar]
- Bali, Turan G., and Hao Zhou. 2016. Risk, uncertainty, and expected returns. Journal of Financial and Quantitative Analysis 51: 707–35. [Google Scholar] [CrossRef] [Green Version]
- Baruník, Jozef, Evžen Kočenda, and Lukáš Vácha. 2016. Asymmetric connectedness on the US stock market: Bad and good volatility spillovers. Journal of Financial Markets 27: 55–78. [Google Scholar] [CrossRef]
- Beckmann, Joscha, Theo Berger, and Robert Czudaj. 2015. Does gold act as a hedge or a safe haven for stocks? A smooth transition approach. Economic Modelling 48: 16–24. [Google Scholar] [CrossRef] [Green Version]
- Bollerslev, Tim. 1986. Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics 31: 307–27. [Google Scholar] [CrossRef] [Green Version]
- Bouri, Elie, Syed Jawad Hussain Shahzad, David Roubaud, Ladislav Kristoufek, and Brian Lucey. 2020. Bitcoin, gold, and commodities as safe havens for stocks: New insight through wavelet analysis. The Quarterly Review of Economics and Finance 77: 156–64. [Google Scholar] [CrossRef]
- Brooks, Chris, and Alistair G. Rew. 2002. Testing for a unit root in a process exhibiting a structural break in the presence of GARCH errors. Computational Economics 20: 157–76. [Google Scholar] [CrossRef]
- Budiarso, Novi Swandari, Abdul Wahab Hasyim, Rusman Soleman, Irfan Zam Zam, and Winston Pontoh. 2020. Investor Behavior Under The Covid-19 Pandemic: The Case Of Indonesia. Innovations 17: 308–18. [Google Scholar]
- Chang, Bo Young, Peter Christoffersen, and Kris Jacobs. 2013. Market skewness risk and the cross section of stock returns. Journal of Financial Economics 107: 46–68. [Google Scholar] [CrossRef]
- Chaudhary, Rashmi, Priti Bakhshi, and Hemendra Gupta. 2020. Volatility in international stock markets: An empirical study during COVID-19. Journal of Risk and Financial Management 13: 208. [Google Scholar] [CrossRef]
- Chen, Conghui, Lanlan Liu, and Ningru Zhao. 2020. Fear sentiment, uncertainty, and bitcoin price dynamics: The case of COVID-19. Emerging Markets Finance and Trade 56: 2298–309. [Google Scholar] [CrossRef]
- Conlon, Thomas, and Richard McGee. 2020. Safe haven or risky hazard? Bitcoin during the COVID-19 bear market. Finance Research Letters 35: 101607. [Google Scholar] [CrossRef]
- Connolly, Robert, Chris Stivers, and Licheng Sun. 2005. Stock market uncertainty and the stock-bond return relation. Journal of Financial and Quantitative Analysis 40: 161–94. [Google Scholar] [CrossRef] [Green Version]
- Corbet, Shaen, Yang Greg Hou, Yang Hu, Les Oxley, and Danyang Xu. 2021. Pandemic-related financial market volatility spillovers: Evidence from the Chinese COVID-19 epicentre. International Review of Economics & Finance 71: 55–81. [Google Scholar]
- Engle, Robert F. 1982. Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation. Econometrica: Journal of the Econometric Society 50: 987–1007. [Google Scholar] [CrossRef]
- Green, T. Clifton, and Stephen Figlewski. 1999. Market risk and model risk for a financial institution writing options. The Journal of Finance 54: 1465–99. [Google Scholar] [CrossRef]
- Haroon, Omair, and Syed Aun R. Rizvi. 2020. COVID-19: Media coverage and financial markets behavior—A sectoral inquiry. Journal of Behavioral and Experimental Finance 27: 100343. [Google Scholar] [CrossRef] [PubMed]
- He, Qing, Junyi Liu, Sizhu Wang, and Jishuang Yu. 2020. The impact of COVID-19 on stock markets. Economic and Political Studies 8: 275–88. [Google Scholar] [CrossRef]
- Holder, Michelle, Janelle Jones, and Thomas Masterson. 2021. The early impact of Covid-19 on job losses among Black Women in the United States. Feminist Economics 27: 103–16. [Google Scholar] [CrossRef]
- Iqbal, Najam, Muhammad Saqib Manzoor, and Muhammad Ishaq Bhatti. 2021. Asymmetry and leverage with news impact curve perspective in Australian stock returns’ volatility during COVID-19. Journal of Risk and Financial Management 14: 314. [Google Scholar] [CrossRef]
- Jareño, Francisco, María de la O González, Marta Tolentino, and Karen Sierra. 2020. Bitcoin and gold price returns: A quantile regression and NARDL analysis. Resources Policy 67: 101666. [Google Scholar] [CrossRef]
- Karmakar, Madhusudan. 2005. Modeling conditional volatility of the Indian stock markets. Vikalpa 30: 21–38. [Google Scholar] [CrossRef] [Green Version]
- Khan, Maaz, Faheem Aslam, and Paulo Ferreira. 2021. Extreme Value Theory and COVID-19 Pandemic: Evidence from India. Economic Research Guardian 11: 2–10. [Google Scholar]
- Khan, Mrestyal, and Maaz Khan. 2021. Cryptomarket Volatility in Times of COVID-19 Pandemic: Application of GARCH Models. Economic Research Guardian 11: 170–81. [Google Scholar]
- Klein, Tony, Hien Pham Thu, and Thomas Walther. 2018. Bitcoin is not the New Gold–A comparison of volatility, correlation, and portfolio performance. International Review of Financial Analysis 59: 105–16. [Google Scholar] [CrossRef]
- Kodres, Laura. 2020. Brakes or Bans: Protecting Financial Markets during a Pandemic. Washington, DC: CEPR. [Google Scholar]
- Liu, HaiYue, Asqa Manzoor, CangYu Wang, Lei Zhang, and Zaira Manzoor. 2020. The COVID-19 outbreak and affected countries stock markets response. International Journal of Environmental Research and Public Health 17: 2800. [Google Scholar] [CrossRef] [Green Version]
- Maital, Shlomo, and Ella Barzani. 2020. The global economic impact of COVID-19: A summary of research. Samuel Neaman Institute for National Policy Research 2020: 1–12. [Google Scholar]
- McKibbin, Warwick, and Roshen Fernando. 2020. The economic impact of COVID-19. In Economics in the Time of COVID-19. Washington, DC: CEPR Press, pp. 45–51. [Google Scholar]
- Mei, Dexiang, Jing Liu, Feng Ma, and Wang Chen. 2017. Forecasting stock market volatility: Do realized skewness and kurtosis help? Physica A: Statistical Mechanics and its Applications 481: 153–59. [Google Scholar] [CrossRef]
- Montenovo, Laura, Xuan Jiang, Felipe Lozano Rojas, Ian M Schmutte, Kosali I Simon, Bruce A Weinberg, and Coady Wing. 2020. Determinants of Disparities in COVID-19 Job Losses. Cambridge: National Bureau of Economic Research. [Google Scholar]
- Nelson, Daniel B. 1991. Conditional heteroskedasticity in asset returns: A new approach. Econometrica: Journal of the Econometric Society 59: 347–70. [Google Scholar] [CrossRef]
- Ortmann, Regina, Matthias Pelster, and Sascha Tobias Wengerek. 2020. COVID-19 and investor behavior. Finance Research Letters 37: 101717. [Google Scholar] [CrossRef] [PubMed]
- Osagie Adenomon, Monday, Bilkisu Maijamaa, and Daniel Owoicholofu John. 2020. On the Effects of COVID-19 Outbreak on the Nigerian Stock Exchange Performance: Evidence from GARCH Models. Basel: MDPI. [Google Scholar]
- Ozili, Peterson K., and Thankom Arun. 2020. Spillover of COVID-19: Impact on the Global Economy. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3562570 (accessed on 5 September 2022).
- Pavlyshenko, Bohdan M. 2020. Regression approach for modeling COVID-19 spread and its impact on stock market. arXiv arXiv:2004.01489. [Google Scholar]
- Rastogi, Shailesh. 2014. The financial crisis of 2008 and stock market volatility–analysis and impact on emerging economies pre and post crisis. Afro-Asian Journal of Finance and Accounting 4: 443–59. [Google Scholar] [CrossRef]
- Sadiq, Muhammad, Ching-Chi Hsu, YunQian Zhang, and Fengsheng Chien. 2021. COVID-19 fear and volatility index movements: Empirical insights from ASEAN stock markets. Environmental Science and Pollution Research 28: 67167–84. [Google Scholar] [CrossRef]
- Sansa, Nuhu A. 2020. The Impact of the COVID-19 on the Financial Markets: Evidence from China and USA. Electronic Research Journal of Social Sciences and Humanities 2: 29–39. [Google Scholar]
- Selmi, Refk, Walid Mensi, Shawkat Hammoudeh, and Jamal Bouoiyour. 2018. Is Bitcoin a hedge, a safe haven or a diversifier for oil price movements? A comparison with gold. Energy Economics 74: 787–801. [Google Scholar] [CrossRef]
- Shehzad, Khurram, Umer Zaman, Xiaoxing Liu, Jarosław Górecki, and Carlo Pugnetti. 2021. Examining the asymmetric impact of COVID-19 pandemic and global financial crisis on Dow Jones and oil price shock. Sustainability 13: 4688. [Google Scholar] [CrossRef]
- Thadewald, Thorsten, and Herbert Büning. 2007. Jarque–Bera test and its competitors for testing normality—A power comparison. Journal of Applied Statistics 34: 87–105. [Google Scholar] [CrossRef]
- Topcu, Mert, and Omer Serkan Gulal. 2020. The impact of COVID-19 on emerging stock markets. Finance Research Letters 36: 101691. [Google Scholar] [CrossRef]
- Umar, Muhammad, Syed Kumail Abbas Rizvi, and Bushra Naqvi. 2021. Dance with the devil? The nexus of fourth industrial revolution, technological financial products and volatility spillovers in global financial system. Technological Forecasting and Social Change 163: 120450. [Google Scholar] [CrossRef]
- Zhang, Dayong, Min Hu, and Qiang Ji. 2020. Financial markets under the global pandemic of COVID-19. Finance Research Letters 36: 101528. [Google Scholar] [CrossRef]
- Zhang, Wenting, and Shigeyuki Hamori. 2021. Crude oil market and stock markets during the COVID-19 pandemic: Evidence from the US, Japan, and Germany. International Review of Financial Analysis 74: 101702. [Google Scholar] [CrossRef]
Particulars | Bitcoin | EUR | S&P 500 | Gold | Crude Oil | Sugar |
---|---|---|---|---|---|---|
Whole Period | ||||||
Mean | 0.003875 | 0.000103 | 0.000712 | 0.000561 | 0.000503 | 0.000512181 |
Standard Deviation | 0.046004 | 0.003986 | 0.015302 | 0.01076 | 0.046245 | 0.017879922 |
Kurtosis | 5.782102 | 4.008026 | 16.1689 | 5.736385 | 47.81848 | 1.605894798 |
Skewness | −0.379280 | −0.385170 | −1.03143 | −0.15575 | −2.74082 | 0.10688875 |
Range | 0.518336 | 0.042611 | 0.217335 | 0.10748 | 0.891307 | 0.155743422 |
Minimum | −0.315290 | −0.028140 | −0.12765 | −0.05121 | −0.57167 | −0.078285363 |
Maximum | 0.203046 | 0.014467 | 0.089683 | 0.056266 | 0.319634 | 0.077458059 |
Jarque-Bera Test | 904.27 | 442.44 | 7078.9 | 877.35 | 61768 | 69.216 |
Count | 650 | 650 | 650 | 650 | 650 | 650 |
Before COVID-19 | ||||||
Mean | 0.002273 | 0.000016 | 0.000231 | 0.000793 | −0.00125 | 0.00002700 |
Standard Deviation | 0.042580 | 0.003403 | 0.011625 | 0.008599 | 0.028384 | 0.01546058 |
Kurtosis | 3.685524 | 1.655074 | 9.873348 | 9.734605 | 31.4296 | 2.55831721 |
Skewness | 0.297774 | 0.294543 | −0.966510 | 0.145929 | −2.80747 | 0.48522149 |
Range | 0.362072 | 0.026953 | 0.127414 | 0.103186 | 0.41915 | 0.13021202 |
Minimum | −0.159030 | −0.01261 | −0.079010 | −0.04877 | −0.28221 | −0.05275396 |
Maximum | 0.203046 | 0.014345 | 0.048403 | 0.054414 | 0.136944 | 0.07745805 |
Jarque-Bera Test | 181.3 | 39.815 | 1325.2 | 1240.6 | 13378 | 97.32 |
Count | 325 | 325 | 325 | 325 | 325 | 325 |
During COVID-19 | ||||||
Mean | 0.005478 | 0.00019 | 0.001192 | 0.00033 | 0.002259 | 0.00099736 |
Standard Deviation | 0.049205 | 0.004498 | 0.01826 | 0.012564 | 0.058924 | 0.02002169 |
Kurtosis | 6.920719 | 4.253854 | 14.05538 | 3.665246 | 34.35576 | 0.95215866 |
Skewness | −0.84048 | −0.69099 | −1.01749 | −0.21382 | −2.41754 | −0.09999114 |
Range | 0.506817 | 0.042611 | 0.217335 | 0.10748 | 0.891307 | 0.14083676 |
Minimum | −0.31529 | −0.02814 | −0.12765 | −0.05121 | −0.57167 | −0.07828536 |
Maximum | 0.191527 | 0.014467 | 0.089683 | 0.056266 | 0.319634 | 0.06255140 |
Jarque-Bera Test | 663.4 | 261.13 | 2642.5 | 177.05 | 15794 | 11.978 |
Count | 325 | 325 | 325 | 325 | 325 | 325 |
Particulars | BTC | EUR | S&P 500 | Gold | Crude Oil | Sugar |
---|---|---|---|---|---|---|
ADF Value | −17.8 *** | −16.68 *** | −17.765 *** | −18.078 *** | −19.99 *** | −17.373 *** |
Probability Value | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 |
Asset Class | Model | (ARCH) | (GARCH) | (Gamma) | Log Likelihood | AIC | |||
---|---|---|---|---|---|---|---|---|---|
BTC | GARCH (1, 1) | 0.001575 | 0.000062 | 0.124018 * | 0.874982 *** | 0.999 | - | 619.8894 | −3.7778 |
GJR-GARCH (1, 1) | 0.001534 | 0.000054 | 0.143439 * | 0.887696 *** | 1.031135 | −0.061479 | 620.1043 | −3.7729 | |
EGARCH (1, 1) | 0.001244 | −0.174239 * | 0.036888 | 0.972107 *** | 1.008995 | 0.258452 *** | 624.1617 | −3.7979 | |
EUR/USD | GARCH (1, 1) | −0.000093 | 0.000001 | 0.076241 | 0.845516 *** | 0.921757 | - | 1398.076 | −8.5666 |
GJR-GARCH (1, 1) | 0.00003 | 0.000001 | 0.118079 ** | 0.894921 *** | 1.013 | −0.114815 | 1398.97 | −8.566 | |
EGARCH (1, 1) | 0.000001 | −1.058863 *** | 0.098288 ** | 0.906961 *** | 1.005249 | 0.116547 *** | 1399.502 | −8.5692 | |
S&P 500 | GARCH (1, 1) | 0.001054 | 0.000004 | 0.247109 *** | 0.72983 *** | 0.976939 | - | 1104.323 | −6.7589 |
GJR-GARCH (1, 1) | 0.000627 | 0.000004 *** | 0 | 0.76639 *** | 0.76639 | 0.37726 *** | 1115.677 | −6.8226 | |
EGARCH (1, 1) | 0.000445 | −0.575678 *** | −0.310019 *** | 0.940752 *** | 0.630733 | 0.095304 *** | 1120.224 | −6.8506 | |
Gold | GARCH (1, 1) | 0.000738 | 0 | 0.002481 | 0.99647 *** | 0.998951 | - | 1143.298 | −6.9988 |
GJR-GARCH (1, 1) | 0.000776 | 0 | 0.009621 | 0.999803 *** | 1.009424 | −0.021082 *** | 1143.438 | −6.9935 | |
EGARCH (1, 1) | 0.000563 | −3.918943 *** | −0.057158 | 0.592084 *** | 0.534926 | 0.412796 *** | 1146.25 | −7.0108 | |
Crude Oil | GARCH (1, 1) | −0.000072 | 0.000043 | 0.122254* | 0.827323 *** | 0.949577 | - | 790.1403 | −4.8255 |
GJR-GARCH (1, 1) | −0.000989 | 0.000015 *** | 0 | 0.919419 *** | 0.919419 | 0.130378 *** | 795.7955 | −4.8541 | |
EGARCH (1, 1) | −0.001059 | −0.178794 *** | −0.14327*** | 0.975897 *** | 0.832627 | 0.030163 ** | 797.5716 | −4.8651 | |
Sugar | GARCH (1, 1) | −0.00005 | 0 | 0 | 0.999 *** | 0.999 | - | 906.4832 | −5.5414 |
GJR-GARCH (1, 1) | −0.000144 | 0.000052 | 0 | 0.678175 *** | 0.678175 | 0.234051 * | 911.2845 | −5.5648 | |
EGARCH (1, 1) | −0.00019 | −1.69632 * | −0.12458 * | 0.79802 *** | 0.67344 | 0.22667 * | 911.3619 | −5.5653 |
Asset Class | Model | (ARCH) | (GARCH) | (Gamma) | Log Likelihood | AIC | |||
---|---|---|---|---|---|---|---|---|---|
BTC | GARCH (1, 1) | 0.005133 | 0.000046 | 0.086228 *** | 0.912772 *** | 0.999 | - | 575.4589 | −3.5044 |
GJR-GARCH (1, 1) | 0.005136 | 0.000036 | 0.096668 ** | 0.919377 *** | 1.016045 | −0.033637 | 575.6774 | −3.4996 | |
EGARCH (1, 1) | 0.00523 | −0.067 | 0.035923 | 0.98845 *** | 1.024373 | 0.191335 *** | 577.3427 | −3.5098 | |
EUR/USD | GARCH (1, 1) | 0.000215 | 0 | 0.009999 | 0.986357 *** | 0.996356 | - | 1309.744 | −8.023 |
GJR-GARCH (1, 1) | 0.000178 | 0 | 0.002145 | 0.987274 *** | 0.989419 | 0.012225 | 1310.42 | −8.021 | |
EGARCH (1, 1) | 0.000248 | −0.727561 *** | −0.023663 | 0.933762 *** | 0.910099 | 0.136151 *** | 1311.029 | −8.0248 | |
S&P 500 | GARCH (1, 1) | 0.001318 | 0.000007 | 0.21278 *** | 0.754481 *** | 0.967261 | - | 993.6005 | −6.0775 |
GJR-GARCH (1, 1) | 0.001023 | 0.000008 | 0.102173 * | 0.765049 *** | 0.867222 | 0.19395 ** | 995.3024 | −6.0819 | |
EGARCH (1, 1) | 0.000802 | −0.423212 ** | −0.104427 ** | 0.952725 *** | 0.848298 | 0.367853 *** | 993.2619 | −6.0693 | |
Gold | GARCH (1, 1) | 0.000468 | 0 | 0.021306 | 0.973694 *** | 0.995 | - | 998.6812 | −6.1088 |
GJR-GARCH (1, 1) | 0.000459 | 0 | 0.012131 | 0.977937 *** | 0.990068 | 0.011201 | 998.8752 | −6.1038 | |
EGARCH (1, 1) | 0.000395 | −0.300879 *** | −0.017036 | 0.966609 *** | 0.949573 | 0.138397 | 998.9916 | −6.1046 | |
Crude Oil | GARCH (1, 1) | 0.002534 | 0.000037 * | 0.21892 *** | 0.762427 *** | 0.981347 | - | 705.1272 | −4.3023 |
GJR-GARCH (1, 1) | 0.001641 | 0.000033 *** | 0.000142 | 0.815486 *** | 0.815628 | 0.296711 *** | 711.4222 | −4.3349 | |
EGARCH (1, 1) | 0.001699 | −0.220348 *** | −0.177449 *** | 0.970494 *** | 0.793045 | 0.250228 *** | 710.1545 | −4.3271 | |
Sugar | GARCH (1, 1) | 0.001186 | 0.000108 | 0.117035 | 0.603234 * | 0.720269 | - | 818.7832 | −5.0017 |
GJR-GARCH (1, 1) | 0.001087 | 0.000008 *** | 0.000002 | 0.969072 *** | 0.969074 | 0.018919 | 815.9888 | −4.9784 | |
EGARCH (1, 1) | 0.001229 | −1.745254 | 0.040641 | 0.778879 * | 0.81952 | 0.207247 * | 818.2776 | −4.9925 |
Asset Class | Model | (ARCH) | (GARCH) | (Gamma) | Log Likelihood | AIC | |||
---|---|---|---|---|---|---|---|---|---|
BTC | GARCH (1, 1) | 0.0033 | 0.000046 | 0.098295 *** | 0.900705 *** | 0.999 | - | 1193.305 | −3.6532 |
GJR-GARCH (1, 1) | 0.003312 | 0.00004 | 0.108002 *** | 0.907544 *** | 1.015546 | −0.031982 | 1193.576 | −3.651 | |
EGARCH (1, 1) | 0.002644 | −0.107781 * | 0.029598 | 0.98199 *** | 1.011588 | 0.237742 *** | 1198.772 | −3.667 | |
EUR/USD | GARCH (1, 1) | 0.000057 | 0.000001 | 0.070414 ** | 0.886033 ** | 0.956447 | - | 2706.761 | −8.31 |
GJR-GARCH (1, 1) | 0.000099 | 0 | 0.082489 | 0.919543 *** | 1.002032 | −0.056764 | 2707.987 | −8.3107 | |
EGARCH (1, 1) | 0.000101 | −0.430652 *** | 0.043688 | 0.961453 *** | 1.005141 | 0.134607 *** | 2708.079 | −8.311 | |
S&P 500 | GARCH (1, 1) | 0.001122 | 0.000004 | 0.224243 *** | 0.755825 *** | 0.980068 | - | 2100.47 | −6.4445 |
GJR-GARCH (1, 1) | 0.000776 | 0.000005 | 0.056481 | 0.774716 *** | 0.831197 | 0.284695 *** | 2109.279 | −6.4685 | |
EGARCH (1, 1) | 0.000617 | −0.365606 *** | −0.168038 *** | 0.960603 *** | 0.792565 | 0.266212 *** | 2108.935 | −6.4675 | |
Gold | GARCH (1, 1) | 0.000799 | 0.000003 | 0.076819 | 0.92117 *** | 0.997989 | - | 2139.454 | −6.5645 |
GJR-GARCH (1, 1) | 0.000793 | 0.000003 | 0.071891 | 0.921787 *** | 0.993678 | 0.00818 | 2139.469 | −6.5614 | |
EGARCH (1, 1) | 0.000705 | −0.16336 ** | 0.009072 | 0.98167 *** | 0.990742 | 0.172849 | 2139.152 | −6.5605 | |
Crude Oil | GARCH (1, 1) | 0.001229 | 0.000041 *** | 0.163904 *** | 0.796179 *** | 0.960083 | - | 1492.581 | −4.5741 |
GJR-GARCH (1, 1) | 0.000472 | 0.000034 *** | 0.002758 | 0.839875 *** | 0.842633 | 0.220441 *** | 1502.661 | −4.602 | |
EGARCH (1, 1) | 0.000539 | −0.234677 *** | −0.145662 *** | 0.968419 *** | 0.822757 | 0.200642 *** | 1500.59 | −4.5957 | |
Sugar | GARCH (1, 1) | 0.00072 | 0.000043 * | 0.121029 *** | 0.745903 *** | 0.866932 | - | 1721.499 | −5.2785 |
GJR-GARCH (1, 1) | 0.00059 | 0.000007 *** | 0 | 0.955467 *** | 0.955467 | 0.050876 *** | 1720.485 | −5.2723 | |
EGARCH (1, 1) | 0.000592 | −0.772434 | −0.0231 | 0.904781 *** | 0.881681 | 0.224624 *** | 1722.728 | −5.2792 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, M.; Kayani, U.N.; Khan, M.; Mughal, K.S.; Haseeb, M. COVID-19 Pandemic & Financial Market Volatility; Evidence from GARCH Models. J. Risk Financial Manag. 2023, 16, 50. https://doi.org/10.3390/jrfm16010050
Khan M, Kayani UN, Khan M, Mughal KS, Haseeb M. COVID-19 Pandemic & Financial Market Volatility; Evidence from GARCH Models. Journal of Risk and Financial Management. 2023; 16(1):50. https://doi.org/10.3390/jrfm16010050
Chicago/Turabian StyleKhan, Maaz, Umar Nawaz Kayani, Mrestyal Khan, Khurrum Shahzad Mughal, and Mohammad Haseeb. 2023. "COVID-19 Pandemic & Financial Market Volatility; Evidence from GARCH Models" Journal of Risk and Financial Management 16, no. 1: 50. https://doi.org/10.3390/jrfm16010050
APA StyleKhan, M., Kayani, U. N., Khan, M., Mughal, K. S., & Haseeb, M. (2023). COVID-19 Pandemic & Financial Market Volatility; Evidence from GARCH Models. Journal of Risk and Financial Management, 16(1), 50. https://doi.org/10.3390/jrfm16010050