The Gumbel Copula Method for Estimating Value at Risk: Evidence from Telecommunication Stocks in Indonesia during the COVID-19 Pandemic
Abstract
:1. Introduction
2. Literature Review
2.1. Archimedean Copulas
2.2. Gumbel Copula
2.3. Value at Risk
- Confidence Level
- 2.
- Time Period
2.4. Value at Risk with Monte Carlo Simulation
- Generation of random numbers;
- 2.
- Generation of random variables;
3. Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abad, Pilar, and Sonia Benito. 2013. A detailed comparison of value at risk estimates. Mathematics and Computers in Simulation 94: 258–76. [Google Scholar] [CrossRef]
- Amin, Farah Azaliney Mohd, Siti Fatimah Yahya, Siti Ainazatul Shazlin Ibrahim, and Mohammad Shafiq Mohammad Kamari. 2018. Portfolio risk measurement based on value at risk (VaR). AIP Conference Proceedings 1974: 020012. [Google Scholar] [CrossRef]
- Ayantobo, Olusola O., Yi Li, and Songbai Song. 2019. Multivariate Drought Frequency Analysis using Four-Variate Symmetric and Asymmetric Archimedean Copula Functions. Water Resources Management 33: 103–27. [Google Scholar] [CrossRef]
- Byun, Kiwoong, and Seongjoo Song. 2021. Value at Risk of portfolios using copulas. Communications for Statistical Applications and Methods 28: 59–79. [Google Scholar] [CrossRef]
- Duffie, Darrell, and Jun Pan. 1997. An overview of value at risk. Journal of Derivatives 4: 7–49. [Google Scholar] [CrossRef]
- Elliott, Rebecca. 2019. ‘Scarier than another storm’: Values at risk in the mapping and insuring of US floodplains. British Journal of Sociology 70: 1067–90. [Google Scholar] [CrossRef]
- Fan, Jianqing, and Juan Gu. 2003. Semiparametric estimation of Value at Risk. The Econometrics Journal 6: 261–90. [Google Scholar] [CrossRef]
- Geenens, Gery, and Richard Dunn. 2022. A nonparametric copula approach to conditional Value-at-Risk. Econometrics and Statistics 21: 19–37. [Google Scholar] [CrossRef]
- Glasserman, Paul, Philip Heidelberger, and Perwez Shahabuddin. 2000. Efficient Monte Carlo methods for value-at-risk. IBM Thomas J. Watson Research Division 2: 5–18. Available online: https://www0.gsb.columbia.edu/mygsb/faculty/research/pubfiles/1391/1391.pdf (accessed on 21 May 2023).
- Harsoyo, Tutus Suratina. 2017. Value At Risk Estimation in Lq45 Stock Portofolio Using Copula-GARCH. Surabaya: Sepuluh Nopember Institute of Technology. Available online: https://core.ac.uk/download/pdf/291461688.pdf (accessed on 31 December 2022).
- Hartono, Powell Gian, and Muhammad Yaasiin Raya. 2022. COVID-19 Pandemic, Dividend Policy, and Stock Market Reaction: Evidence from the Manufacturing Companies in Indonesia. Jurnal Keuangan Dan Perbankan 26: 758–78. [Google Scholar]
- Hartono, Powell Gian, and Robiyanto Robiyanto. 2023. Factors affecting the inconsistency of dividend policy using dynamic panel data model. SN Business & Economics 3: 53. [Google Scholar] [CrossRef]
- Hartono, Powell Gian, Richy Wijaya, Agus Budi Hartono, Shafrani Dizar, Ovy Noviati Nuraini Magetsari, Irinues Sukma Anggara, and Muhammad Ibnu Sujono. 2023. Factors affecting stock price of maritime companies in Indonesia. AIP Conference Proceedings 2675. [Google Scholar] [CrossRef]
- Hernandez, Jose Arreola, Mazin A. M. Al Janabi, Shawkat Hammoudeh, and Duc Khuong Nguyen. 2015. Time lag dependence, cross-correlation and risk analysis of US energy and non-energy stock portfolios. Journal of Asset Management 16: 467–83. [Google Scholar] [CrossRef]
- Hersugondo, Hersugondo, Imam Ghozali, Eka Handriani, Trimono Trimono, and Imang Dapit Pamungkas. 2022. Price Index Modeling and Risk Prediction of Sharia Stocks in Indonesia. Economies 10: 17. [Google Scholar] [CrossRef]
- Hurlin, Christophe, Sébastien Laurent, Rogier Quaedvlieg, and Stephan Smeekes. 2017. Risk Measure Inference. Journal of Business and Economic Statistic 35: 499–512. [Google Scholar] [CrossRef]
- Jondeau, Eric, and Michael Rockinger. 2006. The Copula-GARCH model of conditional dependencies: An international stock market application. Journal of International Money and Finance 25: 827–53. [Google Scholar] [CrossRef]
- Jorion, Philippe. 1996. Risk2: Measuring the risk in value at risk. Financial Analysts Journal 52: 47–56. [Google Scholar] [CrossRef]
- Liebscher, Eckhard. 2008. Construction of asymmetric multivariate copulas. Journal of Multivariate Analysis 99: 2234–50. [Google Scholar] [CrossRef]
- Liu, Wei, Xiao-Guang Yue, and Paul B. Tchounwou. 2020. Response to the COVID-19 Epidemic: The Chinese Experience and Implications for Other Countries. International Journal of Environmental Research and Public Health 17: 2304. [Google Scholar] [CrossRef]
- Mai, Jan-Frederik, and Matthias Scherer. 2014. What Are Copulas? Financial Engineering with Copulas Explained 1959: 1–18. [Google Scholar] [CrossRef]
- Modiri, Sadegh, Santiago Belda, Robert Heinkelmann, Mostafa Hoseini, José M. Ferrándiz, and Harald Schuh. 2018. Polar motion prediction using the combination of SSA and Copula-based analysis. Earth, Planets and Space 70: 115. [Google Scholar] [CrossRef]
- Najiha, Alimatun, Anisa Anisa, and Andi Kresna Jaya. 2022. Conditional Risk Value on Financial Return Using the Gumbel Copula Method. Estimasi: Journal of Statistics and Its Application 3: 49–58. [Google Scholar]
- Osmetti, Silvia Angela. 2012. Maximum Likelihood Estimate Mashall-Olkin Copula Parameter: Complete and Censored Sample. Statistica Applicata—Italian Journal of Applied Statistics 22: 211–40. Available online: http://sa-ijas.stat.unipd.it/sites/sa-ijas.stat.unipd.it/files/22(2)_7_Osmetti.pdf (accessed on 21 May 2023).
- Robiyanto, Robiyanto, and Fanny Yunitaria. 2022. Dividend announcement effect analysis before and during the COVID-19 pandemic in the Indonesia Stock Exchange. SN Business & Economics 2: 1–20. [Google Scholar] [CrossRef]
- So, Mike K. P., and Philip L. H. Yu. 2006. Empirical analysis of GARCH models in value at risk estimation. Journal of International Financial Markets, Institutions and Money 16: 180–97. [Google Scholar] [CrossRef]
- Sreekumar, Sreenu, Kailash Chand Sharma, and Rohit Bhakar. 2018. Gumbel copula based aggregated net load forecasting for modern power systems. IET Generation, Transmission and Distribution 12: 4348–58. [Google Scholar] [CrossRef]
- Susam, Selim O., and Burcu Hudaverdi Ucer. 2018. Testing independence for Archimedean copula based on Bernstein estimate of Kendall distribution function. Journal of Statistical Computation and Simulation 88: 2589–99. [Google Scholar] [CrossRef]
- Tambunan, Diana. 2020. Stock Investment during the COVID-19 Pandemic. Widya Cipta: Jurnal Sekretari Dan Manajemen 4: 117–23. [Google Scholar] [CrossRef]
- Tinungki, Georgina M. 2019. The analysis of partial autocorrelation function in predicting maximum wind speed. IOP Conference Series: Earth and Environmental Science 235: 012097. [Google Scholar] [CrossRef]
- Tinungki, Georgina M., Powell G. Hartono, Robiyanto Robiyanto, Agus B. Hartono, Jakaria Jakaria, and Lydia R. Simanjuntak. 2022a. The COVID-19 Pandemic Impact on Corporate Dividend Policy of Sustainable and Responsible Investment in Indonesia: Static and Dynamic Panel Data Model Comparison. Sustainability 14: 6152. [Google Scholar] [CrossRef]
- Tinungki, Georgina M., Robiyanto Robiyanto, and Powell G. Hartono. 2022b. The Effect of COVID-19 Pandemic on Corporate Dividend Policy in Indonesia: The Static and Dynamic Panel Data Approaches. Economies 10: 11. [Google Scholar] [CrossRef]
- Zhang, Xiao, and Rongfang Yan. 2022. Stochastic comparisons of extreme order statistic from dependent and heterogeneous lower-truncated Weibull variables under Archimedean copula. AIMS Mathematics 7: 6852–75. [Google Scholar] [CrossRef]
Stock | Hypothesis | p-Value | Decision | |
---|---|---|---|---|
PT. Indosat Ooredoo Hutchison Tbk | : returns are normally distributed | 0.097276 | 0.01544 | Reject |
: returns are not normally distributed | ||||
PT. Smartfren Telecom Tbk | : returns are normally distributed | 0.11284 | 0.002875 | Reject |
: returns are not normally distributed |
Stock | Hypothesis | Ljung Box | Decision | ||
---|---|---|---|---|---|
Lag | p-Value | ||||
PT. Indosat Ooredoo Hutchison Tbk | : returns are not autocorrelated | 1 | 0.1232 | 0.05 | Accept |
5 | 0.1022 | ||||
: returns are autocorrelated | 10 | 0.1195 | |||
15 | 0.1535 | ||||
20 | 0.2142 | ||||
PT. Smartfren Telecom Tbk | : returns are not autocorrelated | 1 | 0.4939 | 0.05 | Accept |
5 | 0.7534 | ||||
: returns are autocorrelated | 10 | 0.9276 | |||
15 | 0.9319 | ||||
20 | 0.9833 |
Stock | Hypothesis | p-Value | Decision | |
---|---|---|---|---|
PT. Indosat Ooredoo Hutchison Tbk | : there is no ARCH/GARCH effect on the return data | 0.9008 | 0.05 | Accept |
: there is an ARCH/GARCH effect on the return data | ||||
PT. Smartfren Telecom Tbk | : there is no ARCH/GARCH effect on the return data | 0.9008 | 0.05 | Accept |
: there is an ARCH/GARCH effect on the return data |
VaR | Confidence Level | |
---|---|---|
−0.076 1 | 0.05 | 90% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tinungki, G.M.; Siswanto, S.; Najiha, A. The Gumbel Copula Method for Estimating Value at Risk: Evidence from Telecommunication Stocks in Indonesia during the COVID-19 Pandemic. J. Risk Financial Manag. 2023, 16, 424. https://doi.org/10.3390/jrfm16100424
Tinungki GM, Siswanto S, Najiha A. The Gumbel Copula Method for Estimating Value at Risk: Evidence from Telecommunication Stocks in Indonesia during the COVID-19 Pandemic. Journal of Risk and Financial Management. 2023; 16(10):424. https://doi.org/10.3390/jrfm16100424
Chicago/Turabian StyleTinungki, Georgina Maria, Siswanto Siswanto, and Alimatun Najiha. 2023. "The Gumbel Copula Method for Estimating Value at Risk: Evidence from Telecommunication Stocks in Indonesia during the COVID-19 Pandemic" Journal of Risk and Financial Management 16, no. 10: 424. https://doi.org/10.3390/jrfm16100424
APA StyleTinungki, G. M., Siswanto, S., & Najiha, A. (2023). The Gumbel Copula Method for Estimating Value at Risk: Evidence from Telecommunication Stocks in Indonesia during the COVID-19 Pandemic. Journal of Risk and Financial Management, 16(10), 424. https://doi.org/10.3390/jrfm16100424