On the Effects of Physical Climate Risks on the Chinese Energy Sector
Abstract
:1. Introduction
2. Literature Review
3. Methodology and Data
3.1. Data
3.1.1. Energy Sector Stock Data
3.1.2. Energy Commodity Data
3.1.3. Climate Risk Index (CRI) for China
3.2. TVP-VAR Model
4. Empirical Results and Findings
4.1. Parameter Estimate
4.2. Time-Varying Impulse Response Estimated Results
Time-Varying Impulse Response of Energy Stock Market to Climate Risk
4.3. The Time-Varying Impulse Response of the Energy Commodity Market to Climate Risks
4.4. Time-Varying Impulse Response of the Energy Commodity Market to Subtypes of Climate Risk
4.4.1. Acute Risks
4.4.2. Chronic Risks
5. Discussion
6. Conclusions
7. Limitations and Further Study
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. TVP-VAR Model Estimation Results
Parameter | Mean | Stdev | 95%L | 95%U | Geweke | Inef. |
---|---|---|---|---|---|---|
sb1 | 0.0227 | 0.0025 | 0.0184 | 0.0283 | 0.437 | 5.83 |
sb2 | 0.0222 | 0.0024 | 0.0181 | 0.0276 | 0.687 | 5.56 |
sa1 | 0.0766 | 0.0271 | 0.0409 | 0.1451 | 0.032 | 51.57 |
sa2 | 0.0548 | 0.0134 | 0.0352 | 0.0864 | 0.402 | 44.44 |
sh1 | 0.2560 | 0.0866 | 0.1086 | 0.4536 | 0.243 | 47.18 |
sh2 | 0.7000 | 0.1492 | 0.4722 | 1.0440 | 0.021 | 39.77 |
Parameter | Mean | Stdev | 95%L | 95%U | Geweke | Inef. |
---|---|---|---|---|---|---|
sb1 | 0.0231 | 0.0027 | 0.0185 | 0.0293 | 0.144 | 10.80 |
sb2 | 0.0230 | 0.0027 | 0.0185 | 0.0291 | 0.481 | 7.61 |
sa1 | 0.0459 | 0.0097 | 0.0316 | 0.0694 | 0.631 | 25.78 |
sa2 | 0.0315 | 0.0046 | 0.0241 | 0.0421 | 0.176 | 49.55 |
sh1 | 0.7087 | 0.1445 | 0.4743 | 1.0535 | 0.071 | 44.57 |
sh2 | 0.3157 | 0.1084 | 0.1499 | 0.5793 | 0.116 | 57.92 |
Parameter | Mean | Stdev | 95%L | 95%U | Geweke | Inef. |
---|---|---|---|---|---|---|
sb1 | 0.0229 | 0.0026 | 0.0185 | 0.0285 | 0.074 | 6.45 |
sb2 | 0.0232 | 0.0027 | 0.0186 | 0.0293 | 0.695 | 10.11 |
sa1 | 0.0461 | 0.0098 | 0.0312 | 0.0683 | 0.589 | 17.94 |
sa2 | 0.0296 | 0.0034 | 0.0235 | 0.0369 | 0.013 | 33.13 |
sh1 | 0.6961 | 0.1333 | 0.4788 | 0.9994 | 0.598 | 27.92 |
sh2 | 0.2927 | 0.1010 | 0.1215 | 0.5139 | 0.069 | 61.16 |
Parameter | Mean | Stdev | 95%L | 95%U | Geweke | Inef. |
---|---|---|---|---|---|---|
sb1 | 0.0227 | 0.0025 | 0.0183 | 0.0282 | 0.199 | 8.58 |
sb2 | 0.0232 | 0.0028 | 0.0186 | 0.0295 | 0.446 | 8.06 |
sa1 | 0.0476 | 0.0106 | 0.0319 | 0.0733 | 0.810 | 15.79 |
sa2 | 0.0313 | 0.0040 | 0.0245 | 0.0402 | 0.009 | 11.30 |
sh1 | 0.6947 | 0.1334 | 0.4769 | 0.9993 | 0.877 | 21.52 |
Parameter | Mean | Stdev | 95%L | 95%U | Geweke | Inef. |
---|---|---|---|---|---|---|
sb1 | 0.0225 | 0.0026 | 0.0182 | 0.0282 | 0.829 | 5.78 |
sb2 | 0.0226 | 0.0025 | 0.0183 | 0.0280 | 0.030 | 5.21 |
sa1 | 0.0909 | 0.0419 | 0.0428 | 0.2046 | 0.675 | 63.91 |
sa2 | 0.0595 | 0.1100 | 0.0321 | 0.1143 | 0.094 | 67.90 |
sh1 | 0.2441 | 0.0852 | 0.0992 | 0.4442 | 0.519 | 58.33 |
sh2 | 0.6788 | 0.1307 | 0.4466 | 0.9511 | 0.527 | 46.00 |
Appendix B. Data Definitions
Variables | Definitions | Sources |
CSINE | China Securities New Energy Sector Index | Tonghuashun Database |
SSEEN | Shanghai Composite Energy Sector Index | Tonghuashun Database |
WTI | West Texas Intermediate Crude Oil Price | Datastream |
CI | Coal Price Index | Datastream |
CRI | Climate Risk Index | Beijing Climate Centre |
WLR | Waterlogging by Rain Index | Beijing Climate Centre |
DI | Drought Index | Beijing Climate Centre |
TYI | Typhoons Index | Beijing Climate Centre |
CFI | Cryogenic Freezing Index | Beijing Climate Centre |
HTI | High Temperatures Index | Beijing Climate Centre |
1 | The Beijing Climate Centre (BCC) was established in 2003 under the China Meteorological Administration based on its National Climate Centre to expand its capabilities as a Regional Climate Centre (RCC) designated by the World Meteorological Organization (WMO). |
2 | We individually constructed TVP-VAR models for the sets of variables (, , ), (, , ), (, , ), (, , ), (, , ), (, , ), and (, , ). |
3 | Prior to model estimation, we assessed the stationarity of the variables. The Augmented Dickey–Fuller test indicates stationarity at first differences, thereby meeting the stationarity criterion for the TVP-VAR model. The optimal lag length, determined by the Sequential Modified LR Test (LR) or Akaike information criterion (AIC), was set at 1. |
4 | The parameter estimation results for TVP-SV-VAR between the five subtypes, WTI, and coal prices refer to Appendix A. |
References
- Chang, Shao-Chi, Sheng-Syan Chen, Robin K. Chou, and Yueh-Hsiang Lin. 2008. Weather and intraday patterns in stock returns and trading activity. Journal of Banking & Finance 32: 1754–66. [Google Scholar]
- Ding, Qian, Jianbai Huang, Jinyu Chen, and Xianfeng Luo. 2024. Climate warming, renewable energy consumption and rare earth market: Evidence from the United States. Energy 290: 130276. [Google Scholar] [CrossRef]
- Engle, Robert F, Stefano Giglio, Bryan Kelly, Heebum Lee, and Johannes Stroebel. 2020. Hedging Climate Change News A. Karolyi, ed. The Review of Financial Studies 33: 1184–216. [Google Scholar] [CrossRef]
- Faccini, Renato, Rastin Matin, and George Skiadopoulos. 2021. Are climate change risks priced in the U.S. Stock market? Danmarks Nationalbank Working Papers 169: 1–52. [Google Scholar]
- Faccini, Renato, Rastin Matin, and George Skiadopoulos. 2023. Dissecting climate risks: Are they reflected in stock prices? Journal of Banking & Finance 155: 106–948. [Google Scholar]
- Gavriilidis, Konstantinos. 2021. Measuring Climate Policy Uncertainty. Available online: https://ssrn.com/abstract=3847388 (accessed on 13 September 2024).
- Gu, Qinen, Shaofang Li, Sihua Tian, and Yuyouting Wang. 2023. Climate, geopolitical, and energy market risk interconnectedness: Evidence from a new climate risk index. Finance Research Letters 58: 104–392. [Google Scholar] [CrossRef]
- Guo, Kun, Yuxin Kang, Dandan Ma, and Lei Lei. 2024. How do climate risks impact the contagion in China’s energy market? Energy Economics 133: 107450. [Google Scholar] [CrossRef]
- Huo, Dongxia, Salim Bagadeem, Tarek Abbas Elsherazy, Siddhesh Prabhu Nasnodkar, and Akash Kalra. 2023. Renewable energy consumption and the rising effect of climate policy uncertainty: Fresh policy analysis from China. Economic Analysis and Policy 80: 1459–74. [Google Scholar] [CrossRef]
- IEA. 2020. Power Systems in Transition—Analysis. Available online: https://www.iea.org/reports/power-systems-in-transition (accessed on 1 March 2024).
- IPCC. 2023. Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC, Geneva, Switzerland. First. Intergovernmental Panel on Climate Change (IPCC). Available online: https://www.ipcc.ch/report/ar6/syr/ (accessed on 28 January 2024).
- Kettner, Claudia, and Daniela Kletzan-Slamanig. 2020. Is there climate policy integration in European Union Energy Efficiency and renewable energy policies? Yes, no, maybe. Environmental Policy and Governance 30: 141–50. [Google Scholar] [CrossRef]
- Lee, Kiryoung, and Juik Cho. 2023. Measuring Chinese climate uncertainty. International Review of Economics & Finance 88: 891–901. [Google Scholar]
- Ma, Dandan, Yunhan Zhang, Qiang Ji, Wan-Li Zhao, and Pengxiang Zhai. 2024. Heterogeneous impacts of climate change news on China’s financial markets. International Review of Financial Analysis 91: 103007. [Google Scholar] [CrossRef]
- Nakajima, Jouchi, Munehisa Kasuya, and Toshiaki Watanabe. 2011. Bayesian analysis of time-varying parameter vector autoregressive model for the Japanese economy and monetary policy. Journal of the Japanese and International Economies 25: 225–45. [Google Scholar] [CrossRef]
- Nick, Sebastian, and Stefan Thoenes. 2014. What drives natural gas prices?—A structural VAR approach. Energy Economics 45: 517–27. [Google Scholar] [CrossRef]
- Pástor, Ľuboš, Robert F. Stambaugh, and Lucian A. Taylor. 2021. Sustainable investing in equilibrium. Journal of Financial Economics 142: 550–71. [Google Scholar]
- Perera, A. T. D., Vahid M. Nik, Deliang Chen, Jean-Louis Scartezzini, and Tianzhen Hong. 2020. Quantifying the impacts of climate change and extreme climate events on Energy Systems. Nature Energy 5: 150–59. [Google Scholar] [CrossRef]
- Primiceri, Giorgio E. 2005. Time varying structural vector autoregressions and monetary policy. The Review of Economic Studies 72: 821–52. [Google Scholar] [CrossRef]
- Reboredo, Juan C., and Andrea Ugolini. 2022. Climate transition risk, profitability and stock prices. International Review of Financial Analysis 83: 102–271. [Google Scholar] [CrossRef]
- Ren, Xiaohang, Jingyao Li, Feng He, and Brian Lucey. 2023. Impact of climate policy uncertainty on traditional energy and green markets: Evidence from time-varying Granger tests. Renewable and Sustainable Energy Reviews 173: 113058. [Google Scholar] [CrossRef]
- Salisu, Afees A., Umar B. Ndako, and Xuan Vinh Vo. 2023. Transition risk, physical risk, and the realized volatility of oil and natural gas prices. Resources Policy 81: 103–383. [Google Scholar]
- Saunders, Edward M. 1993. Stock prices and Wall Street weather. American Economic Review 83: 1337–45. [Google Scholar]
- Sun, Yongping, Ya Zou, Jingning Jiang, and Ying Yang. 2023. Climate change risks and financial performance of the electric power sector: Evidence from listed companies in China. Climate Risk Management 39: 100–474. [Google Scholar] [CrossRef]
- TCFD. 2017. Recommendations of the Task Force on Climate-Related Financial Disclosures. Available online: https://www.fsb-tcfd.org (accessed on 1 November 2023).
- Tedeschi, Marco, Matteo Foglia, Elie Bouri, and Peng-Fei Dai. 2024. How does climate policy uncertainty affect financial markets? Evidence from Europe. Economics Letters 234: 111–443. [Google Scholar] [CrossRef]
- Tumala, Mohammed M., Afees Salisu, and Yaaba B. Nmadu. 2023. Climate change and fossil fuel prices: A GARCH-MIDAS analysis. Energy Economics 124: 106792. [Google Scholar] [CrossRef]
- Vafadarnikjoo, Amin, Madjid Tavana, Konstantinos Chalvatzis, and Tiago Botelho. 2022. A socio-economic and environmental vulnerability assessment model with causal relationships in electric power supply chains. Socio-Economic Planning Sciences 80: 101–56. [Google Scholar] [CrossRef]
- Wang, Yujie, Lianchun Song, Dianxiu Ye, Zhe Wang, Rong Gao, Xiucang Li, Yizhou Yin, Zunya Wang, and Yaoming Liao. 2018. Construction and Application of a Climate Risk Index for China. Journal of Meteorological Research 32: 937–49. [Google Scholar] [CrossRef]
- Yang, Qin, Qiang Du, Asif Razzaq, and Yunfeng Shang. 2022. How volatility in green financing, clean energy, and green economic practices derive sustainable performance through ESG indicators? A sectoral study of G7 countries. Resources Policy 75: 102–526. [Google Scholar] [CrossRef]
- Yao, Xiaoyang, Wenjing He, Jianfeng Li, and Wei Le. 2023. Climate policy uncertainty through production networks: Evidence from the stock market. Economics Letters 233: 111–405. [Google Scholar] [CrossRef]
- Zhou, Deheng, Abu Bakkar Siddik, Lili Guo, and Houjian Li. 2023. Dynamic relationship among climate policy uncertainty, oil price and renewable energy consumption—Findings from TVP-SV-VAR approach. Renewable Energy 204: 722–32. [Google Scholar] [CrossRef]
- Zhu, Bo, Xin Hu, Yuanyue Deng, Bokai Zhang, and Xiru Li. 2023. The differential effects of climate risks on non-fossil and fossil fuel stock markets: Evidence from China. Finance Research Letters 55: 103962. [Google Scholar] [CrossRef]
Parameter | Mean | Stdev | 95%L | 95%U | Geweke | Inef. |
---|---|---|---|---|---|---|
sb1 | 0.0226 | 0.0026 | 0.0182 | 0.0282 | 0.229 | 7.03 |
sb2 | 0.0230 | 0.0028 | 0.0183 | 0.0291 | 0.833 | 11.00 |
sa1 | 0.0678 | 0.0175 | 0.0425 | 0.1109 | 0.922 | 43.86 |
sa2 | 0.0231 | 0.0022 | 0.0191 | 0.0279 | 0.685 | 21.14 |
sh1 | 0.4044 | 0.0894 | 0.2529 | 0.6048 | 0.036 | 42.27 |
sh2 | 0.4399 | 0.1126 | 0.2606 | 0.7053 | 0.410 | 51.26 |
Parameter | Mean | Stdev | 95%L | 95%U | Geweke | Inef. |
---|---|---|---|---|---|---|
sb1 | 0.0229 | 0.0026 | 0.0184 | 0.0286 | 0.607 | 8.07 |
sb2 | 0.0230 | 0.0027 | 0.0185 | 0.0290 | 0.140 | 6.95 |
sa1 | 0.0472 | 0.0098 | 0.0315 | 0.0697 | 0.529 | 19.96 |
sa2 | 0.0346 | 0.0052 | 0.0262 | 0.0462 | 0.143 | 15.70 |
sh1 | 0.7263 | 0.1473 | 0.4884 | 1.0562 | 0.146 | 32.76 |
sh2 | 0.3137 | 0.1084 | 0.1486 | 0.5784 | 0.923 | 59.89 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ewald, C.O.; Huang, C.; Ren, Y. On the Effects of Physical Climate Risks on the Chinese Energy Sector. J. Risk Financial Manag. 2024, 17, 458. https://doi.org/10.3390/jrfm17100458
Ewald CO, Huang C, Ren Y. On the Effects of Physical Climate Risks on the Chinese Energy Sector. Journal of Risk and Financial Management. 2024; 17(10):458. https://doi.org/10.3390/jrfm17100458
Chicago/Turabian StyleEwald, Christian Oliver, Chuyao Huang, and Yuyu Ren. 2024. "On the Effects of Physical Climate Risks on the Chinese Energy Sector" Journal of Risk and Financial Management 17, no. 10: 458. https://doi.org/10.3390/jrfm17100458
APA StyleEwald, C. O., Huang, C., & Ren, Y. (2024). On the Effects of Physical Climate Risks on the Chinese Energy Sector. Journal of Risk and Financial Management, 17(10), 458. https://doi.org/10.3390/jrfm17100458