Fitting the Seven-Parameter Generalized Tempered Stable Distribution to Financial Data
Abstract
:1. Introduction
2. Generalized Tempered Stable (GTS) Distribution
2.1. GTS Distribution and Characteristic Exponent
2.2. GTS Distribution and Lévy Process
3. Multivariate Maximum-Likelihood Method
3.1. Maximum-Likelihood Method: Numerical Approach
3.2. Asymptotic Distribution of the Maximum-Likelihood Estimator (MLE)
3.3. Asymptotic Test and Confidence Interval
3.4. Applications of the Log-Likelihood Estimator to the Normal Distribution
4. Fitting Tempered Stable Distribution to Cryptocurrencies: Bitcoin (BTC) and Ethereum
4.1. Data Summaries
4.2. Multidimensional Estimation Results for Cryptocurrencies
4.3. Evaluation of the Method of Moments
5. Fitting Tempered Stable Distribution to Traditional Indices: S&P 500 and SPY EFT
5.1. Data Summaries
5.2. Multidimensional Estimation Results for Traditional Indices
5.3. Evaluation of the Methods of Moments
6. Goodness-of-Fit Analysis
6.1. Kolmogorov–Smirnov (KS) Analysis
6.2. Anderson–Darling Test Analysis
6.3. Pearson’s Chi-Squared Test Analysis
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix A.1. Iterative Maximum-Likelihood Estimation (MLE) Procedure
1 | −0.7369246 | 0.4613783 | 0.2671787 | 0.8100173 | 0.5173470 | 0.2156289 | 0.1919378 | −10609.058 | 282.6765666 | 3.6240151 |
2 | −0.7977019 | 0.4654390 | 0.2169392 | 0.7846817 | 0.4905332 | 0.2164395 | 0.2049523 | −10607.253 | 26.7522215 | −1.6194299 |
3 | −0.4455841 | 0.3884721 | 0.3213867 | 0.7758150 | 0.5193395 | 0.2340187 | 0.1883953 | −10607.001 | 50.1355291 | 3.0916011 |
4 | −0.7634445 | 0.4521878 | 0.2217702 | 0.7935129 | 0.4959371 | 0.2218253 | 0.2055181 | −10607.210 | 4.8235882 | −2.6390063 |
5 | −0.4906746 | 0.4146531 | 0.3404176 | 0.7722729 | 0.5222110 | 0.2269202 | 0.1846457 | −10607.059 | 67.6646338 | 9.0971871 |
6 | −0.5515834 | 0.4434827 | 0.3335905 | 0.7724484 | 0.5190619 | 0.2197566 | 0.1853686 | −10607.022 | 17.4476962 | −0.4021102 |
7 | −0.4914586 | 0.4327714 | 0.3503012 | 0.7686883 | 0.5235361 | 0.2216450 | 0.1826269 | −10606.991 | 16.2838831 | −0.1781480 |
8 | −0.2900908 | 0.3885350 | 0.3956186 | 0.7563357 | 0.5370260 | 0.2300772 | 0.1754994 | −10606.864 | 12.0116477 | −2.4090216 |
9 | −0.2752698 | 0.3832660 | 0.3969704 | 0.7555456 | 0.5377367 | 0.2312224 | 0.1753571 | −10606.847 | 11.4457840 | −2.5487401 |
10 | −0.2609339 | 0.3780400 | 0.3982456 | 0.7547812 | 0.5384209 | 0.2323632 | 0.1752258 | −10606.832 | 10.8628213 | −2.6874876 |
11 | −0.2085409 | 0.3576927 | 0.4025762 | 0.7519966 | 0.5408864 | 0.2368544 | 0.1748113 | −10606.782 | 8.3600783 | −3.4356438 |
12 | −0.1970109 | 0.3528575 | 0.4034002 | 0.7513923 | 0.5414138 | 0.2379362 | 0.1747455 | −10606.772 | 7.6818408 | −3.6954428 |
13 | −0.1761733 | 0.3436416 | 0.4046818 | 0.7503191 | 0.5423414 | 0.2400174 | 0.1746675 | −10606.756 | 6.2516380 | −4.2766527 |
14 | −0.1668421 | 0.3392794 | 0.4051522 | 0.7498492 | 0.5427438 | 0.2410120 | 0.1746529 | −10606.750 | 5.5002876 | −4.5807361 |
15 | −0.1581860 | 0.3350854 | 0.4055256 | 0.7494209 | 0.5431090 | 0.2419740 | 0.1746517 | −10606.745 | 4.7262048 | −4.8824015 |
16 | −0.1501600 | 0.3310612 | 0.4058166 | 0.7490311 | 0.5434404 | 0.2429024 | 0.1746615 | −10606.741 | 3.9306487 | −5.1742197 |
17 | −0.1209376 | 0.3159301 | 0.4066945 | 0.7476393 | 0.5446224 | 0.2464122 | 0.1747326 | −10606.734 | 2.8592342 | −6.2251311 |
18 | −0.1216487 | 0.3155707 | 0.4064438 | 0.7477179 | 0.5445608 | 0.2465247 | 0.1747753 | −10606.734 | 0.0014787 | −6.2014232 |
19 | −0.1215714 | 0.3155483 | 0.4064635 | 0.7477142 | 0.5445652 | 0.2465296 | 0.1747719 | −10606.734 | 1.82 × | −6.2026532 |
20 | −0.1215714 | 0.3155483 | 0.4064635 | 0.7477142 | 0.5445652 | 0.2465296 | 0.1747719 | −10606.734 | 9.80 × | −6.2026530 |
1 | −0.1215714 | 0.3155483 | 0.4064635 | 0.7477142 | 0.5445652 | 0.2465296 | 0.1747719 | −9745.171 | 2673.428257 | 206.013602 |
2 | −0.1724835 | 0.3319505 | 0.4091022 | 0.7364129 | 0.5479934 | 0.2227870 | 0.1684568 | −9700.715 | 2388.609394 | 180.884105 |
3 | −0.2041418 | 0.3384742 | 0.4118929 | 0.7338794 | 0.5531083 | 0.2083203 | 0.1632896 | −9669.986 | 2139.267660 | 157.699659 |
4 | −0.4006157 | 0.3530035 | 0.4393474 | 0.7513784 | 0.6172425 | 0.1135743 | 0.1221930 | −9586.115 | 1471.570475 | 32.410140 |
5 | −0.6485551 | 0.4493817 | 0.4404508 | 0.9247887 | 0.7210031 | 0.1412949 | 0.1482307 | −9556.026 | 380.605737 | 56.584055 |
6 | −0.6290525 | 0.4371402 | 0.4359516 | 0.9780784 | 0.7824777 | 0.1582340 | 0.1608694 | −9553.005 | 24.905322 | −0.719221 |
7 | −0.5545412 | 0.3994778 | 0.3918188 | 0.9627486 | 0.7936571 | 0.1652438 | 0.1724287 | −9552.866 | 5.834338 | −0.847574 |
8 | −0.4744837 | 0.3913982 | 0.4093404 | 0.9582366 | 0.8022858 | 0.1665103 | 0.1699928 | −9552.862 | 2.963350 | −0.933466 |
9 | −0.4825586 | 0.3902160 | 0.4051365 | 0.9580755 | 0.8007651 | 0.1667400 | 0.1706850 | −9552.862 | 0.214871 | −0.931142 |
10 | −0.4853678 | 0.3904369 | 0.4044899 | 0.9582486 | 0.8004799 | 0.1667119 | 0.1707853 | −9552.862 | 0.004754 | −0.931872 |
11 | −0.4853800 | 0.3904362 | 0.4044846 | 0.9582487 | 0.8004779 | 0.1667121 | 0.1707862 | −9552.862 | 2.96 × | −0.931836 |
12 | −0.4853800 | 0.3904362 | 0.4044846 | 0.9582487 | 0.8004779 | 0.1667121 | 0.1707862 | −9552.862 | 1.18 × | −0.931836 |
13 | −0.4853800 | 0.3904362 | 0.4044846 | 0.9582487 | 0.8004779 | 0.1667121 | 0.1707862 | −9552.862 | 1.27 × | −0.931836 |
1 | −0.2606426 | 0.34087979 | 0.02221141 | 0.78775729 | 0.59711061 | 1.28855513 | 1.01435308 | −4921.0858 | 147.214541 | −0.476265 |
2 | −0.2747887 | 0.37848567 | 0.02517846 | 0.72538248 | 0.594628 | 1.22107935 | 1.01081205 | −4920.9765 | 107.910271 | −12.169518 |
3 | −0.2852743 | 0.34562742 | 0.01628972 | 0.78353361 | 0.58024658 | 1.27423544 | 0.9888729 | −4920.6236 | 23.70873 | 11.9588258 |
4 | −0.2971254 | 0.37985815 | 0.05392593 | 0.74068472 | 0.55972179 | 1.22737986 | 0.96278568 | −4920.5493 | 4.21443356 | 0.29705471 |
5 | −0.3415082 | 0.42600675 | 0.0432239 | 0.69783497 | 0.56106365 | 1.18286494 | 0.966753 | −4920.5722 | 37.0642417 | −1.7903876 |
6 | −0.2995817 | 0.40315129 | 0.12236507 | 0.7168274 | 0.522172 | 1.20383351 | 0.9117451 | −4920.574 | 3.07232514 | −0.7101089 |
7 | −0.2944623 | 0.3977257 | 0.12218751 | 0.72174351 | 0.52260032 | 1.20899714 | 0.9121201 | −4920.5701 | 2.63567879 | −1.0187469 |
8 | −0.2767429 | 0.37561063 | 0.11561097 | 0.7427615 | 0.52696799 | 1.23067384 | 0.91742165 | −4920.5511 | 1.83311761 | −2.1103436 |
9 | −0.274204 | 0.37177939 | 0.11355883 | 0.74659763 | 0.52814335 | 1.2345524 | 0.91893546 | −4920.5477 | 1.75839181 | −2.177405 |
10 | −0.2559812 | 0.34147926 | 0.09643312 | 0.77815581 | 0.53784221 | 1.26594249 | 0.93144448 | −4920.5308 | 1.33811298 | −2.6954121 |
11 | −0.2496977 | 0.32954013 | 0.08928069 | 0.79125494 | 0.54186044 | 1.27868642 | 0.93662846 | −4920.5291 | 0.79520373 | −2.8166517 |
12 | −0.2494237 | 0.32866495 | 0.08869445 | 0.79238161 | 0.54221561 | 1.27970094 | 0.93708759 | −4920.5291 | 0.00166731 | −2.6765739 |
13 | −0.2494072 | 0.32862462 | 0.08864569 | 0.79242579 | 0.54224632 | 1.27974278 | 0.93712865 | −4920.5291 | 0.00013552 | −2.6768326 |
14 | −0.2494082 | 0.32862428 | 0.08864047 | 0.79242619 | 0.54224944 | 1.27974312 | 0.93713293 | −4920.5291 | 1.47 × | −2.6766945 |
15 | −0.2494083 | 0.32862424 | 0.08863992 | 0.79242624 | 0.54224977 | 1.27974315 | 0.93713338 | −4920.5291 | 1.57 × | −2.67668 |
16 | −0.2494083 | 0.32862424 | 0.08863985 | 0.79242624 | 0.54224981 | 1.27974316 | 0.93713344 | −4920.5291 | 1.89 × | −2.6766783 |
17 | −0.2494083 | 0.32862424 | 0.08863985 | 0.79242624 | 0.54224981 | 1.27974316 | 0.93713344 | −4920.5291 | 2.09 × | −2.6766783 |
1 | −0.0518661 | 0.1161846 | 0.2186548 | 1.04269292 | 0.52712574 | 1.52244991 | 0.91168779 | −4894.2279 | 14.7801725 | −6.5141947 |
2 | −0.1102477 | 0.18491276 | 0.17478472 | 0.94756655 | 0.52844271 | 1.4399315 | 0.91415148 | −4893.8278 | 29.8166141 | −1.9290981 |
3 | −0.2094204 | 0.29377592 | 0.0891446 | 0.84029122 | 0.56054563 | 1.34797271 | 0.96500981 | −4893.3554 | 16.9940095 | 4.33892902 |
4 | −0.1985564 | 0.29758208 | 0.13230013 | 0.83156167 | 0.53656079 | 1.33833078 | 0.93230856 | −4893.4206 | 10.9048744 | 1.04588745 |
5 | −0.078883 | 0.25939922 | 0.39611543 | 0.84865673 | 0.40365522 | 1.35595932 | 0.7410936 | −4895.8806 | 241.028178 | 94.6293224 |
6 | −0.0753571 | 0.26704857 | 0.33754158 | 0.84120908 | 0.45446164 | 1.3452823 | 0.80751063 | −4894.3899 | 25.1995505 | −2.805571 |
7 | −0.196642 | 0.31624372 | 0.20068543 | 0.80509106 | 0.50322368 | 1.30837612 | 0.88967028 | −4893.888 | 140.257551 | 34.770691 |
8 | −0.1898283 | 0.3045047 | 0.15900291 | 0.81380451 | 0.52672075 | 1.31341912 | 0.91775259 | −4893.4694 | 6.29433991 | −4.6080872 |
9 | −0.2275214 | 0.32940996 | 0.10770535 | 0.79340215 | 0.55020025 | 1.29360449 | 0.95260474 | −4893.3049 | 7.34361008 | −8.1891832 |
10 | −0.2726283 | 0.34972465 | 0.01601222 | 0.78061523 | 0.59736004 | 1.28153304 | 1.01757433 | −4893.2192 | 14.0784211 | −3.6408772 |
11 | −0.2499816 | 0.32645286 | 0.01851524 | 0.80217301 | 0.60018154 | 1.30243672 | 1.01792703 | −4893.2125 | 6.27794755 | −4.6455546 |
12 | −0.2575953 | 0.33832596 | 0.02643321 | 0.79008383 | 0.59450637 | 1.29085215 | 1.01101001 | −4893.208 | 1.23298227 | −6.8035318 |
13 | −0.2607071 | 0.34052644 | 0.02075252 | 0.78817075 | 0.59805376 | 1.28895161 | 1.01555438 | −4893.2076 | 0.07363298 | −6.71708 |
14 | −0.2606368 | 0.34088815 | 0.02227012 | 0.78774693 | 0.59707082 | 1.28854532 | 1.01430383 | −4893.2076 | 0.00156771 | −6.6908109 |
15 | −0.2606432 | 0.34087911 | 0.02220633 | 0.78775813 | 0.59711397 | 1.28855593 | 1.01435731 | −4893.2076 | 0.00010164 | −6.6915902 |
16 | −0.2606426 | 0.34087985 | 0.02221188 | 0.78775721 | 0.5971103 | 1.28855506 | 1.01435268 | −4893.2076 | 8.45 × | −6.6915177 |
17 | −0.2606426 | 0.34087979 | 0.02221141 | 0.78775729 | 0.59711061 | 1.28855513 | 1.01435308 | −4893.2076 | 7.21 × | −6.6915239 |
Appendix A.2. Pearson Statistic Inputs
Bitcoin | Ethereum | sp500 | SPY EFT | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
k | x(k) | n* | n(k) | x(k) | n* | n(k) | x(k) | n* | n(k) | x(k) | n* | n(k) |
1 | −18.988 | 7.512 | 8 | −20.861 | 7.531 | 6 | −4.341 | 10.264 | 12 | −4.405 | 8.327 | 11 |
2 | −17.080 | 4.144 | 7 | −18.321 | 5.583 | 6 | −3.935 | 5.456 | 5 | −4.007 | 4.562 | 3 |
3 | −15.172 | 6.603 | 7 | −15.781 | 10.018 | 15 | −3.529 | 8.442 | 7 | −3.608 | 7.116 | 7 |
4 | −13.264 | 10.678 | 9 | −13.241 | 18.331 | 20 | −3.123 | 13.138 | 15 | −3.210 | 11.144 | 12 |
5 | −11.356 | 17.586 | 13 | −10.700 | 34.424 | 29 | −2.717 | 20.588 | 20 | −2.811 | 17.538 | 18 |
6 | −9.448 | 29.661 | 32 | −8.160 | 66.980 | 68 | −2.311 | 32.543 | 30 | −2.413 | 27.775 | 27 |
7 | −7.540 | 51.657 | 47 | −5.620 | 137.268 | 134 | −1.905 | 52.023 | 48 | −2.015 | 44.350 | 41 |
8 | −5.632 | 94.188 | 107 | −3.080 | 305.591 | 305 | −1.499 | 84.479 | 89 | −1.616 | 71.617 | 73 |
9 | −3.724 | 184.486 | 168 | −0.540 | 769.951 | 769 | −1.093 | 140.406 | 147 | −1.218 | 117.552 | 122 |
10 | −1.816 | 411.503 | 419 | 2.000 | 965.210 | 966 | −0.687 | 242.564 | 244 | −0.819 | 198.101 | 186 |
11 | 0.092 | 1195.725 | 1186 | 4.540 | 458.955 | 466 | −0.281 | 455.971 | 456 | −0.421 | 351.660 | 348 |
12 | 2.000 | 1150.470 | 1159 | 7.080 | 219.873 | 222 | 0.126 | 896.809 | 896 | −0.023 | 725.476 | 730 |
13 | 3.908 | 473.177 | 469 | 9.620 | 111.760 | 101 | 0.532 | 749.106 | 733 | 0.376 | 867.735 | 867 |
14 | 5.816 | 217.783 | 227 | 12.160 | 59.253 | 60 | 0.938 | 430.841 | 426 | 0.774 | 541.022 | 522 |
15 | 7.724 | 107.387 | 102 | 14.700 | 32.379 | 32 | 1.344 | 234.692 | 260 | 1.173 | 300.464 | 325 |
16 | 9.632 | 55.272 | 51 | 17.241 | 18.099 | 21 | 1.750 | 126.820 | 137 | 1.571 | 163.491 | 189 |
17 | 11.540 | 29.294 | 39 | 19.781 | 10.296 | 12 | 2.156 | 68.688 | 57 | 1.969 | 88.862 | 82 |
18 | 13.448 | 15.861 | 14 | 22.321 | 5.939 | 5 | 2.562 | 37.387 | 33 | 2.368 | 48.491 | 36 |
19 | 15.356 | 8.729 | 9 | 24.861 | 3.465 | 5 | 2.968 | 20.460 | 15 | 2.766 | 26.600 | 23 |
20 | 17.264 | 4.866 | 4 | 5.091 | 4 | 3.374 | 11.256 | 12 | 3.165 | 14.669 | 13 | |
21 | 6.419 | 6 | 14.067 | 14 | 18.450 | 20 |
Appendix B
Appendix B.1. Bitcoin BTC: Kobol Distribution (β = β− = β+)
Model | Parameter | Estimate | Std Err | z | [95% Conf.Interval] | ||
---|---|---|---|---|---|---|---|
GTS | −0.292833 | (0.126) | −2.32 | 2.1 × | −0.541 | −0.045 | |
0.367074 | (0.086) | 4.27 | 1.9 × | 0.199 | 0.535 | ||
0.755914 | (0.047) | 16.02 | 4.7 × | 0.663 | 0.848 | ||
0.535121 | (0.034) | 15.68 | 9.6 × | 0.468 | 0.602 | ||
0.235266 | (0.027) | 8.87 | 3.6 × | 0.183 | 0.287 | ||
0.181602 | (0.023) | 7.94 | 9.8 × | 0.137 | 0.226 | ||
Log(ML) | −10,607 | ||||||
AIC | 21,226 | ||||||
BIK | 21,264 |
1 | −0.1215714 | 0.3155483 | 0.7477142 | 0.5445652 | 0.2465296 | 0.17477186 | −10614.93879 | 450.0556974 | 25.6678081 |
2 | −0.255172 | 0.36516958 | 0.73215119 | 0.53194253 | 0.22955186 | 0.17909072 | −10607.01058 | 51.74982347 | −46.893383 |
3 | −0.2912276 | 0.37096854 | 0.75410108 | 0.53529439 | 0.23387716 | 0.18070591 | −10606.81236 | 1.484798964 | −53.728563 |
4 | −0.2922408 | 0.36574333 | 0.7559582 | 0.53508403 | 0.23560819 | 0.18189913 | −10606.81041 | 0.258928464 | −53.391237 |
5 | −0.2928641 | 0.36714311 | 0.75591147 | 0.53512239 | 0.23524801 | 0.18158588 | −10606.81025 | 0.01286122 | −53.406734 |
6 | −0.292837 | 0.36708319 | 0.75591382 | 0.53512107 | 0.23526357 | 0.18159941 | −10606.81025 | 0.00174219 | −53.40643 |
7 | −0.2928328 | 0.36707373 | 0.75591419 | 0.53512086 | 0.23526603 | 0.18160154 | −10606.81025 | 1.18 × | −53.406384 |
8 | −0.2928328 | 0.36707379 | 0.75591419 | 0.53512086 | 0.23526602 | 0.18160153 | −10606.81025 | 1.60 × | −53.406384 |
9 | −0.2928328 | 0.36707379 | 0.75591419 | 0.53512086 | 0.23526601 | 0.18160153 | −10606.81025 | 2.18 × | −53.406384 |
10 | −0.2928328 | 0.36707379 | 0.75591419 | 0.53512086 | 0.23526601 | 0.18160153 | −10606.81025 | 1.09 × | −53.406384 |
Appendix B.2. Ethereum: Carr–Geman–Madan–Yor (CGMY) Distributions
Model | Parameter | Estimate | Std Err | z | [95% Conf.Interval] | ||
---|---|---|---|---|---|---|---|
GTS | −0.147089 | (0.079) | −1.86 | 6.3 × | −0.302 | −0.008 | |
0.398418 | (0.127) | 3.12 | 1.8 × | 0.148 | 0.649 | ||
0.887161 | (0.058) | 15.22 | 1.2 × | 0.773 | 1.001 | ||
0.155369 | (0.023) | 6.56 | 5.2 × | 0.109 | 0.202 | ||
0.185991 | (0.025) | 7.29 | 2.9 × | 0.136 | 0.236 | ||
Log(ML) | −9554 | ||||||
AIC | 19,118 | ||||||
BIK | 19,149 |
1 | −0.48538 | 0.39043616 | 0.95824875 | 0.16671208 | 0.17078617 | −9596.2658 | 1653.57149 | −140.21456 |
2 | −0.0545131 | 0.40148247 | 0.88205674 | 0.15875317 | 0.18060554 | −9554.6834 | 80.0921993 | −19.637869 |
3 | −0.1479632 | 0.39049434 | 0.88271998 | 0.15631408 | 0.18704084 | −9553.9065 | 3.84112398 | −44.76325 |
4 | −0.1465893 | 0.40345482 | 0.88868927 | 0.15450383 | 0.18507239 | −9553.9036 | 0.4436942 | −55.029934 |
5 | −0.1472464 | 0.39683622 | 0.88667597 | 0.15564017 | 0.18628001 | −9553.9026 | 0.14094418 | −51.274906 |
6 | −0.1470247 | 0.39907668 | 0.88736036 | 0.15525581 | 0.18587143 | −9553.9025 | 0.05563606 | −52.523819 |
7 | −0.1471148 | 0.39816841 | 0.88708569 | 0.15541227 | 0.18603772 | −9553.9025 | 0.02143506 | −52.017698 |
8 | −0.1470898 | 0.39842098 | 0.88716234 | 0.15536883 | 0.18599155 | −9553.9025 | 0.00019543 | −52.158334 |
9 | −0.14709 | 0.39841855 | 0.88716161 | 0.15536924 | 0.18599199 | −9553.9025 | 1.16 × | −52.156981 |
10 | −0.14709 | 0.39841867 | 0.88716164 | 0.15536922 | 0.18599197 | −9553.9025 | 1.78 × | −52.157046 |
11 | −0.14709 | 0.39841869 | 0.88716165 | 0.15536922 | 0.18599197 | −9553.9025 | 2.71 × | −52.157055 |
12 | −0.14709 | 0.39841869 | 0.88716165 | 0.15536922 | 0.18599197 | −9553.9025 | 4.14 × | −52.157057 |
Appendix C
Appendix C.1. S&P 500 Index: Bilateral Gamma (BG) Distribution (β− = β+ = 0)
Model | Parameter | Estimate | Std Err | z | [95% Conf.Interval] | ||
---|---|---|---|---|---|---|---|
GTS | −0.031467 | (0.010) | −3.07 | 2.1 × | −0.052 | −0.011 | |
1.092741 | (0.058) | 18.98 | 2.6 × | 0.980 | 1.206 | ||
0.701784 | (0.042) | 16.80 | 2.3 × | 0.620 | 0.784 | ||
1.539690 | (0.064) | 22.82 | 3.1 × | 1.407 | 1.672 | ||
1.110737 | (0.050) | 22.07 | 6.6 × | 1.012 | 1.209 | ||
Log(ML) | −4925 | ||||||
AIC | 9859 | ||||||
BIK | 9890 |
1 | 0 | 0.79242624 | 0.54224981 | 1.27974316 | 0.93713344 | −4951.1439 | 1138.53458 | −265.251 |
2 | −0.0038447 | 0.93153413 | 0.64461254 | 1.41132138 | 1.05504868 | −4931.7583 | 549.025405 | −171.22804 |
3 | −0.0103214 | 1.03062846 | 0.70198868 | 1.49426667 | 1.10555794 | −4926.8412 | 286.215345 | −126.18156 |
4 | −0.0186317 | 1.07922912 | 0.71421996 | 1.53377391 | 1.11392285 | −4925.393 | 135.694287 | −113.12071 |
5 | −0.0279475 | 1.09450205 | 0.70493092 | 1.54418172 | 1.10795103 | −4924.7065 | 38.0551545 | −116.58686 |
6 | −0.0313951 | 1.09325663 | 0.70162581 | 1.54038766 | 1.10996346 | −4924.621 | 1.54417452 | −120.06271 |
7 | −0.0314671 | 1.09274119 | 0.70178365 | 1.53969027 | 1.11073682 | −4924.6205 | 0.02788236 | −120.35435 |
8 | −0.0314664 | 1.09276971 | 0.70182788 | 1.53971127 | 1.11079928 | −4924.6205 | 0.00198685 | −120.34482 |
9 | −0.0314663 | 1.09277213 | 0.70183158 | 1.5397131 | 1.11080431 | −4924.6205 | 0.00016039 | −120.34394 |
10 | −0.0314662 | 1.09277232 | 0.70183188 | 1.53971325 | 1.11080472 | −4924.6205 | 1.29 × | −120.34387 |
11 | −0.0314662 | 1.09277234 | 0.7018319 | 1.53971326 | 1.11080475 | −4924.6205 | 1.04 × | −120.34387 |
12 | −0.0314662 | 1.09277234 | 0.7018319 | 1.53971326 | 1.11080476 | −4924.6205 | 8.43 × | −120.34387 |
13 | −0.0314662 | 1.09277234 | 0.7018319 | 1.53971326 | 1.11080476 | −4924.6205 | 6.80 × | −120.34387 |
14 | −0.0314662 | 1.09277234 | 0.7018319 | 1.53971326 | 1.11080476 | −4924.6205 | 5.63 × | −120.34387 |
15 | −0.0314662 | 1.09277234 | 0.7018319 | 1.53971326 | 1.11080476 | −4924.6205 | 5.73 × | −120.34387 |
Appendix C.2. SPY ETF: Bilateral Gamma (BG) Distribution (β− = β+ = 0)
Model | Parameter | Estimate | Std Err | z | [95% Conf.Interval] | ||
---|---|---|---|---|---|---|---|
GTS | 0.015048 | (0.012) | 1.28 | 2.0 × | −0.008 | 0.038 | |
1.068239 | (0.067) | 16.02 | 8.6 × | 0.938 | 1.199 | ||
0.764449 | (0.044) | 17.33 | 3.0 × | 0.678 | 0.851 | ||
1.525718 | (0.073) | 20.98 | 1.1 × | 1.383 | 1.668 | ||
1.156439 | (0.052) | 22.15 | 1.1 × | 1.054 | 1.259 | ||
Log(ML) | −4899 | ||||||
AIC | 9807 | ||||||
BIK | 9838 |
1 | 0 | 0.78775729 | 0.59711061 | 1.28855513 | 1.01435308 | −4918.7331 | 406.35365 | −252.28104 |
2 | 0.02867773 | 0.97562263 | 0.67572827 | 1.46822249 | 0.97596762 | −4908.5992 | 226.190986 | −116.11753 |
3 | 0.02727407 | 1.05127517 | 0.78618306 | 1.51846501 | 1.17883595 | −4899.0798 | 45.2281041 | −96.788275 |
4 | 0.00834089 | 1.07692251 | 0.75226045 | 1.5348003 | 1.14577232 | −4898.9955 | 131.637516 | −107.77617 |
5 | 0.01126962 | 1.07242358 | 0.7568497 | 1.53011913 | 1.1494212 | −4898.751 | 48.0005418 | −103.03258 |
6 | 0.01386478 | 1.06933921 | 0.76167668 | 1.52688303 | 1.15363987 | −4898.6763 | 11.3246873 | −100.1483 |
7 | 0.01492745 | 1.06823047 | 0.76397541 | 1.52573245 | 1.15588409 | −4898.6693 | 0.98802026 | −99.171136 |
8 | 0.01504464 | 1.06821119 | 0.76439389 | 1.52569528 | 1.15636567 | −4898.6693 | 0.02529683 | −99.040575 |
9 | 0.01504742 | 1.06823539 | 0.76444163 | 1.5257152 | 1.15642976 | −4898.6693 | 0.00300624 | −99.030178 |
10 | 0.01504762 | 1.06823881 | 0.76444764 | 1.52571803 | 1.15643796 | −4898.6693 | 0.00038489 | −99.028926 |
11 | 0.01504764 | 1.06823925 | 0.76444841 | 1.52571839 | 1.15643901 | −4898.6693 | 4.92 × | −99.028765 |
12 | 0.01504765 | 1.06823931 | 0.76444851 | 1.52571844 | 1.15643915 | −4898.6693 | 6.30 × | −99.028745 |
13 | 0.01504765 | 1.06823932 | 0.76444852 | 1.52571845 | 1.15643917 | −4898.6693 | 1.32 × | −99.028742 |
14 | 0.01504765 | 1.06823932 | 0.76444852 | 1.52571845 | 1.15643917 | −4898.6693 | 1.69 × | −99.028742 |
15 | 0.01504765 | 1.06823932 | 0.76444852 | 1.52571845 | 1.15643917 | −4898.6693 | 2.23 × | −99.028742 |
References
- An, Kolmogorov. 1933. Sulla determinazione empirica di una legge didistribuzione. Giorn Dell’inst Ital Degli Att 4: 89–91. [Google Scholar]
- Anderson, Theodore W. 2008. Anderson–darling test. In The Concise Encyclopedia of Statistics. Edited by Yadolah Dodge. New York: Springer, pp. 12–14. [Google Scholar] [CrossRef]
- Anderson, Theodore W. 2011. Anderson–darling tests of goodness-of-fit. In International Encyclopedia of Statistical Science. Edited by Miodrag Lovric. Berlin and Heidelberg: Springer, pp. 52–54. [Google Scholar] [CrossRef]
- Barndorff-Nielsen, Ole E., and Neil Shephard. 2002. Financial Volatility, Lévy Processes and Power Variation. Available online: https://www.olsendata.com/data_products/client_papers/papers/200206-NielsenShephard-FinVolLevyProcessPowerVar.pdf (accessed on 27 August 2024).
- Bianchi, Michele Leonardo, Stoyan V. Stoyanov, Gian Luca Tassinari, Frank J. Fabozzi, and Sergio M. Focardi. 2019. Handbook of Heavy-Tailed Distributions in Asset Management and Risk Management. Volume 7 of Financial Economics. Singapore: World Scientific Publishing. [Google Scholar] [CrossRef]
- Borak, Szymon, Wolfgang Härdle, and Rafał Weron. 2005. Stable distributions. In Statistical Tools for Finance and Insurance. Berlin and Heidelberg: Springer, pp. 21–44. [Google Scholar] [CrossRef]
- Boyarchenko, Svetlana, and Sergei Z. Levendorskii. 2002. Non-Gaussian Merton-Black-Scholes Theory. Singapore: World Scientific Publishing, vol. 9. [Google Scholar]
- Carr, Peter, Hélyette Geman, Dilip B. Madan, and Marc Yor. 2003. Stochastic volatility for lévy processes. Mathematical Finance 13: 345–82. [Google Scholar] [CrossRef]
- Casella, George, and Roger Berger. 2024. Statistical Inference. Chapman & Hall/CRC Texts in Statistical Science. New York: CRC Press. [Google Scholar]
- Cherubini, Umberto, Giovanni Della Lunga, Sabrina Mulinacci, and Pietro Rossi. 2010. Fourier Transform Methods in Finance. Hoboken: John Wiley & Sons. [Google Scholar]
- Dimitrova, Dimitrina S., Vladimir K. Kaishev, and Senren Tan. 2020. Computing the kolmogorov-smirnov distribution when the underlying cdf is purely discrete, mixed, or continuous. Journal of Statistical Software 95: 1–42. [Google Scholar] [CrossRef]
- Eberlein, Ernst. 2014. Fourier-based valuation methods in mathematical finance. In Quantitative Energy Finance: Modeling, Pricing, and Hedging in Energy and Commodity Markets. Edited by Fred Espen Benth, Valery A. Kholodnyi and Peter Laurence. New York: Springer, pp. 85–114. [Google Scholar] [CrossRef]
- Eberlein, Ernst, Kathrin Glau, and Antonis Papapantoleon. 2010. Analysis of fourier transform valuation formulas and applications. Applied Mathematical Finance 17: 211–40. [Google Scholar] [CrossRef]
- Fallahgoul, Hasan, and Gregoire Loeper. 2021. Modelling tail risk with tempered stable distributions: An overview. Annals of Operations Research 299: 1253–80. [Google Scholar]
- Fallahgoul, Hasan A., David Veredas, and Frank J. Fabozzi. 2019. Quantile-based inference for tempered stable distributions. Computational Economics 53: 51–83. [Google Scholar] [CrossRef]
- Feller, William. 1971. An Introduction to Probability Theory and its Applications, 2nd ed. New York: John Wiley & Sons, vol. 2. [Google Scholar]
- Giudici, Paolo, Geof H. Givens, and Bani K. Mallick. 2013. Wiley Series in Computational Statistics. Hoboken: Wiley Online Library. [Google Scholar]
- Grabchak, Michael, and Gennady Samorodnitsky. 2010. Do financial returns have finite or infinite variance? A paradox and an explanation. Quantitative Finance 10: 883–93. [Google Scholar] [CrossRef]
- Hall, W. Jackson, and David Oakes. 2023. A Course in the Large Sample Theory of Statistical Inference. New York: CRC Press. [Google Scholar]
- Ken-Iti, Sato. 2001. Basic results on lévy processes. In Lévy Processes: Theory and Applications. Edited by Ole E. Barndorff-Nielsen, Thomas Mikosch and Sidney I. Resnick. New York: Springer Science & Business Media, pp. 1–37. [Google Scholar] [CrossRef]
- Kendall, Maurice George. 1945. The Advanced Theory of Statistics, 2nd ed. London: Charles Griffin & Co. Ltd., vol. 1. [Google Scholar]
- Kim, Young Shin, Svetlozar T. Rachev, Michele Leonardo Bianchi, and Frank J. Fabozzi. 2009. A new tempered stable distribution and its application to finance. In Risk Assessment: Decisions in Banking and Finance. Edited by Georg Bol, Svetlozar T. Rachev and Reinhold Würth. Berlin and Heidelberg: Springer, pp. 77–109. [Google Scholar]
- Krysicki, W., J Bartos, W. Dyczka, K. Królikowska, and M. Wasilewski. 1999. Rachunek prawdopodobieństwa i statystyka matematyczna w zadaniach. Cz. II. Statystyka matematyczna. Warszawa: PWN. [Google Scholar]
- Küchler, Uwe, and Stefan Tappe. 2008. Bilateral gamma distributions and processes in financial mathematics. Stochastic Processes and their Applications 118: 261–83. [Google Scholar] [CrossRef]
- Küchler, Uwe, and Stefan Tappe. 2013. Tempered stable distributions and processes. Stochastic Processes and Their Applications 123: 4256–93. [Google Scholar] [CrossRef]
- Lehmann, Erich Leo. 1999. Elements of Large-Sample Theory. New York: Springer. [Google Scholar]
- Lewis, Peter A. W. 1961. Distribution of the anderson-darling statistic. The Annals of Mathematical Statistics 32: 1118–24. [Google Scholar] [CrossRef]
- Madan, Dilip B., Peter P. Carr, and Eric C. Chang. 1998. The variance gamma process and option pricing. Review of Finance 2: 79–105. [Google Scholar] [CrossRef]
- Marsaglia, George, and John Marsaglia. 2004. Evaluating the anderson-darling distribution. Journal of Statistical Software 9: 1–5. [Google Scholar] [CrossRef]
- Marsaglia, George, Wai Wan Tsang, and Jingbo Wang. 2003. Evaluating kolmogorov’s distribution. Journal of Statistical Software 8: 1–4. [Google Scholar] [CrossRef]
- Massey, Frank J., Jr. 1951. The kolmogorov-smirnov test for goodness of fit. Journal of the American Statistical Association 46: 68–78. [Google Scholar] [CrossRef]
- Massing, Till. 2024. Parametric estimation of tempered stable laws. ALEA Latin American Journal of Probability and Mathematical Statistics 21: 1567–600. [Google Scholar] [CrossRef]
- Mensah, Eric Teye, Alexander Boateng, Nana Kena Frempong, and Daniel Maposa. 2023. Simulating stock prices using geometric brownian motion model under normal and convoluted distributional assumptions. Scientific African 19: e01556. [Google Scholar] [CrossRef]
- Nakamoto, Satoshi. 2008. Bitcoin: A Peer-to-Peer Electronic Cash System. Decentralized Business Review. Available online: https://www.ussc.gov/sites/default/files/pdf/training/annual-national-training-seminar/2018/Emerging_Tech_Bitcoin_Crypto.pdf (accessed on 10 May 2024).
- Nolan, John P. 2020. Modeling with Stable Distributions. Cham: Springer International Publishing, chp. 2. pp. 25–52. [Google Scholar] [CrossRef]
- Nzokem, Aubain H. 2021a. Fitting infinitely divisible distribution: Case of gamma-variance model. arXiv arXiv:2104.07580. [Google Scholar]
- Nzokem, Aubain H. 2021b. Gamma variance model: Fractional fourier transform (FRFT). Journal of Physics: Conference Series 2090: 012094. [Google Scholar] [CrossRef]
- Nzokem, Aubain H. 2021c. Numerical solution of a gamma—Integral equation using a higher order composite newton-cotes formulas. Journal of Physics: Conference Series 2084: 012019. [Google Scholar] [CrossRef]
- Nzokem, Aubain H. 2023a. Enhanced the fast fractional fourier transform (frft) scheme using the closed newton-cotes rules. arXiv arXiv:2311.16379. [Google Scholar]
- Nzokem, Aubain H. 2023b. European option pricing under generalized tempered stable process: Empirical analysis. arXiv arXiv:2304.06060. [Google Scholar]
- Nzokem, Aubain H. 2023c. Pricing european options under stochastic volatility models: Case of five-parameter variance-gamma process. Journal of Risk and Financial Management 16: 55. [Google Scholar] [CrossRef]
- Nzokem, Aubain H. 2024. Self-decomposable laws associated with general tempered stable (gts) distribution and their simulation applications. arXiv arXiv:2405.16614. [Google Scholar]
- Nzokem, Aubain H., and Daniel Maposa. 2024. Bitcoin versus s&p 500 index: Return and risk analysis. Mathematical and Computational Applications 29: 44. [Google Scholar] [CrossRef]
- Nzokem, Aubain H., and V. T. Montshiwa. 2022. Fitting generalized tempered stable distribution: Fractional fourier transform (frft) approach. arXiv arXiv:2205.00586. [Google Scholar]
- Nzokem, Aubain H., and V. T. Montshiwa. 2023. The ornstein–uhlenbeck process and variance gamma process: Parameter estimation and simulations. Thai Journal of Mathematics, 160–68. Available online: https://thaijmath2.in.cmu.ac.th/index.php/thaijmath/article/view/1477 (accessed on 17 June 2024).
- Olive, David J. 2014. Statistical Theory and Inference. New York: Springer. [Google Scholar]
- Poloskov, Igor E. 2021. Relations between cumulants and central moments and their applications. Journal of Physics: Conference Series 1794: 012004. [Google Scholar] [CrossRef]
- Rachev, Svetlozar T., Young Shin Kim, Michele L. Bianchi, and Frank J. Fabozzi. 2011. Stable and tempered stable distributions. In Financial Models with Lévy Processes and Volatility Clustering. Edited by Svetlozar T. Rachev, Young Shin Kim, Michele L. Bianchi and Frank J. Fabozzi. Volume 187 of The Frank J. Fabozzi Series; Hoboken: John Wiley & Sons, Ltd., chp. 3. pp. 57–85. [Google Scholar] [CrossRef]
- Rota, Gian-Carlo, and Jianhong Shen. 2000. On the combinatorics of cumulants. Journal of Combinatorial Theory, Series A 91: 283–304. [Google Scholar] [CrossRef]
- Sato, Ken-Iti. 1999. Lévy Processes and Infinitely Divisible Distributions. Cambridge: Cambridge University Press. [Google Scholar]
- Schoutens, Wim. 2003. Lévy Processes in Finance: Pricing Financial Derivatives. West Sussex: John Wiley & Sons. [Google Scholar]
- Smith, Peter J. 1995. A recursive formulation of the old problem of obtaining moments from cumulants and vice versa. The American Statistician 49: 217–18. [Google Scholar] [CrossRef]
- Stephens, Michael A. 1974. Edf statistics for goodness of fit and some comparisons. Journal of the American Statistical Association 69: 730–37. [Google Scholar] [CrossRef]
- Tsallis, Constantino. 1997. Lévy distributions. Physics World 10: 42. [Google Scholar] [CrossRef]
- Van den Bos, Adriaan. 2007. Precision and Accuracy. Hoboken: John Wiley & Sons, Ltd., chp. 4. pp. 45–97. [Google Scholar] [CrossRef]
- Vuong, Quang H. 1989. Likelihood ratio tests for model selection and non-nested hypotheses. Econometrica: Journal of the Econometric Society 57: 307–33. [Google Scholar] [CrossRef]
Model | Parameter | Estimate | Std Err | z | [95% Conf.Interval] | ||
---|---|---|---|---|---|---|---|
GTS | −0.121571 | (0.375) | −0.32 | 7.5 × | −0.856 | 0.613 | |
0.315548 | (0.136) | 2.33 | 2.0 × | 0.050 | 0.581 | ||
0.406563 | (0.117) | 3.48 | 4.9 × | 0.178 | 0.635 | ||
0.747714 | (0.047) | 15.76 | 6.2 × | 0.655 | 0.841 | ||
0.544565 | (0.037) | 14.56 | 4.8 × | 0.471 | 0.618 | ||
0.246530 | (0.036) | 6.91 | 4.9 × | 0.177 | 0.316 | ||
0.174772 | (0.026) | 6.69 | 2.2 × | 0.124 | 0.226 | ||
Log(ML) | −10,606 | ||||||
AIC | 21,227 | ||||||
BIK | 21,271 | ||||||
GBM | 0.151997 | (0.060) | 2.51 | 1.2 × | 0.033 | 0.271 | |
3.865132 | (0.330) | 11.69 | 7.2 × | 3.217 | 4.513 | ||
Log(ML) | −11,313 | ||||||
AIC | 22,630 | ||||||
BIK | 22,638 |
Model | Param | Estimate | Std Err | z | [95% Conf.Interval] | ||
---|---|---|---|---|---|---|---|
GTS | −0.4854 | (1.008) | −0.48 | 6.3 × | −2.461 | 1.491 | |
0.3904 | (0.164) | 2.38 | 1.7 × | 0.069 | 0.712 | ||
0.4045 | (0.210) | 1.93 | 5.4 × | −0.007 | 0.816 | ||
0.9582 | (0.106) | 9.01 | 1.1 × | 0.750 | 1.167 | ||
0.8005 | (0.110) | 7.25 | 4.2 × | 0.584 | 1.017 | ||
0.1667 | (0.029) | 5.72 | 1.1 × | 0.110 | 0.224 | ||
0.1708 | (0.036) | 4.71 | 2.5 × | 0.110 | 0.242 | ||
Log(ML) | −9552 | ||||||
AIC | 19,119 | ||||||
BIK | 19,162 | ||||||
GBM | 0.267284 | (0.091) | 2.93 | 3.4 × | 0.088 | 0.446 | |
5.205539 | (0.672) | 7.74 | 1.0 × | 3.887 | 6.524 | ||
Log(ML) | −9960 | ||||||
AIC | 19,925 | ||||||
BIK | 19,933 |
Bitcoin BTC | Ethereum | |||||
---|---|---|---|---|---|---|
Empirical(1) | Theoretical(2) | Empirical(1) | Theoretical(2) | |||
Sample size | 4083 | 3246 | ||||
0.152 | 0.152 | 0.0% | 0.267 | 0.267 | 0.0% | |
14.960 | 15.020 | 0.4% | 27.161 | 27.388 | 0.8% | |
−11.320 | −15.640 | 27.6% | 55.363 | 57.867 | 4.3% | |
2033 | 2256 | 9.8% | 5267 | 6307 | 16.5% | |
−5823 | −15,480 | 62.3% | 22,368 | 32518 | 31.2% | |
670,695 | 1,123,215 | 40.2% | 2,114,788 | 4,361,562 | 51.5% | |
−1,997,196 | −19,777,988 | 89.9% | 12,411,809 | 39,253,001 | 68.3% | |
Standard deviation 1 | 3.865 | 3.873 | 0.2% | 5.206 | 5.226 | 0.4% |
Skewness 2 | −0.314 | −0.387 | 18.8% | 0.238 | 0.252 | 5.2% |
Kurtosis 3 | 9.154 | 10.082 | 9.2% | 7.112 | 8.385 | 15.2% |
Max value | 28.052 | 29.013 | ||||
Min value | −26.620 | −29.174 |
Model | Param | Estimate | Std Err | z | [95% Conf.Interval] | ||
---|---|---|---|---|---|---|---|
GTS | −0.249408 | (0.208) | −1.20 | 2.3 × | −0.658 | 0.159 | |
0.328624 | (0.308) | 1.07 | 2.9 × | −0.275 | 0.932 | ||
0.088640 | (0.176) | 0.50 | 6.1 × | −0.256 | 0.433 | ||
0.792426 | (0.350) | 2.26 | 2.4 × | 0.106 | 1.479 | ||
0.542250 | (0.107) | 5.09 | 3.6 × | 0.333 | 0.751 | ||
1.279743 | (0.348) | 3.68 | 2.4 × | 0.597 | 1.962 | ||
0.937133 | (0.144) | 6.50 | 8.0 × | 0.655 | 1.220 | ||
Log(ML) | −4920 | ||||||
AIC | 9851 | ||||||
BIK | 9898 | ||||||
GBM | 0.044875 | (0.018) | 2.51 | 1.2 × | 0.010 | 0.080 | |
1.081676 | (0.027) | 39.53 | 0.000 | 1.028 | 1.135 | ||
Log(ML) | −5330 | ||||||
AIC | 10,665 | ||||||
BIK | 10,677 |
Model | Param | Estimate | Std Err | z | [95% Conf.Interval] | ||
---|---|---|---|---|---|---|---|
GTS | −0.260643 | (0.135) | −1.94 | 5.3 × | −0.524 | 0.003 | |
0.340880 | (0.189) | 1.80 | 7.1 × | −0.030 | 0.711 | ||
0.022212 | (0.212) | 0.10 | 9.2 × | −0.393 | 0.437 | ||
0.787757 | (0.225) | 3.50 | 4.6 × | 0.347 | 1.229 | ||
0.597110 | (0.141) | 4.22 | 2.4 × | 0.320 | 0.874 | ||
1.288555 | (0.226) | 5.70 | 1.2 × | 0.846 | 1.731 | ||
1.014353 | (0.177) | 5.74 | 9.4 × | 0.668 | 1.361 | ||
Log(ML) | −4893 | ||||||
AIC | 9800 | ||||||
BIK | 9843 | ||||||
GBM | 0.054344 | (0.017) | 3.13 | 1.8 × | 0.020 | 0.088 | |
1.050217 | (0.026) | 40.71 | 0.000 | 1.000 | 1.101 | ||
Log(ML) | −54,275 | ||||||
AIC | 10,554 | ||||||
BIK | 10,566 |
GTS | GTS Variants | -Value | df | p-Value | ||
---|---|---|---|---|---|---|
Log(ML) | −10,606.73 | −10,606.81 | 0.1525 | 1 | 0.6962 | |
Bitcoin | AIC | 21,227.47 | 21,225.62 | |||
BIK | 21,271.67 | 21,263.51 | ||||
Log(ML) | −9552.86 | −9553.90 | 2.0810 | 2 | 0.3533 | |
Ethereum | AIC | 19,119.72 | 19,117.81 | |||
BIK | 19,162.32 | 19,148.23 | ||||
Log(ML) | −4920.52 | −4924.62 | 8.1828 | 2 | 0.0167 | |
S&P 500 | AIC | 9851.06 | 9859.24 | |||
BIK | 9898.49 | 9890.26 | ||||
Log(ML) | −4893.21 | −4898.67 | 10.9234 | 2 | 0.0042 | |
SPY ETF | AIC | 9800.42 | 9807.34 | |||
BIK | 9843.84 | 9838.36 |
S&P 500 Index | SPY ETF | |||||
---|---|---|---|---|---|---|
Empirical(1) | Theoretical(2) | Empirical(1) | Theoretical(2) | |||
Sample size | 3656 | 3655 | ||||
0.045 | 0.045 | −0.5% | 0.054 | 0.054 | 0.0% | |
1.069 | 1.083 | −1.3% | 1.053 | 1.044 | 0.8% | |
−0.447 | −0.341 | 31.2% | −0.214 | −0.351 | −39.0% | |
8.371 | 9.764 | −14.3% | 8.197 | 7.691 | 6.6% | |
−16.386 | −11.128 | 47.3% | −3.969 | −12.717 | −68.8% | |
193.563 | 247.811 | −21.9% | 157.645 | 162.048 | −2.7% | |
−840.097 | −547.882 | 53.3% | −85.003 | −602.447 | −85.9% | |
Standard deviation 1 | 1.082 | 1.033 | 4.7% | 1.050 | 1.021 | 2.9% |
Skewness 2 | −0.432 | −0.535 | −19.2% | −0.358 | −0.490 | −26.9% |
Kurtosis 3 | 8.413 | 7.435 | 13.1% | 7.495 | 7.177 | 4.4% |
Max value | 6.797 | 6.501 | ||||
Min value | −7.901 | −6.734 |
GTS | GBN | GTS Variants | Sample Size | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Index | p-Value | p-Value | p-Value | m | ||||||
Bicoin BTC | 0.013 | 0.830 | 0.494 | 0.106 | 6.803 | 0.000 | 0.014 1 | 0.863 | 0.445 | 4083 |
Ethereum | 0.012 | 0.721 | 0.674 | 0.092 | 5.249 | 0.000 | 0.013 2 | 0.749 | 0.627 | 3246 |
S&P 500 | 0.012 | 0.750 | 0.627 | 0.091 | 5.550 | 0.000 | 0.014 3 | 0.897 | 0.395 | 3656 |
SPY ETF | 0.014 | 0.869 | 0.436 | 0.089 | 5.438 | 0.000 | 0.016 3 | 1.010 | 0.258 | 3655 |
GTS | GBN | GTS Variants | Sample Size | ||||
---|---|---|---|---|---|---|---|
Index | p-Value | p-Value | p-Value | m | |||
Bicoin BTC | 0.1098 | 0.9999 | 99.706 | 0.0000 | 0.1105 1 | 0.9999 | 4083 |
Ethereum | 0.1018 | 0.9999 | 59.157 | 0.0001 | 0.2123 2 | 0.9866 | 3246 |
S&P 500 | 0.3007 | 0.9376 | 54.304 | 0.0001 | 0.5010 3 | 0.7458 | 3656 |
SPY ETF | 0.3017 | 0.9368 | 51.516 | 0.0001 | 0.6684 3 | 0.5857 | 3655 |
GTS | GBN | GTS Variants | Class Number | |||||
---|---|---|---|---|---|---|---|---|
Index | p-Value | p-Value | p-Value | K | ||||
Bicoin BTC | 12.234 | 0.508 | 1375 | 0.000 | 12.549 1 | 6 | 0.562 | 21 |
Ethereum | 6.910 | 0.863 | 805 | 0.000 | 8.618 2 | 5 | 0.854 | 20 |
S&P 500 | 9.886 | 0.703 | 574 | 0.000 | 12.844 3 | 5 | 0.614 | 21 |
SPY ETF | 13.955 | 0.377 | 605 | 0.000 | 18.228 3 | 5 | 0.251 | 21 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nzokem, A.; Maposa, D. Fitting the Seven-Parameter Generalized Tempered Stable Distribution to Financial Data. J. Risk Financial Manag. 2024, 17, 531. https://doi.org/10.3390/jrfm17120531
Nzokem A, Maposa D. Fitting the Seven-Parameter Generalized Tempered Stable Distribution to Financial Data. Journal of Risk and Financial Management. 2024; 17(12):531. https://doi.org/10.3390/jrfm17120531
Chicago/Turabian StyleNzokem, Aubain, and Daniel Maposa. 2024. "Fitting the Seven-Parameter Generalized Tempered Stable Distribution to Financial Data" Journal of Risk and Financial Management 17, no. 12: 531. https://doi.org/10.3390/jrfm17120531
APA StyleNzokem, A., & Maposa, D. (2024). Fitting the Seven-Parameter Generalized Tempered Stable Distribution to Financial Data. Journal of Risk and Financial Management, 17(12), 531. https://doi.org/10.3390/jrfm17120531