Do ESG Factors Prove Significant Predictors of Systematic and Downside Risks in the Russian Market after Controlling for Stock Liquidity?
Abstract
:1. Introduction
2. Literature Review
3. Methods
3.1. Research Hypotheses and Variables
3.2. Empirical Methodology
3.3. Descriptive Statistics on the Sample
4. Results and Discussion
4.1. Testing Hypothesis 1 about the Impact of Non-ESG Factors on Downside and Systematic Risk
4.2. Testing Hypothesis 2 about the Negative Impact of Factors of Ecological Responsibility on Downside and Systematic Risks
4.3. Testing Hypothesis 3 about the Significance of the Impact of Social Responsibility on Downside and Systematic Risks
4.4. Testing Hypothesis 4 about the Significance of the Impact of COVID-19 on the Relationship between ESG and Risks
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
1 | EBA Report on Management and Supervision of ESG risks for Credit Institutions and Investment Firms (2021). EBA/REP/2021/18. https://www.eba.europa.eu/sites/default/files/document_library/Publications/Reports/2021/1015656/EBA%20Report%20on%20ESG%20risks%20management%20and%20supervision.pdf (accessed on 1 April 2024). |
2 | https://www.statista.com/statistics/573701/market-cap-of-domestic-companies-as-share-of-gdp-russia/ (accessed on 1 April 2024). |
References
- Aastvedt, Tonje Marthinsen, Niaz Bashiri Behmiri, and Li Lu. 2021. Does green innovation damage financial performance of oil and gas companies? Resources Policy 73: 102235. [Google Scholar] [CrossRef]
- Adhikari, Nabaraj. 2015. Determinants of systematic risk for companies listed on Nepal stock exchange. Global Journal of Management and Business Research 15: 75–83. [Google Scholar]
- Albuquerque, Rui, Yrjö Koskinen, and Chendi Zhang. 2019. Corporate social responsibility and firm risk: Theory and empirical evidence. Management Science 65: 4451–69. [Google Scholar] [CrossRef]
- Albuquerque, Rui, Yrjo Koskinen, Shuai Yang, and Chendi Zhang. 2020. Resiliency of environmental and social stocks: An analysis of the exogenous COVID-19 market crash. The Review of Corporate Finance Studies 9: 593–621. [Google Scholar] [CrossRef]
- Ali, Searat, Benjamin Liu, and Jen Je Su. 2022. Does corporate governance have a differential effect on downside and upside risk? Journal of Business Finance and Accounting 49: 1642–95. [Google Scholar] [CrossRef]
- Ang, Andrew, Bingxu Chen, and Suresh Sundaresan. 2013. Liability-driven investment with downside risk. The Journal of Portfolio Management 40: 71–87. [Google Scholar] [CrossRef]
- Anita, Mendiratta, Singh Shveta, Yadav Surendra, and Mahajan Arvind. 2023. When do ESG controversies reduce firm value in India? Global Finance Journal 55: 100809. [Google Scholar]
- Asafo-Adjei, Emmanuel, Anokye Adam, Anthony Adu-Asare Idun, and Peace Ametepi. 2022. Dynamic interdependence of systematic risks in emerging markets economies: A recursive-based frequency-domain approach. Advanced Quantitative Methods for Financial Markets 2022: 1139869. [Google Scholar] [CrossRef]
- Baker, Malcolm, Mathias Hoeyer, and Jeffrey Wurgler. 2020. Leverage and the Beta Anomaly. Journal of Financial and Quantitative Analysis 55: 1491–514. [Google Scholar] [CrossRef]
- Bax, Karoline, Özge Sahin, Claudia Czado, and Sandra Paterlini. 2023. ESG, risk, and (tail) dependence. International Review of Financial Analysis 87: 102513. [Google Scholar] [CrossRef]
- Bele, Alexandra Maria, Claudia Diana Sabau-Popa, and Maria Secară Oana. 2023. Sustainable development goals and the triangle of ESG investments. Journal of Financial Studies 8: 11–23. [Google Scholar] [CrossRef]
- Boubaker, Sabri, Alexis Cellier, Riadh Manita, and Asif Saeed. 2020. Does corporate social responsibility reduce financial distress risk? Economic Modelling 91: 835–51. [Google Scholar] [CrossRef]
- Broadstock, David, Kalok Chan, Louis Cheng, and Xiaowei Wang. 2021. The role of ESG performance during times of financial crisis: Evidence from COVID-19 in China. Finance Research Letters 38: 101716. [Google Scholar] [CrossRef] [PubMed]
- Bui, Mai, Duy Nguyen, and Tu M. Tran. 2017. Factors affecting systematic risk: Empirical evidence from non-financial sectors of Vietnam. International Journal of Economic Research 14: 271–83. [Google Scholar]
- Camilleri, Silvio John, Nicolanne Scicluna, and Ye Bai. 2019. Do stock markets lead or lag macroeconomic variables? Evidence from select European countries. The North American Journal of Economics and Finance 48: 170–86. [Google Scholar] [CrossRef]
- Campbell, John, Jens Dietrich Hilscher, and Jan Szilagyi. 2011. Predicting financial distress and the performance of distressed stocks. Journal of Investment Management 9: 14–34. [Google Scholar]
- Chaudhary, Rashmi, Priti Bakhshi, and Hemendra Gupta. 2020. Volatility in international stock markets: An empirical study during COVID-19. Journal of Risk and Financial Management 13: 208. [Google Scholar] [CrossRef]
- Chen, Joseph, Harrison Hong, and Jeremy Stein. 2001. Forecasting crashes: Trading volume, past returns, and conditional skewness in stock prices. Journal of Financial Economics 61: 345–81. [Google Scholar] [CrossRef]
- Chincarini, Ludwig, Daehwan Kim, and Fabio Moneta. 2020. Beta and firm age. Journal of Empirical Finance 58: 50–74. [Google Scholar] [CrossRef]
- Damodaran, Aswath. 2009. Valuing Young Start-Up and Growth Companies: Estimation Issues and Valuation Challenges. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=1418687 (accessed on 1 April 2024.).
- Estrada, Javier. 2006. Downside risk in practice. Journal of Applied Corporate Finance 18: 117–25. [Google Scholar] [CrossRef]
- Farooq, Omar, Harit Satt, Fatima Zahra Bendriouch, and Diae Lamiri. 2021. Dividend policy and the downside risk in stock prices: Evidence from the MENA region. Journal of Risk Finance 22: 261–78. [Google Scholar] [CrossRef]
- Franzoni, Francesco A. 2006. Where is Beta Going? The Riskiness of Value and Small Stocks. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=936688 (accessed on 1 April 2024.).
- Freeman, Edward. 2006. Strategic Management: A Stakeholder Approach. Shanghai: Shanghai Translation Publishing House. [Google Scholar]
- Gisbert-Pérez, Julia, Manuel Martí-Vilar, and Francisco González-Sala. 2022. Prospect theory: A bibliometric and systematic review in the categories of psychology in Web of Science. Healthcare 10: 2098. [Google Scholar] [CrossRef] [PubMed]
- Gupta, Hemendra, and R.ashmi Chaudhary. 2023. An analysis of volatility and risk-adjusted returns of ESG indices in developed and emerging economies. Risks 11: 182. [Google Scholar] [CrossRef]
- Hamada, Robert. 1972. The effect of the firm’s capital structure on the systematic risk of common stocks. Journal of Finance 27: 435–52. [Google Scholar] [CrossRef]
- He, Feng, Cong Ding, Wei Yue, and Guanchun Liu. 2023. ESG performance and corporate risk-taking: Evidence from China. International Review of Financial Analysis 87: 102550. [Google Scholar] [CrossRef]
- He, Zhifang, Chuangxia Huang, Xu Gong, Xiaoguang Yang, and Fenghua Wen. 2017. Do trading volume and downside trading volume help forecast the downside risk? Eurasia Journal of Mathematics, Science and Technology Education 13: 8367–82. [Google Scholar]
- Hoepner, Andreas, Ioannis Oikonomou, Zacharias Sautner, Laura Starks, and Xiao Zhou. 2023. ESG shareholder engagement and downside risk. Review of Finance 28: 483–510. [Google Scholar] [CrossRef]
- Hrdlicka, Christopher. 2022. Trading volume and time varying betas. Review of Finance 26: 79–116. [Google Scholar]
- Hung, Dao Van, Nguyen Thi Minh Hue, and Vu Thuy Duong. 2021. The impact of COVID-19 on stock market returns in Vietnam. Journal of Risk and Financial Management 14: 441. [Google Scholar] [CrossRef]
- Jin, Xin, and Xue Lei. 2023. A study on the mechanism of ESG’s impact on corporate value under the concept of sustainable development. Sustainability 15: 8442. [Google Scholar] [CrossRef]
- John, Kose, Teresa John, and Haim Riesman. 1994. Accounting data and asset valuation: Theory. Review of Quantitative Finance and Accounting 4: 311–20. [Google Scholar] [CrossRef]
- Kahneman, Daniel, and Amos Tversky. 1979. Prospect theory: An analysis of decision under risk. Econometría 47: 263–92. [Google Scholar] [CrossRef]
- Kumar, Ronald Ravinesh, Peter Josef Stauvermann, and Aristeidis Samitas. 2022. An application of portfolio mean-variance and semi-variance optimization techniques: A case of Fiji. Journal of Risk and Financial Management 15: 190. [Google Scholar] [CrossRef]
- Lashkaripour, Mohammadhossein. 2023. ESG tail risk: The Covid-19 market crash analysis. Finance Research Letters 53: 103598. [Google Scholar] [CrossRef]
- Liu, Hao, Hao Zhang, Ya-Chun Gao, and Xu-Dong Chen. 2022. Firm age and beta: Evidence from China. International Review of Economics & Finance 77: 244–61. [Google Scholar]
- Liu, Jinjing. 2023. A novel downside beta and expected stock returns. International Review of Financial Analysis 85: 102455. [Google Scholar] [CrossRef]
- Lööf, Hans, Maziar Sahamkhadam, and Andreas Stephan. 2022. Is Corporate Social Responsibility investing a free lunch? The relationship between ESG, tail risk, and upside potential of stocks before and during the COVID-19 crisis. Finance Research Letters 46: 102499. [Google Scholar] [CrossRef] [PubMed]
- Martín-Cervantes, Pedro Antonio, and María del Carmen Valls Martínez. 2023. Unraveling the relationship between betas and ESG scores through the Random Forests methodology. Risk Management 25: 1–29. [Google Scholar] [CrossRef]
- Obizhaeva, Anna. 2016. The Russian ruble crisis of December 2014. Voprosy Ekonomiki 5: 66–86. (In Russian). [Google Scholar] [CrossRef]
- Olibe, Kingsley, Franklin Michello, and Jerry Thorne. 2008. Systematic risk and international diversification: An empirical perspective. International Review of Financial Analysis 7: 681–98. [Google Scholar] [CrossRef]
- Omet, Ghassan, and Mamoun Al-Debi’e. 2000. The association between systematic risk and debt to equity ratio in Amman financial market. Dirasat, The University of Jordan 27: 461–66. [Google Scholar]
- Qian, Kun, Bingjie Shi, Yunling Song, and Hao Wu. 2023. ESG performance and loan contracting in an emerging market. Pacific-Basin Finance Journal 78: 101973. [Google Scholar] [CrossRef]
- Qiu, Yan, Amama Shaukat, and Rajesh Tharyan. 2016. Environmental and social disclosures: Link with corporate financial performance. The British Accounting Review 48: 102–16. [Google Scholar] [CrossRef]
- Rao, Potluri. 1976. On a correspondence between t and F values in multiple regressions. The American Statistician 30: 190–91. [Google Scholar] [CrossRef]
- Ratner, Bruce. 2009. The correlation coefficient: Its values range between +1/-1, or do they? Journal of Targeting, Measurement and Analysis for Marketing 17: 139–42. [Google Scholar] [CrossRef]
- Rowe, Toni, and Jungsun Kim. 2010. Analyzing the relationship between systematic risk and financial variables in the casino industry. UNLV Gaming Research & Review Journal 14: 47–58. [Google Scholar]
- Saji, T. G. 2018. Predicting Market Betas: Implications from firms’ financials in India. Paradigm 22: 160–74. [Google Scholar] [CrossRef]
- Suttipun, Muttanachai. 2023. ESG performance and corporate financial risk of the alternative capital market in Thailand. Cogent Business & Management 10: 2168290. [Google Scholar]
- Teplova, Tamara, and Evgeniya Mikova. 2019. Investments on Market Inefficiencies and Behavioral Distortions. INFRA-M. Oxford: Oup Oxford. 404p. (In Russian) [Google Scholar]
- Teplova, Tamara, and Sergei Gurov. 2022. New evidence on the impact of implicit trading costs on asset prices in the Russian stock market. Applied Economics 54: 5943–55. [Google Scholar] [CrossRef]
- Teplova, Tamara, Tatiana Sokolova, and David Kissa. 2023. Revealing stock liquidity determinants by means of Explainable AI: The role of ESG before and during the COVID-19 pandemic. Resources Policy 86: 104253. [Google Scholar] [CrossRef]
- Tversky, Amos, and Daniel Kahneman. 1987. Rational choice and the framing of decisions. In Rational Choice: The Contrast between Economics and Psychology. Edited by R. M. Hogarth and M. W. Reder. Chicago: University of Chicago Press, pp. 67–94. [Google Scholar]
- van Dolder, Dennie, and Jurgen Vandenbroucke. 2023. Behavioral Risk Profiling: Measuring Loss Aversion of Individual Investors. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4199169 (accessed on 1 April 2024).
- Xie, Xuemei, Jiage Huo, and Hailiang Zou. 2019. Green process innovation, green product innovation, and corporate financial performance: A content analysis method. Journal of Business Research 101: 697–706. [Google Scholar] [CrossRef]
- Yu, Huaibing. 2022. Does sustainable competitive advantage make a difference in stock performance during the Covid-19 pandemic? Finance Research Letters 48: 102893. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Ning, Yue Zhang, and Zhe Zong. 2023. Fund ESG performance and downside risk: Evidence from China. International Review of Financial Analysis 86: 102526. [Google Scholar] [CrossRef]
Name | Description | Expected Sign |
---|---|---|
Net_debt_EBITDA | Net debt/EBITDA | + |
ROE | Return on equity | − |
ICR | Interest coverage ratio | − |
ROA | Return on assets | − |
Operat_margin | Operating margin | − |
Tobin’s_Q | Tobin’s Q (the ratio of market capitalization to net asset value) | − |
Revenue_growth | Revenue growth, %, year to year | − |
Social_score | Social responsibility score (0 at minimum, 100 at maximum) | − |
Govern_score | Corporate governance score (0 at minimum, 100 at maximum) | − |
Emiss_score | A measure of a company’s commitment to reduce emissions in its production and operational processes (0 at minimum, 100 at maximum) | − |
Ln_Env_innov_score | A logged measure of a company’s propensity to environmental innovations (0 at minimum when and at maximum) | − |
Ln_Policy_water_score | A logged measure of a company’s water withdrawal (0 at minimum when and at maximum) | − |
Ln_Policy_energy_score | A logged measure of sustainability in a company’s energy policy (0 when and at maximum) | − |
Policy_emiss_score | A measure of sustainability in a company’s emissions policy (0 at minimum, 100 at maximum) | − |
Env_manag_team_score | A measure of the effectiveness of a company’s environmental management (0 at minimum, 100 at maximum) | − |
Env_supp_chain_score | A measure of sustainability in a company’s supply chain management (0 at minimum, 100 at maximum) | − |
Rel_spread | Relative monthly bid–ask spread: average for the months of a specific year | + |
Ln_Trad_volume | Logarithm of monthly trading volume, not taking into account free float: average for the months of a specific year | + or − |
Free_float | Monthly free float: average for the months of a specific year | − |
Ln_one_plus_ Hui Heubel | Logarithm of 1 plus monthly Hui Heubel measure: average for the months of a specific year | + |
Variables | Mean | Median | Maximum | Minimum | Std. Dev. | Skewness | Kurtosis |
---|---|---|---|---|---|---|---|
0.8966 | 0.8474 | 2.6735 | −0.3870 | 0.4539 | 0.8128 | 1.8696 | |
0.7887 | 0.7605 | 1.9401 | −0.0846 | 0.3661 | 0.3483 | 0.0672 | |
1.651 | 1.290 | 18.332 | −0.738 | 1.926 | 3.418 | 21.036 | |
0.166 | 0.123 | 1.969 | −1.500 | 0.373 | 0.065 | 8.077 | |
12.167 | 7.581 | 140.944 | −3.000 | 13.812 | 3.440 | 26.057 | |
6.931 | 5.822 | 35.000 | −15.860 | 8.424 | 0.320 | 1.562 | |
15.162 | 13.060 | 55.622 | −15.000 | 15.439 | 0.807 | 0.285 | |
1.434 | 1.089 | 7.000 | −0.021 | 1.195 | 2.769 | 9.555 | |
5.316 | 2.828 | 70.000 | −45.000 | 16.733 | 0.592 | 1.953 | |
43.667 | 42.408 | 88.032 | 0.368 | 22.158 | 0.086 | −0.996 | |
50.951 | 50.995 | 96.390 | 5.046 | 22.429 | −0.066 | −1.054 | |
50.865 | 55.441 | 94.412 | 0.000 | 24.717 | −0.519 | −0.689 | |
1.2161 | 0.0000 | 4.590 | 0.000 | 1.769 | 0.823 | −1.247 | |
3.526 | 4.254 | 4.422 | 0.000 | 1.628 | −1.714 | 0.955 | |
3.513 | 4.206 | 4.387 | 0.000 | 1.603 | −1.742 | 1.061 | |
52.234 | 62.407 | 76.683 | 0.000 | 26.488 | −1.366 | 0.124 | |
42.322 | 69.091 | 89.749 | 0.000 | 36.895 | −0.260 | −1.902 | |
29.687 | 0.0000 | 86.462 | 0.000 | 37.423 | 0.485 | −1.740 | |
0.147 | 0.123 | 0.862 | 0.022 | 0.103 | 2.438 | 10.474 | |
7.708 | 7.724 | 12.237 | 4.352 | 1.364 | 0.018 | 0.352 | |
33.676 | 29.226 | 100.000 | 4.004 | 21.622 | 1.162 | 1.070 | |
2.278 | 1.965 | 6.582 | 0.345 | 1.151 | 0.969 | 0.764 |
Down_beta × 103 | Beta × 103 | |
---|---|---|
Intercept | 500.38 * (290.55) | 255.02 (272.66) |
Net_debt_EBITDA | −5.76 (17.48) | −18.18 * (10.20) |
ROE | −178.06 *** (40.58) | −201.59 *** (26.56) |
ICR | −2.85 *** (1.01) | −1.17 (1.11) |
ROA | 0.20 (4.78) | 0.26 (3.42) |
Operat_margin | −1.81 (4.21) | −2.69 (2.84) |
Tobin s_Q | −24.51 *** (6.86) | −27.38 *** (5.47) |
Revenue_growth | −0.69 (2.44) | 0.12 (2.31) |
Social_score | −0.40 (1.50) | 1.59 (1.24) |
Govern_score | 0.07 (0.85) | 0.75 (0.49) |
Emiss_score | 2.52 ** (1.27) | 2.50 * (1.32) |
Ln_Env_innov_score | −19.59 * (10.24) | −41.23 *** (4.81) |
Ln_Policy_water_score | −0.09 (21.85) | −24.52 * (13.69) |
Ln_Policy_energy_score | −50.01 *** (16.16) | −16.27 * (8.36) |
Policy_emiss_score | 1.85 ** (0.76) | 1.46 ** (0.71) |
Env_manag_team_score | −0.08 (0.22) | 0.74 * (0.44) |
Env_supp_chain_score | −1.19 *** (0.41) | −1.20 *** (0.38) |
Rel_spread | 589.53 (407.65) | 543.12 * (282.94) |
Ln_Trad_volume | 70.98 *** (15.27) | 59.51 *** (10.32) |
Free_float | −1.14 (1.22) | 2.95 *** (0.58) |
Ln_one_plus_Hui Heubel | −48.11 (35.62) | −27.32 (23.58) |
Number of observations | 280 | 280 |
Adj. R-squared | 0.131 | 0.190 |
Durbin–Watson statistic | 1.910 | 1.739 |
Down_beta × 103 | Beta × 103 | |
---|---|---|
413.97 ** (198.98) | 222.16 (285.42) | |
−14.42 *** (4.93) | ||
−214.08 *** (65.06) | −192.83 *** (19.81) | |
−2.50 ** (1.17) | ||
−2.67 (2.56) | ||
−27.58 *** (6.66) | ||
1.54 (1.26) | ||
0.83 (0.69) | ||
2.18 (1.37) | 2.43 * (1.39) | |
−13.81 ** (5.92) | −39.02 *** (4.24) | |
−25.64* (15.50) | ||
−47.64 *** (12.16) | −13.82 (10.09) | |
1.93 *** (0.44) | 1.39 * (0.72) | |
0.72 (0.50) | ||
−1.21 *** (0.39) | ||
589.90 (372.14) | 562.05 * (286.16) | |
78.10 *** (10.66) | 60.26 *** (11.00) | |
3.00 *** (0.64) | ||
−58.03 ** (26.57) | −26.12 (24.75) | |
Number of observations | 280 | 280 |
Adj. R-squared | 0.154 | 0.198 |
Durbin–Watson statistic | 1.899 | 1.740 |
Down_beta × 103, Social_score | Down_beta × 103, Govern_score | Down_beta × 103, Emiss_score | Down_beta × 103, Ln_env_innov_score | Down_beta × 103, Ln_policy_water_score | Down_beta × 103, Ln_policy_energy_score | Down_beta × 103, Policy_emiss_score | Down_beta × 103, Env_manag_team_score | Down_beta × 103, Env_supp_chain_score | |
---|---|---|---|---|---|---|---|---|---|
Intercept | 546.45 ** (242.71) | 487.04 ** (203.55) | 313.77 (255.32) | 538.53 *** (207.12) | 468.98 ** (228.97) | 497.00 *** (167.17) | 321.86 (244.13) | 470.91 ** (220.97) | 489.89 ** (223.39) |
Dummy for COVID-19 | −256.04 * (132.28) | 288.90 *** (100.25) | −192.32 (152.64) | −255.02 ** (119.02) | −592.67 *** (167.13) | −616.46 *** (108.92) | −60.21 (161.08) | −219.35 * (129.49) | −148.14 (116.35) |
Interaction term | 1.92 (1.20) | 2.30 *** (0.70) | 0.04 (1.85) | 43.17 * (16.76) | 104.22 *** (20.17) | 111.72 *** (17.21) | −1.98 (2.33) | 1.27 ** (0.60) | −0.17 (0.54) |
Net_debt_EBITDA | 10.00 (18.18) | 11.17 (18.75) | 11.94 (19.17) | 8.05 (18.06) | 10.94 (19.24) | 11.86 (16.91) | 10.29 (18.11) | 11.27 (18.94) | 9.54 (19.39) |
ROE | −125.31 *** (38.07) | −137.81 *** (39.61) | −131.03 *** (40.42) | −139.61 *** (40.44) | −128.18 *** (39.43) | −132.67 *** (37.90) | −134.34 *** (36.13) | −133.65 *** (38.62) | −124.92 *** (39.54) |
ICR | 0.04 (1.59) | −0.22 (1.59) | −0.16 (1.55) | −0.40 (1.68) | −0.06 (1.66) | 1.36 (1.08) | −0.64 (1.42) | −0.01 (1.60) | −0.09 (1.56) |
ROA | −0.14 (3.94) | −0.21 (3.99) | −0.17 (4.30) | 0.55 (3.58) | −0.41 (4.15) | 0.23 (4.02) | 0.09 (4.27) | −0.28 (4.08) | −0.47 (4.14) |
Operat_margin | −2.89 (4.33) | −2.64 (4.50) | −2.98 (4.53) | −4.53 (4.93) | −2.85 (4.69) | −3.12 (4.34) | −2.71 (4.58) | −2.40 (4.22) | −2.95 (4.57) |
Tobin’s_Q | −17.67 * (10.25) | 14.78 (10.46) | −14.31 (9.63) | −23.13 ** (10.22) | −17.44 * (8.88) | −20.20 * (10.74) | −14.96 (9.90) | −16.55 * (9.98) | −15.49 * (9.36) |
Revenue_growth | −1.58 (2.47) | −1.62 (2.42) | −1.59 (2.59) | −1.42 (2.51) | −1.48 (2.35) | −1.77 (2.51) | −1.42 (2.54) | −1.63 (2.45) | −1.57 (2.51) |
Social_score | −1.72 (1.26) | ||||||||
Govern_score | −0.85 (0.55) | ||||||||
Emiss_score | 1.48 * (0.86) | ||||||||
Ln_Env_innov_score | −37.66 ** (18.76) | ||||||||
Ln_Policy_water_score | −4.82 (13.76) | ||||||||
Ln_Policy_energy_score | −26.26 *** (7.79) | ||||||||
Policy_emiss_score | 1.43 * (0.73) | ||||||||
Env_manag_team_score | −0.59 (0.62) | ||||||||
Env_supp_chain_score | −0.49 (0.62) | ||||||||
Rel_spread | 522.98 (400.96) | 599.06 (397.15) | 712.11 (450.85) | 507.70 (372.20) | 627.31 (391.87) | 548.83 (379.69) | 684.23 (424.74) | 588.77 (413.48) | 585.72 (403.16) |
Ln_Trad_volume | 78.22 *** (14.53) | 80.99 *** (14.47) | 83.98 *** (14.46) | 79.67 *** (13.93) | 80.28 *** (14.66) | 83.14 *** (13.73) | 85.40 *** (15.18) | 78. 85 *** (14.15) | 76.38 *** (15.27) |
Free_float | 0.61 (0.94) | 0.43 (1.03) | 0.66 (0.96) | 0.50 (0.95) | 0.44 (0.91) | 0.60 (0.92) | 0.45 (0.91) | 0.69 (0.96) | 0.60 (0.99) |
Ln_one_plus_Hui Heubel | −68.57 * (37.65) | −67.79 * (37.90) | −61.79 * (37.25) | −60.65 (40.17) | −69.23 * (36.96) | −60.68 (37.77) | −64.80 * (35.16) | −67.53 * (37.63) | −67.40 * (38.76) |
Number of observations | 280 | 280 | 280 | 280 | 280 | 280 | 280 | 280 | 280 |
Adj. R-squared | 0.131 | 0.129 | 0.132 | 0.139 | 0.133 | 0.139 | 0.132 | 0.129 | 0.128 |
Durbin-Watson statistic | 1.856 | 1.820 | 1.838 | 1.886 | 1.855 | 1.848 | 1.844 | 1. 851 | 1.846 |
W = 3.899 (0.142) | W = 32.371 (0.000) | W = 3.016 (0.221) | W = 7.719 (0.021) | W = 26.923 (0.000) | W = 61.533 (0.000) | W = 2.772 (0.250) | W = 4.557 (0.103) | W = 3.184 (0.204) |
Beta × 103, Social_score | Beta × 103, Govern_score | Beta × 103, Emiss_score | Beta × 103, Ln_env_innov_score | Beta × 103, Ln_policy_water_score | Beta × 103, Ln_policy_energy_score | Beta × 103, Policy_emiss_score | Beta × 103, Env_manag_team_score | Beta × 103, Env_supp_chain_score | |
---|---|---|---|---|---|---|---|---|---|
285.03 (216.14) | 269.23 * (160.69) | 137.71 (217.15) | 496.25 *** (142.88) | 411.47 ** (177.31) | 277.36 (189.88) | 235.53 (205.81) | 288.76 (201.45) | 386.02 ** (182.19) | |
−125.39 (171.14) | −113.59 (139.37) | −134.30 (158.63) | −144.30 (108.47) | −507.97 *** (175.29) | −561.66 *** (174.79) | −65.30 (141.18) | −99.77 (139.09) | −83.77 (136.58) | |
0.61 (1.58) | 0.72 (0.61) | 0.28 (1.46) | 32.79 *** (11.53) | 105.65 *** (2.23) | 116.91 *** (29.46) | −0.44 (1.63) | 0.15 (0.84) | 0.20 (0.91) | |
−8.41 (7.24) | −8.96 (6.75) | −8.68 (7.06) | −14.70 ** (6.41) | −10.18 (6.46) | −6.23 (5.84) | −11.24 ** (5.63) | −5.91 (8.20) | −10.18 (6.44) | |
−143.82 *** (26.49) | −133.71 *** (26.91) | −135.96 *** (32.49) | −150.64 *** (30.05) | −132.88 *** (31.08) | −127.93 *** (29.85) | −140.76 *** (26.07) | −151.30 *** (25.07) | −134.02 *** (28.67) | |
0.98 (1.37) | 1.17 (1.54) | 0.69 (1.21) | 0.21 (1.45) | 0.93 (1.28) | 3.02 ** (1.30) | 0.32 (1.13) | 0.81 (1.32) | 0.98 (1.22) | |
−1.15 (2.78) | −0.63 (2.54) | −1.00 (3.27) | −0.18 (2.51) | −1.28 (2.84) | −1.45 (2.73) | −0.71 (3.02) | −0.80 (2.91) | −1.20 (2.97) | |
−1.31 (3.30) | −1.60 (3.16) | −1.79 (3.08) | −3.34 (3.11) | −1.53 (3.22) | −1.72 (2.91) | −1.35 (3.07) | −1.89 (2.77) | −1.48 (3.13) | |
−13.90 ** (6.78) | −17.64 *** (5.54) | −12.13 * (6.82) | −22.68 *** (7.30) | −16.51 ** (8.13) | −24.76 *** (6.71) | −14.05 *** (4.81) | −11.81 (7.87) | −14.35 * (7.75) | |
−0.58 (2.24) | −0.50 (2.26) | −0.58 (2.35) | −0.35 (2.22) | −0.48 (2.04) | −0.81 (2.35) | −0.45 (2.27) | −0.35 (2.08) | −0.56 (2.23) | |
1.17 (1.42) | |||||||||
1.21 *** (0.43) | |||||||||
2.73 ** (1.15) | |||||||||
−41.51 *** (12.65) | |||||||||
−6.86 (13.90) | |||||||||
7.49 (11.25) | |||||||||
1.63 * (0.85) | |||||||||
1.02 (0.82) | |||||||||
−0.18 (0.81) | |||||||||
482.17 * (289.26) | 473.36 (291.08) | 556.93 * (328.92) | 262.83 (215.61) | 391.83 (249.06) | 466.39 * (276.29) | 466.19 (294.09) | 488.63 (313.48) | 385.21 (268.86) | |
64.13 *** (9.37) | 63.21 *** (10.46) | 68.05 *** (7.64) | 59.42 *** (10.32) | 61.01 *** (11.20) | 65.74 *** (11.79) | 67.23 *** (8.17) | 66.35 *** (8.93) | 60.21 *** (9.67) | |
2.73 *** (0.60) | 3.09 *** (0.62) | 2.96 *** (0.61) | 2.72 *** (0.61) | 2.67 *** (0.64) | 2.65 *** (0.60) | 2.65 *** (0.58) | 2.62 *** (0.58) | 2.82 *** (0.62) | |
−46.41 * (25.20) | −46.22 * (25.50) | −36.16 (23.59) | −40.29 (25.93) | −49.25 *** (24.24) | −44.48 * (26.67) | −43.61 * (23.00) | −50.03 * (25.04) | −47.57 * (26.26) | |
Number of observations | 280 | 280 | 280 | 280 | 280 | 280 | 280 | 280 | 280 |
Adj. R-squared | 0.145 | 0.147 | 0.169 | 0.162 | 0.150 | 0.157 | 0.152 | 0.149 | 0.140 |
Durbin-Watson statistic | 1.660 | 1.683 | 1.671 | 1.761 | 1.728 | 1.680 | 1.689 | 1.676 | 1.717 |
H0: Dummy for COVID-19 = 0, Interaction term = 0 | W = 0.653 (0.721) | W = 1.381 (0.501) | W = 1.226 (0.542) | W = 8.524 (0.014) | W = 24.304 (0.000) | W = 15.911 (0.000) | W = 0.699 (0.705) | W = 1.243 (0.537) | W = 0.631 (0.729) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Teplova, T.; Sokolova, T.; Gurov, S. Do ESG Factors Prove Significant Predictors of Systematic and Downside Risks in the Russian Market after Controlling for Stock Liquidity? J. Risk Financial Manag. 2024, 17, 172. https://doi.org/10.3390/jrfm17040172
Teplova T, Sokolova T, Gurov S. Do ESG Factors Prove Significant Predictors of Systematic and Downside Risks in the Russian Market after Controlling for Stock Liquidity? Journal of Risk and Financial Management. 2024; 17(4):172. https://doi.org/10.3390/jrfm17040172
Chicago/Turabian StyleTeplova, Tamara, Tatiana Sokolova, and Sergei Gurov. 2024. "Do ESG Factors Prove Significant Predictors of Systematic and Downside Risks in the Russian Market after Controlling for Stock Liquidity?" Journal of Risk and Financial Management 17, no. 4: 172. https://doi.org/10.3390/jrfm17040172
APA StyleTeplova, T., Sokolova, T., & Gurov, S. (2024). Do ESG Factors Prove Significant Predictors of Systematic and Downside Risks in the Russian Market after Controlling for Stock Liquidity? Journal of Risk and Financial Management, 17(4), 172. https://doi.org/10.3390/jrfm17040172