Can ESG Integration Enhance the Stability of Disruptive Technology Stock Investments? Evidence from Copula-Based Approaches
Abstract
:1. Introduction
2. Literature Review
2.1. Dependence Structure of Sectoral Markets
2.2. ESG and Dependence
2.3. ESG and Spillover Effects
3. Methodology
3.1. Marginal Distribution Model
3.2. Vine Copula Model
3.3. GAS t-Copula Model
3.4. CoVaR–Copula Approach
4. Data
5. Empirical Results
5.1. Marginal Distribution
5.2. Dependence Structure within Tech Sectors
5.3. Tech Sectors and Stock Market Dependence
5.4. Tech Sector and Stock Market Spillover Effects
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Authors | Marginals | Distributions | Copula Types | Dynamic Copula | CoVaR |
---|---|---|---|---|---|
Dai et al. (2023) | ARMA-GARCH | skew-t | Normal, Student-t, rotated Clayton, and rotated Gumbel copula | No | Yes |
Hanif et al. (2022) | ARMA-TGARCH | skew-t | C-vine copula | ARMA(1,q) process | Yes |
Jain and Maitra (2023) | AR-GARCH | (skew) normal, (skew) t, and (skew) GED | R-, C-, and D-vine copula | No | Yes |
Kielmann et al. (2022) | ARMA-GARCH | normal and skew-t | D-vine copula | GAS | Yes |
Rehman et al. (2023) | ARMA-GARCH | skew-t | Normal, Student-t, Frank, Plackett, rotated Gumbel, rotated Clayton, and SJC copula | ARMA(1,q) process | Yes |
Yao and Li (2023) | ARMA-GARCH-MIDAS | normal | Student-t copula | GAS | Yes |
Zeng et al. (2022) | AR-GJR-GARCH | skew-t | Vine copula, Student-t, and rotated 270 Clayton copula | No | Yes |
R Package | Programmers |
---|---|
CDVineCopulaConditional | Bevacqua (2017) |
copula | Hofert et al. (2023) |
DistributionUtils | Scott (2018) |
GAS | Ardia et al. (2019) |
PerformanceAnalytics | Peterson and Carl (2020) |
RCoVaRCopula * | Reboredo and Ugolini (2016) |
rugarch | Ghalanos (2022) |
stats | R Core Team (2023) |
tseries | Trapletti and Hornik (2023) |
TSP | Hahsler and Hornik (2023) |
VineCopula | Nagler et al. (2023) |
Copula Family | par | par2 |
---|---|---|
Gaussian | (−1, 1) | - |
Student-t | (−1, 1) | (2, ∞) |
(Survival) Clayton | (0, ∞) | - |
Rotated Clayton (90 and 270 degrees) | (−∞, 0) | - |
(Survival) Gumbel | [1, ∞) | - |
Rotated Gumbel (90 and 270 degrees) | (−∞, −1] | - |
Frank | R\{0} | - |
(Survival) Joe | (1, ∞) | - |
Rotated Joe (90 and 270 degrees) | (−∞, −1) | - |
(Survival) Clayton-Gumbel (BB1) | (0, ∞) | [1, ∞) |
Rotated Clayton-Gumbel (90 and 270 degrees) | (−∞, 0) | (−∞, −1] |
(Survival) Joe-Gumbel (BB6) | [1, ∞) | [1, ∞) |
Rotated Joe-Gumbel (90 and 270 degrees) | (−∞, −1] | (−∞, −1] |
(Survival) Joe-Clayton (BB7) | [1, ∞) | (0, ∞) |
Rotated Joe-Clayton (90 and 270 degrees) | (−∞, −1] | (−∞, 0) |
(Survival) Joe-Frank (BB8) | [1, ∞) | (0, 1] |
Rotated Joe-Frank (90 and 270 degrees) | (−∞, −1] | [−1, 0) |
(Survival) Tawn type 1 | [1, ∞) | [0, 1] |
Rotated Tawn type 1 (90 and 270 degrees) | (−∞, −1] | [0, 1] |
(Survival) Tawn type 2 | [1, ∞) | [0, 1] |
Rotated Tawn type 2 (90 and 270 degrees) | (−∞, −1] | [0, 1] |
References
- Aas, Kjersti, Claudia Czado, Arnoldo Frigessi, and Henrik Bakken. 2009. Pair-copula constructions of multiple dependence. Insurance: Mathematics and Economics 44: 182–98. [Google Scholar] [CrossRef]
- Abadie, Alberto. 2002. Bootstrap Tests for Distributional Treatment Effects in Instrumental Variable Models. Journal of the American Statistical Association 97: 284–92. [Google Scholar] [CrossRef]
- Adrian, Tobias, and Markus K. Brunnermeier. 2016. CoVaR. American Economic Review 106: 1705–41. [Google Scholar] [CrossRef]
- Alkaraan, Fadi, Khaldoon Albitar, Khaled Hussainey, and V. G. Venkatesh. 2022. Corporate transformation toward Industry 4.0 and financial performance: The influence of environmental, social, and governance (ESG). Technological Forecasting and Social Change 175: 121423. [Google Scholar] [CrossRef]
- Aloui, Riadh, Mohamed Safouane Ben Aïssa, and Duc Khuong Nguyen. 2011. Global financial crisis, extreme interdependences, and contagion effects: The role of economic structure? Journal of Banking & Finance 35: 130–41. [Google Scholar] [CrossRef]
- Antonakakis, Nikolaos, Ioannis Chatziantoniou, and David Gabauer. 2020. Refined Measures of Dynamic Connectedness based on Time-Varying Parameter Vector Autoregressions. Journal of Risk and Financial Management 13: 84. [Google Scholar] [CrossRef]
- Ardia, David, Kris Boudt, and Leopoldo Catania. 2019. Generalized Autoregressive Score Models in R: The GAS Package. Journal of Statistical Software 88: 1–28. [Google Scholar] [CrossRef]
- Arreola Hernandez, Jose, Shawkat Hammoudeh, Duc Khuong Nguyen, Mazin A. M. Al Janabi, and Juan Carlos Reboredo. 2017. Global financial crisis and dependence risk analysis of sector portfolios: A vine copula approach. Applied Economics 49: 2409–27. [Google Scholar] [CrossRef]
- Ashfaq, Saleha, Yong Tang, and Rashid Maqbool. 2023. Insights of energy and its trade networking impacts on sustainable economic development. Energy 265: 126319. [Google Scholar] [CrossRef]
- Asif, Muhammad, Cory Searcy, and Pavel Castka. 2023. ESG and Industry 5.0: The role of technologies in enhancing ESG disclosure. Technological Forecasting and Social Change 195: 122806. [Google Scholar] [CrossRef]
- Aslam, Faheem, Ahmed Imran Hunjra, Elie Bouri, Khurrum Shahzad Mughal, and Mrestyal Khan. 2023. Dependence structure across equity sectors: Evidence from vine copulas. Borsa Istanbul Review 23: 184–202. [Google Scholar] [CrossRef]
- Balcilar, Mehmet, David Gabauer, and Zaghum Umar. 2021. Crude Oil futures contracts and commodity markets: New evidence from a TVP-VAR extended joint connectedness approach. Resources Policy 73: 102219. [Google Scholar] [CrossRef]
- Baruník, Jozef, and Tomáš Křehlík. 2018. Measuring the Frequency Dynamics of Financial Connectedness and Systemic Risk. Journal of Financial Econometrics 16: 271–96. [Google Scholar] [CrossRef]
- Bedford, Tim, and Roger M. Cooke. 2002. Vines–a new graphical model for dependent random variables. The Annals of Statistics 30: 1031–68. [Google Scholar] [CrossRef]
- BenSaïda, Ahmed. 2023. The linkage between Bitcoin and foreign exchanges in developed and emerging markets. Financial Innovation 9: 38. [Google Scholar] [CrossRef] [PubMed]
- BenSaïda, Ahmed, and Houda Litimi. 2021. Financial contagion across G10 stock markets: A study during major crises. International Journal of Finance & Economics 26: 4798–821. [Google Scholar] [CrossRef]
- Bevacqua, Emanuele. 2017. CDVineCopulaConditional: Sampling from Conditional C- and D-Vine Copulas. Available online: https://CRAN.R-project.org/package=CDVineCopulaConditional (accessed on 16 March 2024).
- Chen, Jiandong, Ming Gao, Sachin Kumar Mangla, Malin Song, and Jie Wen. 2020. Effects of technological changes on China’s carbon emissions. Technological Forecasting and Social Change 153: 119938. [Google Scholar] [CrossRef]
- Chen, Simin, Yu Song, and Peng Gao. 2023. Environmental, social, and governance (ESG) performance and financial outcomes: Analyzing the impact of ESG on financial performance. Journal of Environmental Management 345: 118829. [Google Scholar] [CrossRef] [PubMed]
- Clarke, Kevin A. 2007. A Simple Distribution-Free Test for Nonnested Model Selection. Political Analysis 15: 347–63. [Google Scholar] [CrossRef]
- Creal, Drew, Siem Jan Koopman, and Andre Lucas. 2013. Generalized Autoregressive Score Models with Applications. Journal of Applied Econometrics 28: 777–95. [Google Scholar] [CrossRef]
- Czado, Claudia. 2019. Analyzing dependent data with vine copulas. In Lecture Notes in Statistics. Berlin/Heidelberg: Springer, vol. 222. [Google Scholar]
- Czado, Claudia, Eike Christian Brechmann, and Lutz Gruber. 2013. Selection of Vine Copulas. In Copulae in Mathematical and Quantitative Finance. Edited by P. Jaworski, F. Durante and W. K. Härdle. Berlin/Heidelberg: Springer, pp. 17–37. [Google Scholar]
- Dai, Yun-Shi, Peng-Fei Dai, and Wei-Xing Zhou. 2023. Tail dependence structure and extreme risk spillover effects between the international agricultural futures and spot markets. Journal of International Financial Markets, Institutions and Money 88: 101820. [Google Scholar] [CrossRef]
- Diebold, Francis X., and Kamil Yilmaz. 2012. Better to give than to receive: Predictive directional measurement of volatility spillovers. International Journal of Forecasting 28: 57–66. [Google Scholar] [CrossRef]
- Ding, Hao, Qiang Ji, Rufei Ma, and Pengxiang Zhai. 2022. High-carbon screening out: A DCC-MIDAS-climate policy risk method. Finance Research Letters 47: 102818. [Google Scholar] [CrossRef]
- Dong, Xiyong, Youlin Xiong, Siyue Nie, and Seong-Min Yoon. 2023. Can bonds hedge stock market risks? Green bonds vs. conventional bonds. Finance Research Letters 52: 103367. [Google Scholar] [CrossRef]
- Duan, Kun, Yanqi Zhao, Zhong Wang, and Yujia Chang. 2023. Asymmetric spillover from Bitcoin to green and traditional assets: A comparison with gold. International Review of Economics & Finance 88: 1397–417. [Google Scholar] [CrossRef]
- Emir Hidayat, Sutan, Omar Bamahriz, Nadiah Hidayati, Citra Atrina Sari, and Ginanjar Dewandaru. 2022. Value drivers of startup valuation from venture capital equity-based investing: A global analysis with a focus on technological factors. Borsa Istanbul Review 22: 653–67. [Google Scholar] [CrossRef]
- Forbes, Kristin J., and Roberto Rigobon. 2002. No Contagion, Only Interdependence: Measuring Stock Market Comovements. The Journal of Finance 57: 2223–61. [Google Scholar] [CrossRef]
- Gao, Yang, Yangyang Li, Chengjie Zhao, and Yaojun Wang. 2022. Risk spillover analysis across worldwide ESG stock markets: New evidence from the frequency-domain. The North American Journal of Economics and Finance 59: 101619. [Google Scholar] [CrossRef]
- Ghaemi Asl, Mahdi, Muhammad Mahdi Rashidi, Aviral Kumar Tiwari, Chi-Chuan Lee, and David Roubaud. 2023a. Green bond vs. Islamic bond: Which one is more environmentally friendly? Journal of Environmental Management 345: 118580. [Google Scholar] [CrossRef]
- Ghaemi Asl, Mahdi, Oluwasegun B. Adekoya, and Muhammad Mahdi Rashidi. 2023b. Quantiles dependence and dynamic connectedness between distributed ledger technology and sectoral stocks: Enhancing the supply chain and investment decisions with digital platforms. Annals of Operations Research 327: 435–64. [Google Scholar] [CrossRef]
- Ghalanos, Alexios. 2022. rugarch: Univariate GARCH Models. Available online: https://CRAN.R-project.org/package=rugarch (accessed on 16 March 2024).
- Girardi, Giulio, and A. Tolga Ergün. 2013. Systemic risk measurement: Multivariate GARCH estimation of CoVaR. Journal of Banking & Finance 37: 3169–80. [Google Scholar] [CrossRef]
- Hafner, Christian M., and Hans Manner. 2012. Dynamic stochastic copula models: Estimation, inference and applications. Journal of Applied Econometrics 27: 269–95. [Google Scholar] [CrossRef]
- Hahsler, Michael, and Kurt Hornik. 2023. TSP: Traveling Salesperson Problem (TSP). Available online: https://CRAN.R-project.org/package=TSP (accessed on 16 March 2024).
- Hanif, Waqas, Jose Areola Hernandez, Victor Troster, Sang Hoon Kang, and Seong-Min Yoon. 2022. Nonlinear dependence and spillovers between cryptocurrency and global/regional equity markets. Pacific-Basin Finance Journal 74: 101822. [Google Scholar] [CrossRef]
- Hansen, Bruce E. 1994. Autoregressive Conditional Density Estimation. International Economic Review 35: 705–30. [Google Scholar] [CrossRef]
- Hofert, Marius, Ivan Kojadinovic, Martin Maechler, and Jun Yan. 2023. copula: Multivariate Dependence with Copulas. Available online: https://CRAN.R-project.org/package=copula (accessed on 16 March 2024).
- Hossain, Ashrafee T., Abdullah-Al Masum, and Jian Xu. 2023. COVID-19, a blessing in disguise for the Tech sector: Evidence from stock price crash risk. Research in International Business and Finance 65: 101938. [Google Scholar] [CrossRef]
- Huang, Wanling, and Artem Prokhorov. 2014. A Goodness-of-fit Test for Copulas. Econometric Reviews 33: 751–71. [Google Scholar] [CrossRef]
- Huang, Yingying, Kun Duan, and Andrew Urquhart. 2023. Time-varying dependence between Bitcoin and green financial assets: A comparison between pre- and post-COVID-19 periods. Journal of International Financial Markets, Institutions and Money 82: 101687. [Google Scholar] [CrossRef]
- Jabbour, Charbel Jose Chiappetta, Ana Beatriz Lopes de Sousa Jabbour, Joseph Sarkis, and Moacir Godinho Filho. 2019. Unlocking the circular economy through new business models based on large-scale data: An integrative framework and research agenda. Technological Forecasting and Social Change 144: 546–52. [Google Scholar] [CrossRef]
- Jain, Prachi, and Debasish Maitra. 2023. Risk implications of dependence in the commodities: A copula-based analysis. Global Finance Journal 57: 100859. [Google Scholar] [CrossRef]
- Khan, Moin, Abid Haleem, and Mohd Javaid. 2023. Changes and improvements in Industry 5.0: A strategic approach to overcome the challenges of Industry 4.0. Green Technologies and Sustainability 1: 100020. [Google Scholar] [CrossRef]
- Kielmann, Julia, Hans Manner, and Aleksey Min. 2022. Stock market returns and oil price shocks: A CoVaR analysis based on dynamic vine copula models. Empirical Economics 62: 1543–74. [Google Scholar] [CrossRef] [PubMed]
- Koopman, Siem Jan, André Lucas, and Marcel Scharth. 2016. Predicting Time-Varying Parameters with Parameter-Driven and Observation-Driven Models. The Review of Economics and Statistics 98: 97–110. [Google Scholar] [CrossRef]
- KPMG. 2022. Mandatory ESG Reporting Is Here, and Finance Needs to Get Ready. Amstelveen: KPMG. Available online: https://kpmg.com/uk/en/blogs/home/posts/2022/05/mandatory-esg-reporting.html (accessed on 8 February 2024).
- Kumar, Mukesh, Rakesh D. Raut, Sachin Kumar Mangla, Soumyadeb Chowdhury, and Vikas Kumar Choubey. 2024. Moderating ESG compliance between industry 4.0 and green practices with green servitization: Examining its impact on green supply chain performance. Technovation 129: 102898. [Google Scholar] [CrossRef]
- Liu, Jiexian. 2024. Analyzing the Co-movement of FinTech market efficiency and oil Resource efficiency: An Input-Output study. Resources Policy 90: 104668. [Google Scholar] [CrossRef]
- Liu, Min, Tongji Guo, Weiying Ping, and Liangqing Luo. 2023. Sustainability and stability: Will ESG investment reduce the return and volatility spillover effects across the Chinese financial market? Energy Economics 121: 106674. [Google Scholar] [CrossRef]
- Lourme, Alexandre, and Frantz Maurer. 2017. Testing the Gaussian and Student’s t copulas in a risk management framework. Economic Modelling 67: 203–14. [Google Scholar] [CrossRef]
- Maraqa, Basel, and Murad Bein. 2020. Dynamic Interrelationship and Volatility Spillover among Sustainability Stock Markets, Major European Conventional Indices, and International Crude Oil. Sustainability 12: 3908. [Google Scholar] [CrossRef]
- Nagler, Thomas, Ulf Schepsmeier, Jakob Stoeber, Eike Christian Brechmann, Benedikt Graeler, and Tobias Erhardt. 2023. VineCopula: Statistical Inference of Vine Copulas. Available online: https://CRAN.R-project.org/package=VineCopula (accessed on 16 March 2024).
- Nelsen, Roger B. 2006. Dependence. In An Introduction to Copulas. New York: Springer, pp. 157–225. [Google Scholar] [CrossRef]
- Nguyen, Hoang, and Farrukh Javed. 2023. Dynamic relationship between Stock and Bond returns: A GAS MIDAS copula approach. Journal of Empirical Finance 73: 272–92. [Google Scholar] [CrossRef]
- Ning, Cathy. 2010. Dependence structure between the equity market and the foreign exchange market–A copula approach. Journal of International Money and Finance 29: 743–59. [Google Scholar] [CrossRef]
- Oh, Dong Hwan, and Andrew J. Patton. 2016. High-dimensional copula-based distributions with mixed frequency data. Journal of Econometrics 193: 349–66. [Google Scholar] [CrossRef]
- Papathanasiou, Spyros, Ioannis Dokas, and Drosos Koutsokostas. 2022. Value investing versus other investment strategies: A volatility spillover approach and portfolio hedging strategies for investors. The North American Journal of Economics and Finance 62: 101764. [Google Scholar] [CrossRef]
- Patton, Andrew J. 2006. Modelling Asymmetric Exchange Rate Dependence. International Economic Review 47: 527–56. [Google Scholar] [CrossRef]
- Peterson, Brian G., and Peter Carl. 2020. Performance Analytics: Econometric Tools for Performance and Risk Analysis. Available online: https://CRAN.R-project.org/package=PerformanceAnalytics (accessed on 16 March 2024).
- Pham, Linh, and Canh Phuc Nguyen. 2021. Asymmetric tail dependence between green bonds and other asset classes. Global Finance Journal 50: 100669. [Google Scholar] [CrossRef]
- Rašiová, Barbara, and Peter Árendáš. 2023. Copula approach to market volatility and technology stocks dependence. Finance Research Letters 52: 103553. [Google Scholar] [CrossRef]
- R Core Team. 2023. R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing. Available online: https://www.R-project.org/ (accessed on 16 March 2024).
- Reboredo, Juan C., and Andrea Ugolini. 2016. Quantile dependence of oil price movements and stock returns. Energy Economics 54: 33–49. [Google Scholar] [CrossRef]
- Rehman, Mobeen Ur, Paraskevi Katsiampa, Rami Zeitun, and Xuan Vinh Vo. 2023. Conditional dependence structure and risk spillovers between Bitcoin and fiat currencies. Emerging Markets Review 55: 100966. [Google Scholar] [CrossRef]
- Reischauer, Georg. 2018. Industry 4.0 as policy-driven discourse to institutionalize innovation systems in manufacturing. Technological Forecasting and Social Change 132: 26–33. [Google Scholar] [CrossRef]
- Scott, David. 2018. DistributionUtils: Distribution Utilities. Available online: https://CRAN.R-project.org/package=DistributionUtils (accessed on 16 March 2024).
- Shrestha, Keshab, Babak Naysary, and Sheena Sara Suresh Philip. 2023. Fintech market efficiency: A multifractal detrended fluctuation analysis. Finance Research Letters 54: 103775. [Google Scholar] [CrossRef]
- Sklar, Martin J. 1959. Fonctions de Repartition a n Dimensions et leurs Marges. Available online: https://api.semanticscholar.org/CorpusID:127105744 (accessed on 16 March 2024).
- Sukcharoen, Kunlapath, and David J. Leatham. 2017. Hedging downside risk of oil refineries: A vine copula approach. Energy Economics 66: 493–507. [Google Scholar] [CrossRef]
- Tiwari, Aviral Kumar, Emmanuel Joel Aikins Abakah, Xuefeng Shao, TN-Lan Le, and Matthew Ntow Gyamfi. 2023. Financial technology stocks, green financial assets, and energy markets: A quantile causality and dependence analysis. Energy Economics 118: 106498. [Google Scholar] [CrossRef]
- Trapletti, Adrian, and Kurt Hornik. 2023. tseries: Time Series Analysis and Computational Finance. Available online: https://CRAN.R-project.org/package=tseries (accessed on 16 March 2024).
- Urom, Christian. 2023. Time–frequency dependence and connectedness between financial technology and green assets. International Economics 175: 139–57. [Google Scholar] [CrossRef]
- Vuong, Quang. 1989. Likelihood Ratio Tests for Model Selection and Non-Nested Hypotheses. Econometrica 57: 307–33. [Google Scholar] [CrossRef]
- White, Halbert. 1982. Maximum Likelihood Estimation of Misspecified Models. Econometrica 50: 1–25. [Google Scholar] [CrossRef]
- Xiao, Qin, Meilan Yan, and Dalu Zhang. 2023. Commodity market financialization, herding and signals: An asymmetric GARCH R-vine copula approach. International Review of Financial Analysis 89: 102743. [Google Scholar] [CrossRef]
- Yao, Can-Zhong, and Min-Jian Li. 2023. GARCH-MIDAS-GAS-copula model for CoVaR and risk spillover in stock markets. The North American Journal of Economics and Finance 66: 101910. [Google Scholar] [CrossRef]
- Yaqoob, Tanzeela, and Arfa Maqsood. 2024. The potency of time series outliers in volatile models: An empirical analysis of fintech, and mineral resources. Resources Policy 89: 104666. [Google Scholar] [CrossRef]
- Yu, Poshan, Haoran Xu, and Jianing Chen. 2024. Double Asymmetric Impacts, Dynamic Correlations, and Risk Management Amidst Market Risks: A Comparative Study between the US and China. Journal of Risk and Financial Management 17: 99. [Google Scholar] [CrossRef]
- Zeng, Hongjun, Abdullahi D. Ahmed, Ran Lu, and Ningjing Dai. 2022. Dependence and spillover among oil market, China’s stock market and exchange rate: New evidence from the Vine-Copula-CoVaR and VAR-BEKK-GARCH frameworks. Heliyon 8: e11737. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Yongliang, Xiangfang Zhao, and Yiwen Zhu. 2023. Equity incentives and ESG performance: Evidence from China. Finance Research Letters 58: 104592. [Google Scholar] [CrossRef]
- Zhang, Wenting, Xie He, and Shigeyuki Hamori. 2022a. Volatility spillover and investment strategies among sustainability-related financial indexes: Evidence from the DCC-GARCH-based dynamic connectedness and DCC-GARCH t-copula approach. International Review of Financial Analysis 83: 102223. [Google Scholar] [CrossRef]
- Zhang, Xiaoke, Xuankai Zhao, and Yu He. 2022b. Does It Pay to Be Responsible? The Performance of ESG Investing in China. Emerging Markets Finance and Trade 58: 3048–75. [Google Scholar] [CrossRef]
- Zheng, Yanting, Xin Luan, Xin Lu, and Jiaming Liu. 2023. A new view of risk contagion by decomposition of dependence structure: Empirical analysis of Sino-US stock markets. International Review of Financial Analysis 90: 102920. [Google Scholar] [CrossRef]
Variables | Abbr. | Details |
---|---|---|
S&P Kensho Human Evolution Index | HE | genetic engineering, wearables and virtual reality, nanotechnology and robotics, and 3D printing |
S&P Kensho Democratized Banking Index | DB | alternative finance, future payments, and distributed ledger |
S&P Kensho Final Frontiers Index | FF | deep-space and deep-sea exploration and development |
S&P Kensho Intelligent Infrastructure Index | II | smart grids, smart buildings, sensors, and intelligent meters |
S&P Kensho Smart Transportation Index | ST | autonomous vehicles, electric vehicles, and advanced transport systems |
S&P Kensho Clean Power Index | CP | clean energy and cleantech |
S&P Kensho Future Security Index | FS | cyber security, smart borders, robotics, drones, space, wearables, and virtual reality |
S&P Kensho Future Communication Index | FC | digital communities, enterprise collaboration, and virtual reality |
S&P Kensho Advanced Manufacturing Index | AM | smart factories, 3D printing, robotic, and virtual reality |
S&P Kensho Sustainable Staples Index | SS | output enhancement, reducing waste, and minimizing resource exhaustion |
S&P 500 Index | NESG | ESG factors are not considered during decision-making |
S&P 500 ESG Index | ESG | ESG factors are considered during decision-making |
Mean | Max. | Min. | Std. Dev. | Skew. | Kurt. | J-B | ADF | L-B | ARCH | KS | |
---|---|---|---|---|---|---|---|---|---|---|---|
HE | 0.008 | 7.868 | −14.987 | 2.045 | −0.343 | 3.271 | 739.244 *** | −12.505 *** | 37.008 *** | 330.936 *** | 0.969 *** |
DB | 0.008 | 10.313 | −15.282 | 1.907 | −0.537 | 5.391 | 1999.542 *** | −11.185 *** | 58.423 *** | 464.737 *** | 0.992 *** |
FF | 0.032 | 9.768 | −14.910 | 1.510 | −0.947 | 12.934 | 11,305.937 *** | −11.675 *** | 130.364 *** | 686.102 *** | 0.960 *** |
II | 0.008 | 11.152 | −12.943 | 1.651 | −0.555 | 8.243 | 4576.876 *** | −11.272 *** | 132.873 *** | 581.268 *** | 0.958 *** |
ST | 0.012 | 11.023 | −14.664 | 1.985 | −0.541 | 5.086 | 1788.960 *** | −10.911 *** | 70.277 *** | 431.811 *** | 0.946 *** |
CP | 0.051 | 11.874 | −14.487 | 2.092 | −0.419 | 6.068 | 2482.981 *** | −10.868 *** | 64.599 *** | 391.948 *** | 0.991 *** |
FS | 0.040 | 8.630 | −11.732 | 1.444 | −0.760 | 8.416 | 4839.877 *** | −12.075 *** | 123.266 *** | 616.678 *** | 0.963 *** |
FC | 0.048 | 9.931 | −12.328 | 1.938 | −0.296 | 2.560 | 456.878 *** | −12.897 *** | 22.023 *** | 293.565 *** | 0.960 *** |
AM | 0.040 | 10.758 | −11.026 | 1.851 | −0.289 | 4.337 | 1266.912 *** | −11.312 *** | 91.192 *** | 447.321 *** | 0.959 *** |
SS | 0.027 | 11.390 | −13.907 | 1.861 | −0.437 | 7.625 | 3898.037 *** | −10.505 *** | 73.080 *** | 438.980 *** | 0.979 *** |
NESG | 0.036 | 8.968 | −12.765 | 1.272 | −0.822 | 14.714 | 14,503.890 *** | −11.353 *** | 262.519 *** | 625.674 *** | 0.957 *** |
ESG | 0.041 | 9.146 | −12.769 | 1.281 | −0.781 | 14.389 | 13,861.534 *** | −11.439 *** | 264.037 *** | 616.733 *** | 0.955 *** |
HE | DB | FF | II | ST | CP | FS | FC | AM | SS | NESG | ESG | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
HE | 1.000 | 0.502 | 0.411 | 0.493 | 0.495 | 0.449 | 0.514 | 0.527 | 0.519 | 0.496 | 0.465 | 0.457 |
DB | 0.502 | 1.000 | 0.515 | 0.654 | 0.672 | 0.528 | 0.619 | 0.670 | 0.660 | 0.561 | 0.619 | 0.610 |
FF | 0.411 | 0.515 | 1.000 | 0.630 | 0.557 | 0.461 | 0.682 | 0.437 | 0.584 | 0.570 | 0.591 | 0.566 |
II | 0.493 | 0.654 | 0.630 | 1.000 | 0.736 | 0.576 | 0.674 | 0.570 | 0.715 | 0.620 | 0.658 | 0.638 |
ST | 0.495 | 0.672 | 0.557 | 0.736 | 1.000 | 0.581 | 0.614 | 0.614 | 0.695 | 0.615 | 0.606 | 0.591 |
CP | 0.449 | 0.528 | 0.461 | 0.576 | 0.581 | 1.000 | 0.504 | 0.496 | 0.530 | 0.519 | 0.474 | 0.463 |
FS | 0.514 | 0.619 | 0.682 | 0.674 | 0.614 | 0.504 | 1.000 | 0.598 | 0.671 | 0.588 | 0.655 | 0.635 |
FC | 0.527 | 0.670 | 0.437 | 0.570 | 0.614 | 0.496 | 0.598 | 1.000 | 0.636 | 0.505 | 0.557 | 0.551 |
AM | 0.519 | 0.660 | 0.584 | 0.715 | 0.695 | 0.530 | 0.671 | 0.636 | 1.000 | 0.573 | 0.651 | 0.636 |
SS | 0.496 | 0.561 | 0.570 | 0.620 | 0.615 | 0.519 | 0.588 | 0.505 | 0.573 | 1.000 | 0.535 | 0.518 |
NESG | 0.465 | 0.619 | 0.591 | 0.658 | 0.606 | 0.474 | 0.655 | 0.557 | 0.651 | 0.535 | 1.000 | 0.950 |
ESG | 0.457 | 0.610 | 0.566 | 0.638 | 0.591 | 0.463 | 0.635 | 0.551 | 0.636 | 0.518 | 0.950 | 1.000 |
HE | DB | FF | II | ST | CP | FS | FC | AM | SS | NESG | ESG | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Panel A: Mean Equation | ||||||||||||
−1.564 *** | −0.887 *** | −1.169 *** | −1.644 *** | 0.101 *** | −0.314 *** | −0.275 *** | 1.960 *** | −0.275 *** | −1.236 *** | −1.862 *** | −1.863 *** | |
(0.000) | (0.038) | (0.010) | (0.025) | (0.004) | (0.104) | (0.074) | (0.001) | (0.005) | (0.002) | (0.000) | (0.000) | |
−1.614 *** | 0.814 *** | −1.170 *** | −0.702 *** | −0.993 *** | −0.964 *** | −0.938 *** | −0.981 *** | −0.989 *** | −0.992 *** | −0.985 *** | −0.985 *** | |
(0.000) | (0.069) | (0.015) | (0.080) | (0.003) | (0.051) | (0.011) | (0.001) | (0.004) | (0.005) | (0.001) | (0.001) | |
−0.787 *** | 0.914 *** | −0.889 *** | 0.011 *** | |||||||||
(0.000) | (0.048) | (0.011) | (0.000) | |||||||||
1.511 *** | 0.875 *** | 1.188 *** | 1.655 *** | −0.074 *** | 0.295 *** | 0.275 *** | −1.969 *** | 0.274 *** | 1.239 *** | 1.853 *** | 1.854 | |
(0.000) | (0.042) | (0.004) | (0.000) | (0.002) | (0.111) | (0.054) | (0.000) | (0.001) | (0.001) | (0.001) | (0.001) | |
1.577 *** | −0.806 *** | 1.197 *** | 0.736 *** | 0.998 *** | 0.967 *** | 0.965 *** | 0.980 *** | 0.999 *** | 1.000 *** | 0.976 *** | 0.975 *** | |
(0.000) | (0.073) | (0.004) | (0.054) | (0.000) | (0.020) | (0.010) | (0.000) | (0.000) | (0.000) | (0.001) | (0.001) | |
0.739 *** | −0.888 *** | 0.919 *** | 0.040 *** | 0.026 *** | 0.003 ** | |||||||
(0.000) | (0.055) | (0.001) | (0.001) | (0.002) | (0.001) | |||||||
Panel B: Variance Equation | ||||||||||||
0.085 *** | 0.031 *** | 0.030 *** | 0.022 *** | 0.032 *** | 0.020 *** | 0.044 *** | 0.086 *** | 0.072 *** | 0.031 ** | 0.025 *** | 0.027 *** | |
(0.008) | (0.010) | (0.010) | (0.008) | (0.012) | (0.005) | (0.012) | (0.010) | (0.022) | (0.013) | (0.006) | (0.006) | |
0.013 | 0.049 *** | 0.031 ** | 0.046 *** | 0.069 *** | 0.063 *** | 0.026 * | 0.074 *** | 0.050 *** | 0.105 *** | 0.035 * | 0.028 | |
(0.009) | (0.018) | (0.016) | (0.015) | (0.017) | (0.008) | (0.014) | (0.022) | (0.018) | (0.021) | (0.020) | (0.020) | |
0.912 *** | 0.879 *** | 0.888 *** | 0.876 *** | 0.876 *** | 0.917 *** | 0.872 *** | 0.860 *** | 0.868 *** | 0.872 *** | 0.834 *** | 0.837 *** | |
(0.017) | (0.017) | (0.023) | (0.021) | (0.019) | (0.010) | (0.022) | (0.004) | (0.021) | (0.019) | (0.020) | (0.020) | |
0.104 *** | 0.136 *** | 0.138 *** | 0.151 *** | 0.108 *** | 0.039 ** | 0.160 *** | 0.091 *** | 0.133 *** | 0.048 * | 0.273 *** | 0.278 *** | |
(0.001) | (0.032) | (0.034) | (0.037) | (0.029) | (0.019) | (0.036) | (0.023) | (0.033) | (0.027) | (0.048) | (0.048) | |
0.915 *** | 0.825 *** | 0.838 *** | 0.876 *** | 0.877 *** | 0.916 *** | 0.788 *** | 0.822 *** | 0.887 *** | 0.865 *** | 0.810 *** | 0.811 *** | |
(0.033) | (0.030) | (0.029) | (0.031) | (0.031) | (0.029) | (0.034) | (0.029) | (0.032) | (0.030) | (0.029) | (0.030) | |
11.946 *** | 12.174 *** | 7.898 *** | 19.065 ** | 15.409 *** | 8.133 *** | 16.821 *** | 15.904 *** | 9.443 *** | 8.591 *** | 7.186 *** | 7.097 *** | |
(2.972) | (3.427) | (1.405) | (7.593) | (5.232) | (1.471) | (5.903) | (6.146) | (1.934) | (1.728) | (1.264) | (1.226) | |
Panel C: Diagnostic Tests | ||||||||||||
Q | 8.299 | 3.208 | 6.218 | 6.833 | 13.213 | 11.361 | 8.118 | 4.718 | 13.362 | 9.497 | 5.334 | 4.803 |
[0.479] | [0.608] | [0.516] | [0.785] | [0.516] | [0.765] | [0.769] | [0.870] | [0.835] | [0.432] | [0.822] | [0.890] | |
Q2 | 9.574 | 8.215 | 9.174 | 6.346 | 9.173 | 6.573 | 6.531 | 5.306 | 5.762 | 10.099 | 5.925 | 5.014 |
[0.600] | [0.976] | [0.797] | [0.741] | [0.212] | [0.330] | [0.617] | [0.909] | [0.204] | [0.486] | [0.868] | [0.904] | |
ARCH | 10.094 | 7.913 | 9.058 | 6.545 | 9.254 | 6.253 | 6.336 | 5.258 | 5.544 | 9.663 | 5.892 | 5.011 |
[0.432] | [0.637] | [0.527] | [0.768] | [0.508] | [0.794] | [0.786] | [0.873] | [0.852] | [0.471] | [0.824] | [0.890] |
Tree | R-Vine | C-Vine | D-Vine | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Edge | Copula | par | par2 | Edge | Copula | par | par2 | Edge | Copula | par | par2 | ||||||||||
1 | 7,3 | t | 0.85 | 6.25 | 0.65 | 0.47 | 0.47 | 4,2 | t | 0.81 | 5.56 | 0.61 | 0.44 | 0.44 | 10,6 | t | 0.69 | 5.00 | 0.48 | 0.33 | 0.33 |
4,7 | SBB1 | 0.14 | 2.54 | 0.63 | 0.14 | 0.69 | 4,3 | t | 0.81 | 5.51 | 0.60 | 0.43 | 0.43 | 3,10 | t | 0.75 | 4.60 | 0.54 | 0.41 | 0.41 | |
4,9 | t | 0.87 | 5.59 | 0.67 | 0.53 | 0.53 | 4,6 | t | 0.74 | 6.55 | 0.53 | 0.32 | 0.32 | 7,3 | t | 0.85 | 6.25 | 0.65 | 0.47 | 0.47 | |
8,1 | SBB1 | 0.13 | 1.82 | 0.49 | 0.06 | 0.54 | 4,1 | SBB1 | 0.08 | 1.71 | 0.44 | 0.01 | 0.50 | 9,7 | t | 0.84 | 5.66 | 0.63 | 0.47 | 0.47 | |
2,8 | SBB1 | 0.17 | 2.51 | 0.63 | 0.19 | 0.68 | 4,5 | t | 0.89 | 9.43 | 0.70 | 0.45 | 0.45 | 4,9 | t | 0.87 | 5.59 | 0.67 | 0.53 | 0.53 | |
5,2 | t | 0.83 | 6.29 | 0.62 | 0.44 | 0.44 | 4,7 | SBB1 | 0.14 | 2.54 | 0.63 | 0.14 | 0.69 | 5,4 | t | 0.89 | 9.43 | 0.70 | 0.45 | 0.45 | |
5,6 | t | 0.75 | 6.90 | 0.54 | 0.32 | 0.32 | 4,9 | t | 0.87 | 5.59 | 0.67 | 0.53 | 0.53 | 2,5 | t | 0.83 | 6.29 | 0.62 | 0.44 | 0.44 | |
5,4 | t | 0.89 | 9.43 | 0.70 | 0.45 | 0.45 | 4,8 | SBB1 | 0.19 | 1.93 | 0.53 | 0.15 | 0.57 | 8,2 | SBB1 | 0.17 | 2.51 | 0.63 | 0.19 | 0.68 | |
10,5 | SBB1 | 0.12 | 2.26 | 0.58 | 0.08 | 0.64 | 10,4 | t | 0.80 | 3.86 | 0.59 | 0.49 | 0.49 | 1,8 | SBB1 | 0.13 | 1.82 | 0.49 | 0.06 | 0.54 | |
2 | 4,3;7 | t | 0.30 | 6.12 | 0.19 | 0.09 | 0.09 | 8,2;4 | SBB8 | 6.00 | 0.59 | 0.44 | - | - | 3,6;10 | t | 0.24 | 9.73 | 0.15 | 0.03 | 0.03 |
9,7;4 | F | 2.68 | 0.00 | 0.28 | - | - | 8,3;4 | t | 0.02 | 18.95 | 0.01 | 0.00 | 0.00 | 7,10;3 | F | 2.67 | 0.00 | 0.28 | - | - | |
5,9;4 | t | 0.38 | 12.33 | 0.25 | 0.03 | 0.03 | 8,6;4 | F | 1.69 | 0.00 | 0.18 | - | - | 9,3;7 | t | 0.15 | 7.46 | 0.10 | 0.04 | 0.04 | |
2,1;8 | SBB8 | 1.66 | 0.80 | 0.14 | - | - | 8,1;4 | F | 2.89 | 0.00 | 0.30 | - | - | 4,7;9 | SBB1 | 0.07 | 1.32 | 0.27 | 0.00 | 0.31 | |
5,8;2 | t | 0.29 | 7.17 | 0.18 | 0.06 | 0.06 | 8,5;4 | F | 2.86 | 0.00 | 0.29 | - | - | 5,9;4 | t | 0.38 | 12.33 | 0.25 | 0.03 | 0.03 | |
4,2;5 | t | 0.30 | 5.96 | 0.19 | 0.09 | 0.09 | 8,7;4 | t | 0.46 | 15.87 | 0.30 | 0.02 | 0.02 | 2,4;5 | t | 0.30 | 5.96 | 0.19 | 0.09 | 0.09 | |
4,6;5 | t | 0.25 | 9.64 | 0.16 | 0.03 | 0.03 | 8,9;4 | F | 3.63 | 0.00 | 0.36 | - | - | 8,5;2 | t | 0.29 | 7.17 | 0.18 | 0.06 | 0.06 | |
10,4;5 | SBB8 | 4.35 | 0.46 | 0.23 | - | - | 10,8;4 | SBB8 | 2.66 | 0.58 | 0.18 | - | - | 1,2;8 | SBB8 | 1.66 | 0.80 | 0.14 | - | - | |
3 | 9,3;4,7 | t | −0.03 | 11.65 | −0.02 | 0.00 | 0.00 | 10,2;8,4 | t | 0.18 | 17.75 | 0.12 | 0.00 | 0.00 | 7,6;3,10 | SBB8 | 2.02 | 0.66 | 0.14 | - | - |
5,7;9,4 | Tawn2_180 | 1.10 | 0.19 | 0.03 | - | 0.04 | 10,3;8,4 | F | 2.28 | 0.00 | 0.24 | - | - | 9,10;7,3 | t | 0.25 | 11.27 | 0.16 | 0.02 | 0.02 | |
2,9;5,4 | SBB8 | 2.39 | 0.72 | 0.22 | - | - | 10,6;8,4 | t | 0.21 | 10.17 | 0.13 | 0.02 | 0.02 | 4,3;9,7 | t | 0.28 | 10.01 | 0.18 | 0.03 | 0.03 | |
5,1;2,8 | t | 0.18 | 11.15 | 0.11 | 0.01 | 0.01 | 10,1;8,4 | t | 0.27 | 11.39 | 0.18 | 0.02 | 0.02 | 5,7;4,9 | SJ | 1.05 | 0.00 | 0.03 | - | 0.07 | |
4,8;5,2 | I | - | - | 0.00 | - | - | 10,5;8,4 | SG | 1.21 | 0.00 | 0.17 | - | 0.23 | 2,9;5,4 | SBB8 | 2.39 | 0.72 | 0.22 | - | - | |
10,2;4,5 | t | 0.16 | 27.83 | 0.10 | 0.00 | 0.00 | 10,7;8,4 | F | 1.60 | 0.00 | 0.17 | - | - | 8,4;2,5 | I | - | - | 0.00 | - | - | |
10,6;4,5 | t | 0.16 | 13.49 | 0.10 | 0.01 | 0.01 | 10,9;8,4 | t | 0.08 | 14.95 | 0.05 | 0.00 | 0.00 | 1,5;8,2 | t | 0.18 | 11.15 | 0.11 | 0.01 | 0.01 | |
4 | 5,3;9,4,7 | t | −0.02 | 21.36 | −0.01 | 0.00 | 0.00 | 7,2;10,8,4 | t | 0.08 | 13.66 | 0.05 | 0.00 | 0.00 | 9,6;7,3,10 | BB8 | 2.36 | 0.63 | 0.17 | - | - |
2,7;5,9,4 | t | 0.25 | 10.70 | 0.16 | 0.02 | 0.02 | 7,3;10,8,4 | t | 0.56 | 8.51 | 0.38 | 0.14 | 0.14 | 4,10;9,7,3 | t | 0.27 | 11.02 | 0.18 | 0.02 | 0.02 | |
8,9;2,5,4 | t | 0.30 | 15.92 | 0.19 | 0.01 | 0.01 | 7,6;10,8,4 | Tawn2_90 | −1.15 | 0.08 | −0.02 | - | - | 5,3;4,9,7 | t | −0.02 | 20.56 | −0.02 | 0.00 | 0.00 | |
4,1;5,2,8 | BB8 | 1.39 | 0.79 | 0.08 | - | - | 7,1;10,8,4 | SBB8 | 1.17 | 0.95 | 0.06 | - | - | 2,7;5,4,9 | t | 0.25 | 12.63 | 0.16 | 0.01 | 0.01 | |
10,8;4,5,2 | t | 0.04 | 30.00 | 0.02 | 0.00 | 0.00 | 7,5;10,8,4 | t | −0.08 | 15.34 | −0.05 | 0.00 | 0.00 | 8,9;2,5,4 | t | 0.30 | 15.92 | 0.19 | 0.01 | 0.01 | |
6,2;10,4,5 | SG | 1.06 | 0.00 | 0.05 | - | 0.07 | 9,7;10,8,4 | t | 0.20 | 13.18 | 0.13 | 0.01 | 0.01 | 1,4;8,2,5 | BB8 | 1.39 | 0.79 | 0.08 | - | - | |
5 | 2,3;5,9,4,7 | t | −0.12 | 13.37 | −0.08 | 0.00 | 0.00 | 5,2;7,10,8,4 | t | 0.20 | 10.30 | 0.13 | 0.02 | 0.02 | 4,6;9,7,3,10 | t | 0.23 | 10.14 | 0.15 | 0.02 | 0.02 |
8,7;2,5,9,4 | N | 0.22 | 0.00 | 0.14 | - | - | 5,3;7,10,8,4 | t | 0.05 | 10.10 | 0.03 | 0.01 | 0.01 | 5,10;4,9,7,3 | SBB8 | 3.61 | 0.51 | 0.22 | - | - | |
1,9;8,2,5,4 | t | 0.09 | 14.34 | 0.06 | 0.00 | 0.00 | 5,6;7,10,8,4 | t | 0.18 | 12.04 | 0.11 | 0.01 | 0.01 | 2,3;5,4,9,7 | t | −0.12 | 13.09 | −0.08 | 0.00 | 0.00 | |
10,1;4,5,2,8 | SBB8 | 2.73 | 0.57 | 0.18 | - | - | 5,1;7,10,8,4 | t | 0.00 | 18.67 | 0.00 | 0.00 | 0.00 | 8,7;2,5,4,9 | N | 0.23 | 0.00 | 0.15 | - | - | |
6,8;10,4,5,2 | F | 0.69 | 0.00 | 0.08 | - | - | 9,5;7,10,8,4 | t | 0.22 | 16.36 | 0.14 | 0.00 | 0.00 | 1,9;8,2,5,4 | t | 0.09 | 14.34 | 0.06 | 0.00 | 0.00 | |
6 | 8,3;2,5,9,4,7 | t | −0.30 | 30.00 | −0.19 | 0.00 | 0.00 | 1,2;5,7,10,8,4 | I | - | - | 0.00 | - | - | 5,6;4,9,7,3,10 | t | 0.20 | 12.35 | 0.13 | 0.01 | 0.01 |
1,7;8,2,5,9,4 | F | 0.80 | 0.00 | 0.09 | - | - | 1,3;5,7,10,8,4 | G90 | −1.06 | 0.00 | −0.06 | - | - | 2,10;5,4,9,7,3 | t | 0.10 | 30.00 | 0.06 | 0.00 | 0.00 | |
10,9;1,8,2,5,4 | I | - | - | 0.00 | - | - | 1,6;5,7,10,8,4 | C | 0.15 | 0.00 | 0.07 | - | 0.01 | 8,3;2,5,4,9,7 | t | −0.30 | 30.00 | −0.19 | 0.00 | 0.00 | |
6,1;10,4,5,2,8 | C | 0.13 | 0.00 | 0.06 | - | 0.01 | 9,1;5,7,10,8,4 | SBB7 | 1.04 | 0.05 | 0.04 | 0.00 | 0.05 | 1,7;8,2,5,4,9 | F | 0.83 | 0.00 | 0.09 | - | - | |
7 | 1,3;8,2,5,9,4,7 | G90 | −1.03 | 0.00 | −0.03 | - | - | 9,2;1,5,7,10,8,4 | t | 0.07 | 13.38 | 0.05 | 0.00 | 0.00 | 2,6;5,4,9,7,3,10 | N | 0.06 | 0.00 | 0.04 | - | - |
10,7;1,8,2,5,9,4 | t | 0.21 | 10.86 | 0.14 | 0.02 | 0.02 | 9,3;1,5,7,10,8,4 | SG | 1.07 | 0.00 | 0.06 | - | 0.09 | 8,10;2,5,4,9,7,3 | SC | 0.04 | 0.00 | 0.02 | 0.00 | - | |
6,9;10,1,8,2,5,4 | t | −0.02 | 16.86 | −0.01 | 0.00 | 0.00 | 9,6;1,5,7,10,8,4 | t | −0.02 | 16.79 | −0.01 | 0.00 | 0.00 | 1,3;8,2,5,4,9,7 | G90 | −1.03 | 0.00 | −0.03 | - | - | |
8 | 10,3;1,8,2,5,9,4,7 | BB8 | 2.08 | 0.70 | 0.16 | - | - | 3,2;9,1,5,7,10,8,4 | t | 0.00 | 17.11 | 0.00 | 0.00 | 0.00 | 8,6;2,5,4,9,7,3,10 | N | 0.10 | 0.00 | 0.06 | - | - |
6,7;10,1,8,2,5,9,4 | Tawn270 | −1.16 | 0.03 | −0.01 | - | - | 6,3;9,1,5,7,10,8,4 | Tawn2_180 | 1.77 | 0.01 | 0.01 | - | 0.01 | 1,10;8,2,5,4,9,7,3 | t | 0.22 | 12.69 | 0.14 | 0.01 | 0.01 | |
9 | 6,3;10,1,8,2,5,9,4,7 | Tawn2_180 | 2.07 | 0.01 | 0.01 | - | 0.01 | 6,2;3,9,1,5,7,10,8,4 | I | - | - | 0.00 | - | - | 1,6;8,2,5,4,9,7,3,10 | C | 0.12 | 0.00 | 0.06 | - | 0.00 |
Vine | AIC | BIC | Log-Likelihood | |
---|---|---|---|---|
R-vine | −19,164.33 | −18,740.08 | 9661.17 | |
C-vine | −19,235.99 | −18,827.85 | 9693.99 | |
D-vine | −19,085.19 | −18,660.94 | 9621.59 | |
Combination | Clarke Statistic | Clarke p-value | Vuong Statistic | Vuong p-value |
R-vine versus C-vine | 750 | 0.029 | −1.597 | 0.110 |
R-vine versus D-vine | 852 | 0.004 | 2.992 | 0.003 |
C-vine versus D-vine | 891 | 0.000 | 4.227 | 0.000 |
NESG | ESG | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
par | par2 | τ | λ | White Test | par | par2 | τ | λ | White Test | |
HE | 0.61 | 8.10 | 0.42 | 0.17 | 9.321 *** | 0.60 | 7.90 | 0.41 | 0.17 | 9.326 ** |
DB | 0.79 | 5.43 | 0.58 | 0.42 | 17.256 *** | 0.78 | 4.92 | 0.57 | 0.43 | 14.940 *** |
FF | 0.76 | 5.33 | 0.55 | 0.38 | 6.014 ** | 0.73 | 5.11 | 0.52 | 0.37 | 5.408 ** |
II | 0.81 | 7.02 | 0.60 | 0.39 | 27.499 *** | 0.79 | 6.35 | 0.58 | 0.39 | 25.310 *** |
ST | 0.77 | 11.63 | 0.56 | 0.23 | 9.645 ** | 0.76 | 9.62 | 0.55 | 0.25 | 9.980 *** |
CP | 0.63 | 7.77 | 0.44 | 0.19 | 21.782 *** | 0.62 | 7.77 | 0.42 | 0.18 | 21.266 *** |
FS | 0.81 | 5.93 | 0.60 | 0.42 | 7.139 ** | 0.79 | 5.72 | 0.58 | 0.41 | 6.202 * |
FC | 0.74 | 8.51 | 0.53 | 0.26 | 16.644 *** | 0.73 | 8.97 | 0.52 | 0.24 | 14.871 *** |
AM | 0.81 | 5.79 | 0.61 | 0.43 | 15.268 *** | 0.80 | 5.42 | 0.59 | 0.43 | 15.603 *** |
SS | 0.70 | 5.97 | 0.50 | 0.31 | 23.543 *** | 0.69 | 6.04 | 0.48 | 0.29 | 20.611 *** |
HE | DB | FF | II | ST | CP | FS | FC | AM | SS | |
---|---|---|---|---|---|---|---|---|---|---|
Panel A: NESG | ||||||||||
Ω | 0.033 *** | 0.037 *** | 0.064 * | 0.055 * | 0.037 * | 0.043 ** | 0.078 *** | 0.028 *** | 0.076 *** | 0.035 *** |
(0.011) | (0.010) | (0.045) | (0.038) | (0.026) | (0.020) | (0.030) | (0.009) | (0.021) | (0.015) | |
A | 0.019 *** | 0.017 *** | 0.017 *** | 0.017 *** | 0.017 *** | 0.021 *** | 0.017 *** | 0.017 *** | 0.017 *** | 0.015 *** |
(0.003) | (0.003) | (0.007) | (0.007) | (0.006) | (0.005) | (0.004) | (0.002) | (0.003) | (0.003) | |
B | 0.965 *** | 0.947 *** | 0.914 *** | 0.914 *** | 0.947 *** | 0.951 *** | 0.881 *** | 0.963 *** | 0.881 *** | 0.955 *** |
(0.012) | (0.014) | (0.061) | (0.058) | (0.039) | (0.022) | (0.045) | (0.011) | (0.032) | (0.019) | |
LL | −183.041 | 239.765 | 109.258 | 313.055 | 200.651 | −155.064 | 274.662 | 91.767 | 312.497 | −3.588 |
AIC | 382.082 | −459.529 | −202.516 | −606.109 | −385.302 | 326.129 | −529.324 | −167.534 | −604.995 | 23.177 |
BIC | 425.043 | −405.827 | −159.555 | −552.407 | −342.340 | 369.091 | −475.622 | −124.572 | −551.293 | 66.138 |
Panel B: ESG | ||||||||||
Ω | 0.033 *** | 0.026 *** | 0.053 *** | 0.046 * | 0.038 *** | 0.047 ** | 0.060 *** | 0.028 *** | 0.066 *** | 0.030 ** |
(0.012) | (0.006) | (0.021) | (0.029) | (0.013) | (0.023) | (0.024) | (0.011) | (0.023) | (0.017) | |
A | 0.018 *** | 0.017 *** | 0.017 *** | 0.017 *** | 0.017 *** | 0.023 *** | 0.017 *** | 0.017 *** | 0.017 *** | 0.014 *** |
(0.003) | (0.003) | (0.004) | (0.006) | (0.003) | (0.005) | (0.004) | (0.003) | (0.004) | (0.004) | |
B | 0.964 *** | 0.963 *** | 0.930 *** | 0.930 *** | 0.947 *** | 0.948 *** | 0.914 *** | 0.963 *** | 0.900 *** | 0.962 *** |
(0.012) | (0.008) | (0.028) | (0.043) | (0.018) | (0.025) | (0.034) | (0.014) | (0.034) | (0.021) | |
LL | −198.794 | 213.594 | 43.471 | 244.706 | 150.133 | −181.933 | 204.400 | 70.139 | 257.416 | −48.738 |
AIC | 413.588 | −411.188 | −70.942 | −469.412 | −284.267 | 379.867 | −392.800 | −124.277 | −498.832 | 113.475 |
BIC | 456.549 | −368.226 | −27.981 | −415.710 | −241.305 | 422.829 | −349.838 | −81.315 | −455.870 | 156.437 |
Kendall’s τ | Tail Dependence | |||||||
---|---|---|---|---|---|---|---|---|
NESG | ESG | Variation | KS Test | NESG | ESG | Variation | KS Test | |
HE | 0.418 | 0.410 | 1.85% | 0.049 ** | 0.242 | 0.235 | 2.83% | 0.049 ** |
DB | 0.563 | 0.554 | 1.63% | 0.069 *** | 0.384 | 0.376 | 2.17% | 0.069 *** |
FF | 0.538 | 0.520 | 3.40% | 0.132 *** | 0.354 | 0.336 | 5.22% | 0.132 *** |
II | 0.594 | 0.577 | 2.94% | 0.103 *** | 0.417 | 0.398 | 4.63% | 0.103 *** |
ST | 0.564 | 0.549 | 2.66% | 0.081 *** | 0.384 | 0.368 | 4.28% | 0.081 *** |
CP | 0.435 | 0.421 | 3.17% | 0.080 *** | 0.256 | 0.244 | 4.49% | 0.080 *** |
FS | 0.584 | 0.562 | 3.77% | 0.157 *** | 0.405 | 0.381 | 5.93% | 0.157 *** |
FC | 0.516 | 0.510 | 1.23% | 0.044 * | 0.334 | 0.327 | 2.02% | 0.044 * |
AM | 0.593 | 0.581 | 2.11% | 0.103 *** | 0.415 | 0.401 | 3.37% | 0.103 *** |
SS | 0.503 | 0.485 | 3.58% | 0.111 *** | 0.318 | 0.301 | 5.49% | 0.111 *** |
Downside | Upside | |||||||
---|---|---|---|---|---|---|---|---|
NESG | ESG | Variation | NESG | ESG | Variation | |||
HE | 0.982 | 0.968 | 1.43% | 0.171 *** | 0.873 | 0.861 | 1.37% | 0.157 *** |
DB | 1.705 | 1.658 | 2.76% | 0.306 *** | 1.174 | 1.146 | 2.39% | 0.285 *** |
FF | 1.651 | 1.534 | 7.09% | 0.953 *** | 1.184 | 1.111 | 6.17% | 0.908 *** |
II | 1.687 | 1.559 | 7.59% | 0.287 *** | 1.327 | 1.237 | 6.78% | 0.259 *** |
ST | 1.503 | 1.434 | 4.59% | 0.418 *** | 1.199 | 1.149 | 4.17% | 0.395 *** |
CP | 1.160 | 1.120 | 3.45% | 0.382 *** | 0.998 | 0.965 | 3.31% | 0.365 *** |
FS | 1.811 | 1.691 | 6.63% | 0.346 *** | 1.147 | 1.085 | 5.41% | 0.303 *** |
FC | 1.396 | 1.386 | 0.72% | 0.225 *** | 0.989 | 0.983 | 0.61% | 0.198 *** |
AM | 1.860 | 1.781 | 4.25% | 0.514 *** | 1.407 | 1.355 | 3.70% | 0.505 *** |
SS | 1.378 | 1.317 | 4.43% | 0.362 *** | 1.078 | 1.035 | 3.99% | 0.336 *** |
Downside | Upside | |||||||
---|---|---|---|---|---|---|---|---|
NESG | ESG | Variation | NESG | ESG | Variation | |||
HE | 1.270 | 1.246 | 1.89% | 0.168 *** | 0.846 | 0.845 | 0.12% | 0.057 ** |
DB | 2.055 | 1.993 | 3.02% | 0.183 *** | 1.241 | 1.229 | 0.97% | 0.074 *** |
FF | 1.855 | 1.712 | 7.71% | 0.349 *** | 1.147 | 1.094 | 4.62% | 0.210 *** |
II | 2.265 | 2.083 | 8.04% | 0.325 *** | 1.338 | 1.278 | 4.48% | 0.191 *** |
ST | 1.979 | 1.879 | 5.05% | 0.249 *** | 1.218 | 1.187 | 2.55% | 0.132 *** |
CP | 1.343 | 1.289 | 4.02% | 0.243 *** | 0.887 | 0.870 | 1.92% | 0.119 *** |
FS | 2.198 | 2.047 | 6.87% | 0.290 *** | 1.307 | 1.258 | 3.75% | 0.166 *** |
FC | 1.750 | 1.733 | 0.97% | 0.125 *** | 1.104 | 1.113 | −0.82% | 0.101 *** |
AM | 2.230 | 2.126 | 4.66% | 0.221 *** | 1.320 | 1.292 | 2.12% | 0.110 *** |
SS | 1.603 | 1.522 | 5.05% | 0.266 *** | 1.024 | 0.997 | 2.64% | 0.139 *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, P.; Xu, H.; Chen, J. Can ESG Integration Enhance the Stability of Disruptive Technology Stock Investments? Evidence from Copula-Based Approaches. J. Risk Financial Manag. 2024, 17, 197. https://doi.org/10.3390/jrfm17050197
Yu P, Xu H, Chen J. Can ESG Integration Enhance the Stability of Disruptive Technology Stock Investments? Evidence from Copula-Based Approaches. Journal of Risk and Financial Management. 2024; 17(5):197. https://doi.org/10.3390/jrfm17050197
Chicago/Turabian StyleYu, Poshan, Haoran Xu, and Jianing Chen. 2024. "Can ESG Integration Enhance the Stability of Disruptive Technology Stock Investments? Evidence from Copula-Based Approaches" Journal of Risk and Financial Management 17, no. 5: 197. https://doi.org/10.3390/jrfm17050197
APA StyleYu, P., Xu, H., & Chen, J. (2024). Can ESG Integration Enhance the Stability of Disruptive Technology Stock Investments? Evidence from Copula-Based Approaches. Journal of Risk and Financial Management, 17(5), 197. https://doi.org/10.3390/jrfm17050197