COVID-19 and Non-Performing Loans in Europe
Abstract
:1. Introduction
2. Theoretical and Conceptual Framework
3. Literature Review
3.1. Pre-COVID-19 Pandemic Literature
3.2. Post-COVID-19 Pandemic Literature
4. Data and Specification Model—Empirical Methodology
4.1. Data Construction
4.2. Expected Channels of Impact
4.3. Methodology and Econometric Models
5. Results and Discussion
5.1. Descriptive Statistics
5.2. Baseline Estimations
5.3. Subsample Analysis
5.3.1. The Entire Period
5.3.2. Pre-COVID-19 Period
5.3.3. Post-COVID-19 Period
6. Robustness Tests
7. Conclusions and Future Research
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Country | Observation per Country | Cumulative Observation Count | Subregion Categorization | Core/Periphery Categorization |
---|---|---|---|---|
Denmark | 28 | 28 | Northern Europe | Intermediate group |
Spain | 28 | 56 | Southern Europe | Extended Periphery |
United Kingdom | 28 | 84 | Northern Europe | Intermediate group |
France | 28 | 112 | Southern Europe | Hard-Core group |
Italy | 28 | 140 | Southern Europe | Extended Periphery |
Ireland | 28 | 168 | Northern Europe | Extended Periphery |
Finland | 28 | 196 | Northern Europe | Extended Periphery |
Portugal | 28 | 224 | Southern Europe | Extended Periphery |
Sweden | 28 | 252 | Northern Europe | Intermediate group |
Greece | 28 | 280 | Southern Europe | Extended Periphery |
Austria | 28 | 308 | Central Europe | Hard-Core group |
Belgium | 28 | 336 | Northern Europe | Hard-Core group |
Germany | 28 | 364 | Central Europe | Hard-Core group |
Netherlands | 28 | 392 | Central Europe | Hard-Core group |
Bulgaria | 28 | 420 | Southern Europe | Extended Periphery |
Croatia | 28 | 448 | Southern Europe | Extended Periphery |
Czech Republic | 28 | 476 | Central Europe | Intermediate group |
Estonia | 28 | 504 | Northern Europe | Intermediate group |
Hungary | 28 | 532 | Central Europe | Extended Periphery |
Latvia | 28 | 560 | Northern Europe | Intermediate group |
Lithuania | 28 | 588 | Northern Europe | Intermediate group |
Luxembourg | 28 | 616 | Central Europe | Intermediate group |
Malta | 28 | 644 | Southern Europe | Extended Periphery |
Poland | 28 | 672 | Central Europe | Intermediate group |
Romania | 28 | 700 | Central Europe | Extended Periphery |
Slovenia | 28 | 728 | Southern Europe | Intermediate group |
Slovakia | 28 | 756 | Central Europe | Intermediate group |
Cyprus | 28 | 784 | Southern Europe | Extended Periphery |
Total | 784 | 784 | - | - |
Variable | Variable Role | Variable Group | Explanation | Source | Parameter Shown |
---|---|---|---|---|---|
NPLS | Main dependent variable | NPL Ratio | Aggregate non-performing loans to total gross loans | ECB | Percentage (%) |
NPL_RATIO_HHS | Secondary Dependent variable | NPL Type | Aggregate non-performing loans to total gross loans—Households | EBA | Percentage (%) |
NPL_RATIO_MORT | Secondary Dependent variable | NPL Type | Aggregate non-performing loans to total gross loans—Mortgages | EBA | Percentage (%) |
NPL_RATIO_NFCS | Secondary Dependent variable | NPL Type | Aggregate non-performing loans to total gross loans—Non-financial corporations | EBA | Percentage (%) |
NPL_RATIO_SME | Secondary Dependent variable | NPL Type | Aggregate non-performing loans to total gross loans—Small and medium-sized enterprises | EBA | Percentage (%) |
NPL_RATIO_CRE | Secondary Dependent variable | NPL Type | Aggregate non-performing loans to total gross loans—Commercial real estate | EBA | Percentage (%) |
NFCNPL_AGR | Secondary Dependent variable | NPL Economic Sector | Aggregate non-performing loans to total gross loans—Non-financial corporations—A: Agriculture, forestry, and fishing | EBA | Percentage (%) |
NFCNPL_MIN | Secondary Dependent variable | NPL Economic Sector | Aggregate non-performing loans to total gross loans—Non-financial corporations—B: Mining and quarrying | EBA | Percentage (%) |
NFCNPL_MAN | Secondary Dependent variable | NPL Economic Sector | Aggregate non-performing loans to total gross loans—Non-financial corporations—C: Manufacturing | EBA | Percentage (%) |
NFCNPL_ELE | Secondary Dependent variable | NPL Economic Sector | Aggregate non-performing loans to total gross loans—Non-financial corporations—D: Electricity, gas, steam, and air conditioning supply | EBA | Percentage (%) |
NFCNPL_WAT | Secondary Dependent variable | NPL Economic Sector | Aggregate non-performing loans to total gross loans—Non-financial corporations—E: Water supply | EBA | Percentage (%) |
NFCNPL_CON | Secondary Dependent variable | NPL Economic Sector | Aggregate non-performing loans to total gross loans—Non-financial corporations—F: Construction | EBA | Percentage (%) |
NFCNPL_WRT | Secondary Dependent variable | NPL Economic Sector | Aggregate non-performing loans to total gross loans—Non-financial corporations—G: Wholesale and retail trade | EBA | Percentage (%) |
NFCNPL_TRA | Secondary Dependent variable | NPL Economic Sector | Aggregate non-performing loans to total gross loans—Non-financial corporations—H: Transport and storage | EBA | Percentage (%) |
NFCNPL_ACC | Secondary Dependent variable | NPL Economic Sector | Aggregate non-performing loans to total gross loans—Non-financial corporations—I: Accommodation and food service activities | EBA | Percentage (%) |
NFCNPL_INF | Secondary Dependent variable | NPL Economic Sector | Aggregate non-performing loans to total gross loans—Non-financial corporations—J: Information and communication | EBA | Percentage (%) |
NFCNPL_FIN | Secondary Dependent variable | NPL Economic Sector | Aggregate non-performing loans to total gross loans—Non-financial corporations—K: Financial and insurance activities | EBA | Percentage (%) |
NFCNPL_REA | Secondary Dependent variable | NPL Economic Sector | Aggregate non-performing loans to total gross loans—Non-financial corporations—L: Real estate activities | EBA | Percentage (%) |
NFCNPL_PRF | Secondary Dependent variable | NPL Economic Sector | Aggregate non-performing loans to total gross loans—Non-financial corporations—M: Professional, scientific, and technical activities | EBA | Percentage (%) |
NFCNPL_ADM | Secondary Dependent variable | NPL Economic Sector | Aggregate non-performing loans to total gross loans—Non-financial corporations—N: Administrative and support service activities | EBA | Percentage (%) |
NFCNPL_PAD | Secondary Dependent variable | NPL Economic Sector | Aggregate non-performing loans to total gross loans—Non-financial corporations—O: Public administration and defense, compulsory social security | EBA | Percentage (%) |
NFCNPL_EDU | Secondary Dependent variable | NPL Economic Sector | Aggregate non-performing loans to total gross loans—Non-financial corporations—P: Education | EBA | Percentage (%) |
NFCNPL_HUM | Secondary Dependent variable | NPL Economic Sector | Aggregate non-performing loans to total gross loans—Non-financial corporations—Q: Human health services and social work activities | EBA | Percentage (%) |
NFCNPL_ART | Secondary Dependent variable | NPL Economic Sector | Aggregate non-performing loans to total gross loans—Non-financial corporations—R: Arts, entertainment, and recreation | EBA | Percentage (%) |
NFCNPL_OTH | Secondary Dependent variable | NPL Economic Sector | Aggregate non-performing loans to total gross loans—Non-financial corporations—S: Other services | EBA | Percentage (%) |
Variable | Variable Role | Variable Group | Explanation | Source | Parameter Shown |
---|---|---|---|---|---|
UNEMP | Control variable | Macroeconomic Variables | Percentage (%) of unemployment | DataStream | Percentage (%) |
CPI | Control variable | Macroeconomic Variables | Quarterly Consumer Price Index | DataStream | No. |
R_GDP_Q2Q | Control variable | Macroeconomic Variables | Quarterly percentage growth rate of real GDP | IMF | Percentage (%) |
GDP_MARKET | Control variable | Macroeconomic Variables | Quarterly gross domestic product at market prices | Eurostat | No. |
NPLS (-1) | Control variable | Bank-specific Variables | Previous quarter aggregate non-performing loans to total gross loans | ECB | Percentage (%) |
ROA | Control variable | Bank-specific Variables | Return on assets: profit or loss for the year/total assets | DataStream | Percentage (%) |
CAP | Control variable | Bank-specific Variables | Bank capital and reserves to total assets | DataStream | Percentage (%) |
LOAN_DISBRS | Control variable | Bank-specific Variables | Loan disbursements to customers | DataStream | Percentage (%) |
FINANCIAL_ASSETS | Control variable | Bank-specific Variables | Total financial instruments on the asset side | EBA | No. |
PROVISIONS | Control variable | Bank-specific Variables | Impairments (credit risk losses)/equity | EBA | Percentage (%) |
RISK_CAPITAL | Control variable | Bank-specific Variables | Total risk exposure amount for position, foreign exchange, and commodities risks/total risk exposure amount | EBA | Percentage (%) |
OPER_RISK | Control variable | Bank-specific Variables | Total risk exposure amount for OpePercentage (%) ns/total risk exposure amount | EBA | No. |
LIABILITIES | Control variable | Bank-specific Variables | Total deposits other than from banks/total liabilities | EBA | No. |
CASH_BALANCES | Control variable | Bank-specific Variables | Cash positions/total assets | EBA | Percentage (%) |
FINANCIAL_ASSETS | Control variable | Bank-specific Variables | Total financial instruments on the asset side | EBA | No. |
EQUITY | Control variable | Bank-specific Variables | Equity instruments/total assets | EBA | Percentage (%) |
TOTAL_ASSETS | Control variable | Bank-specific Variables | Total assets | EBA | No. |
RETAINED_EARNINGS | Control variable | Bank-specific Variables | Retained earnings/Tier 1 capital volume | EBA | Percentage (%) |
DERIVATIVES | Control variable | Bank-specific Variables | Derivatives/total assets | EBA | Percentage (%) |
CRED_DEPOSITS | Control variable | Bank-specific Variables | Deposits from credit institutions/total liabilities | EBA | Percentage (%) |
TIER1_CAP | Control variable | Regulatory Variables | Additional Tier 1 capital | EBA | No. |
COVER_Percentage (%) | Control variable | Regulatory Variables | Accumulated impairment, accumulated negative changes in fair value due to credit risk for non-performing loans and advances/total gross non-performing loans and advances | EBA | Percentage (%) |
RWA_VOLUME | Control variable | Regulatory Variables | RWA volume | EBA | No. |
OWN_FUNDS_TIER1 | Control variable | Regulatory Variables | Tier 1 capital volume | EBA | No. |
SECURITIZATION | Control variable | Regulatory Variables | Securitization positions/risk-weighted exposure amounts for credit, counterparty credit, and dilution risks and free deliveries | EBA | Percentage (%) |
PEPP_PURCHASES | Candidate predictor | Quantitative Easing Variables | Net purchases at book value | ECB | No. |
ASSET_TO_GDP | Candidate predictor | Quantitative Easing Variables | Total assets/quarterly gross domestic product at market prices | ECB | Percentage (%) |
QE_ANNOUNCEMENT | Candidate predictor | Quantitative Easing Variables | Quantitative Easing (QE) Announcement: 1 Corresponding to Dates: 18 March 2020 and 4 June 2020. | (Hoang et al. 2021) | Binary (1/0) |
EXP_ASSET_PURC | Candidate predictor | Quantitative Easing Variables | Expanded Asset Purchase Program (APP) | ECB | No. |
BOND_PURC | Candidate predictor | Quantitative Easing Variables | Covered bonds purchases at book value (CBPP3) | ECB | No. |
COVID19_DUMMY | Candidate predictor | COVID-19 Variables | COVID-19 pandemic existence | Author’s Calculations | Binary (1/0) |
COVID19_VACCINATED | Candidate predictor | COVID-19 Variables | COVID-19 vaccinated population | DataStream | No. |
COVID19_DEATHS | Candidate predictor | COVID-19 Variables | COVID-19 deaths | DataStream | No. |
CONTNMN | Candidate predictor | COVID-19 Government Response Variables | Government response containment index | DataStream | Index |
GOVT_RESP_STR | Candidate predictor | COVID-19 Government Response Variables | Government response stringency index | DataStream | Index |
GOVT_ECON_SUP | Candidate predictor | COVID-19 Government Response Variables | Government response economic support index | DataStream | Index |
Literature | Variable Symbol | Cultural Dimensions | Short Definition | ESS (European Social Survey) Question | Values/Answer Range from ESS (European Social Survey) | |
---|---|---|---|---|---|---|
Schwartz National Culture Values (Schwartz 1994) | ipcrtiv | Self-direction | Independent thought and action | Important to think new ideas and be creative | Value | Category |
ipgdtim | Stimulation | Excitement, novelty, and challenge in life | Important to have a good time | 1 | Very much like me | |
ipudrst | Hedonism | Pleasure or sensuous gratification for oneself | Important to understand different people | 2 | Like me | |
ipshabt | Achievement | Personal success through demonstrating competence according to social standards | Important to show abilities and be admired | 3 | Somewhat like me | |
ipfrule | Power | Social status, prestige, control, or dominance | Important to do what is told and follow rules | 4 | A little like me | |
ipstrgv | Security | Safety, harmony, and stability of society, of relationships, and of self | Important that government is strong and ensures safety | 5 | Not like me | |
ipbhprp | Conformity | Restraint of actions, inclinations, and impulses likely to upset or harm others and violate social expectations or norms | Important to behave properly | 6 | Not like me at all | |
imptrad | Tradition | Respect, commitment, and acceptance of the customs and ideas that one’s culture or religion provides | Important to follow traditions and customs | 7 | Refusal * | |
ipeqopt | Benevolence | Preserving and enhancing the welfare of those with whom one is in frequent personal contact | Important that people are treated equally and have equal opportunities | 8 | Don’t know * | |
impenv | Universalism | Understanding, appreciation, tolerance, and protection for the welfare of all people and for nature | Important to care for nature and environment | 9 | No answer * | |
Author’s Calculations | CULTURE_PCA | National Cultural Identity Variable | Percentage (%) | Cultural Identity | (*) Missing Value |
This Table Presents the Empirical Results Related with the Total Sample of Analysis (2015Q1–2021Q4) as Well as the Post-COVID-19 Period (2020Q1–2021Q4) | ||||||||
---|---|---|---|---|---|---|---|---|
Regression Results—Total Sample and Post-COVID-19 Period | Dependent Variable | |||||||
Total Period: 2015Q1–2021Q4 | Post-COVID-19 Period: 2020Q1–2021Q4 | |||||||
Total Period Analysis | MODEL (1) | MODEL (2) | MODEL (3) | MODEL (4) | MODEL (5) | MODEL (6) | MODEL (7) | |
Variable Group | Variable Symbol | D(NPL_RATIO_CRE) | D(NPL_RATIO_HHS) | D(NPL_RATIO_MORT) | D(NPL_RATIO_NFCS) | D(NPL_RATIO_SME) | D(NPLS) | D(NPLS) |
Macroeconomic Variables | D(UNEMP(-1)) | 0.001179 | 0.000583 | 0.000565 | 0.000917 | 0.000928 | 0.002346 *** | 0.006601 |
D(CPI(-1)) | −0.000506 | −0.001593 | ||||||
R_GDP_Q2Q(-1) | −0.000444 | −0.000288 | −0.000272 | −0.000368 | −0.000450 | −0.000135 | 0.002676 | |
Bank-specific Variables | D(NPLS(-1)) | 0.690926 *** | −0.674424 *** | |||||
D(NPL_RATIO_CRE(-1)) | 0.798120 | |||||||
D(NPL_RATIO_HHS(-1)) | 0.832194 | |||||||
D(NPL_RATIO_MORT(-1)) | 0.830631 | |||||||
D(NPL_RATIO_NFCS(-1)) | 0.791745 | |||||||
D(NPL_RATIO_SME(-1)) | 0.812455 | |||||||
D(OPER_RISK,1) | 2.536535 * | |||||||
RISK_CAPITAL | −0.000573 | 2.771233 * | ||||||
D(SECURITIZATION,1) | −0.000573 | −2.804435 * | ||||||
D(TIER1_CAP,2) | −1.855125 ** | |||||||
D(RWA_VOLUME,1) | 0.009934 * | |||||||
D(TOTAL_ASSETS,1) | −0.000360 | −0.000377 | −0.000418 | −0.000410 | −0.000445 | −0.000573 | ||
D(ROA(-1)) | 0.111898 | −1.212907 | ||||||
D(CAP(-1)) | 0.251789 *** | 0.225163 | ||||||
D(CAP,2) | 0.001959 | 0.001511 | 0.001626 | 0.001581 | 0.001826 | 0.000688 | ||
D(LOAN_DISBRS(-1)) | −0.008183 | 0.002465 | ||||||
Quantitative Easing Variables | PEPP_PURCHASES | −4.59 × 10−8 | −3.07 × 10−7 | −3.68 × 10−7 | −1.34 × 10−7 | −2.61 × 10−7 | −8.67 × 10−7 ** | −7.45 × 10−2 * |
BOND_PURC | −5.00 × 10−5 | −2.77 × 10−5 | −2.52 × 10−5 | −4.01 × 10−5 | −4.57 × 10−5 | 1.28 × 10−6 | ||
EXP_ASSET_PURC | −0.001098 | −0.000698 | −0.000644 | −0.000911 | −0.001090 | −8.64 × 10−5 | ||
COVID-19 Variables | COVID19_DEATHS | −4.632856 * | ||||||
COVID19_DUMMY | −0.012205 | −0.007001 | −0.011405 | −0.009049 | −0.007541 | 0.041887 | ||
Regression Main Statistics | R-squared | 0.836537 | 0.841355 | 0.832740 | 0.823983 | 0.833629 | 0.987545 | 0.935943 |
Adjusted R-squared | 0.698222 | 0.707117 | 0.691212 | 0.675045 | 0.692853 | 0.977007 | 0.829180 | |
F-statistic | 6.048053 | 6.267637 | 5.883921 | 5.532407 | 5.921688 | 9.370878 | 8.766596 | |
Prob(F-statistic) | 0.001587 | 0.001335 | 0.001811 | 0.002426 | 0.001757 | 0.000000 | 0.000000 | |
Durbin–Watson stat | 1.969687 | 1.972348 | 1.971576 | 1.970468 | 1.974364 | 1.930466 | 2.855695 |
PANEL A. This Table Presents the Empirical Results for the European Subregions. The Period of Analysis Is the Pre-COVID-19 Period (2015Q1–2019Q4). | PANEL B. This Table Presents the Empirical Results for the European Subregions. The Period of Analysis Is the Post-COVID-19 Period (2020Q1–2021Q4). | ||||||||||||
PANEL A. Regression Results—European Subregions—Pre-COVID-19 Period | Dependent Variable | PANEL B. Regression Results—European Subregions—Post-COVID-19 Period | Dependent Variable | ||||||||||
Pre-COVID-19: 2015Q1-2019Q4 | Post-COVID-19: 2020Q1-2021Q4 | ||||||||||||
Subregional Analysis | Central Europe | Northern Europe | Southern Europe | Central Europe | Northern Europe | Southern Europe | Subregional Analysis | Central Europe | Northern Europe | Southern Europe | |||
MODEL (1) | MODEL (2) | MODEL (3) | MODEL (4) | MODEL (5) | MODEL (6) | MODEL (1) | MODEL (2) | MODEL (3) | |||||
Variable Group | Variable Symbol | D(NPLS) | D(NPLS) | D(NPLS) | D(NPLS) | D(NPLS) | D(NPLS) | Variable Group | Variable Symbol | D(NPLS) | D(NPLS) | D(NPLS) | |
Macroeconomic Variables | D(UNEMP(-1)) | −0.013766 | 0.006558 | 0.025692 * | −0.002803 | 0.007229 | 0.022256 ** | Macroeconomic Variables | D(UNEMP(-1)) | 0.000194 | 0.001718 | −0.095467 | |
D(CPI(-1)) | −0.005350 | 0.055737 * | −0.012663 | −0.007320 | 0.014939 | −0.012663 | D(CPI(-1)) | 0.001380 | 0.000358 | 0.002404 | |||
R_GDP_Q2Q(-1) | 0.033917 | 0.038799 *** | 0.148603 | −0.012171 | 0.022272 | 0.039282 | R_GDP_Q2Q(-1) | 0.001591 | 0.000165 | 0.001966 | |||
D(GDP_MARKET,1) | −1.76 × 10−5 | 1.40 × 10−5 | 2.95 × 10−6 | Bank-specific Variables | D(NPLS(-1)) | 0.114139 | 0.078584 | −0.914587 *** | |||||
Bank-specific Variables | D(NPLS(-1)) | 0.269035 | −0.285082 ** | −0.391149 ** | 0.269035 | −0.158322 | −0.427347 | D(ROA(-1)) | 0.178231 | −0.189340 | −0.724560 | ||
D(ROA(-1)) | 0.065223 | 0.034237 | −2.829566 ** | 0.065223 | 0.034237 | 0.773295 | D(CAP(-1)) | −0.128961 | 0.289453 *** | 0.484247 | |||
D(CAP(-1)) | −0.582087 | −0.076389 | −1.438326 | −0.135500 | −0.293470 | −0.355399 | D(LOAN_DISBRS(-1)) | 0.006007 | 0.009299 | 0.006853 | |||
D(LOAN_DISBRS(-1)) | −0.006321 | 0.001447 | −0.009063 | −0.038671 *** | 0.016848 | 0.007029 | COVID-19 Variables | COVID19_VACCINATED | −0.007391 *** | 0.002064 | −0.143976 ** | ||
D(PROVISIONS,1) | −3.839253 | −3.145415 | −7.427375 | Regression Main Statistics | R-squared | 0.445240 | 0.396354 | 0.871000 | |||||
RISK_CAPITAL | −2.266459 | −7.837162 | −4.265118 | Adjusted R-squared | −0.035552 | 0.010021 | 0.731250 | ||||||
D(OPER_RISK,1) | 0.432963 | −4.806479 | −4.247923 | F-statistic | 0.926056 | 1.025940 | 6.232562 | ||||||
D(LIABILITIES,1) | −0.018438 | 0.001512 | 0.028989 | Prob(F-statistic) | 0.550839 | 0.464432 | 0.001604 | ||||||
D(CASH_BALANCES,1) | −4.410540 | −3.112317 | −5.875817 | Durbin-Watson stat | 2.642044 | 2.190621 | 1.409280 | ||||||
D(FINANCIAL_ASSETS,1) | 0.014633 | −0.001524 | −0.032837 | ||||||||||
D(EQUITY) | −4.167760 | −2.249403 | 2.292337 ** | ||||||||||
D(RETAINED_EARNINGS,1) | −0.645146 | −0.529536 | −1.352197 ** | ||||||||||
D(DERIVATIVES,2) | −7.736273 | −9.068875 | 6.795368 *** | ||||||||||
D(CRED_DEPOSITS,1) | −2.575671 | −8.317736 | 9.037572 * | ||||||||||
Regulatory Variables | D(TIER1_CAP,2) | 0.041501 | −0.302660 | 0.080518 | |||||||||
D(COVER_RATIO,2) | 0.661557 | −2.656202 | 1.833429 ** | ||||||||||
D(RWA_VOLUME,1) | −0.000586 | −4.85 × 10−5 | −0.000966 | ||||||||||
D(OWN_FUNDS_TIER1(-1),1) | 0.008595 | −0.000198 | −0.003130 | ||||||||||
D(SECURITIZATION,1) | −7.580479 | −8.324792 | −5.782130 | ||||||||||
Regression Main Statistics | R-squared | 0.900685 | 0.669831 | 0.942711 | 0.351186 | 0.588546 | 0.835070 | ||||||
Adjusted R-squared | −1.681505 | 0.273628 | 0.721740 | −0.197811 | 0.358132 | 0.695514 | |||||||
F-statistic | 0.348807 | 1.690627 | 4.266221 | 0.639686 | 2.554299 | 5.983770 | |||||||
Prob(F-statistic) | 0.897632 | 0.091925 | 0.026995 | 0.767729 | 0.019794 | 0.001671 | |||||||
Durbin-Watson stat | 2.449610 | 1.750368 | 2.499906 | 2.220722 | 1.649272 | 1.861230 |
PANEL A. This table presents the empirical results for the Prosperity dimension. The period of analysis is the Pre-COVID-19 Period (2015Q1–2019Q4). | PANEL B. This Table Presents the Empirical Results for the Prosperity Dimension. The Period of Analysis Is the Post-COVID-19 Period (2020Q1–2021Q4). | ||||||||||||
PANEL A Regression Results—Prosperity—Pre-COVID-19 Period | Dependent Variable | PANEL B Regression Results—Prosperity—Post-COVID-19 Period | Dependent Variable | ||||||||||
Core—Periphery | Hard-Core Country Group | Intermediate Country Group | Extended Periphery Country Group | Post-COVID-19: 2020Q1-2021Q4 | |||||||||
MODEL (1) | MODEL (2) | MODEL (3) | MODEL (4) | MODEL (5) | MODEL (6) | Core—Periphery | Hard-Core Country Group | Intermediate Country Group | Extended Periphery Country Group | ||||
Variable Group | Variable Symbol | D(NPLS) | D(NPLS) | D(NPLS) | D(NPLS) | D(NPLS) | D(NPLS) | MODEL (1) | MODEL (2) | MODEL (3) | |||
Macroeconomic Variables | D(UNEMP(-1)) | 0.011557 | −0.009357 *** | 0.024228 | −0.015295 | −0.005513 | −0.023370 | Variable Group | Variable Symbol | D(NPLS) | D(NPLS) | D(NPLS) | |
D(CPI(-1)) | 0.009861 | 0.001172 | 0.027906 | 0.013778 | 0.007535 | 0.000790 | Macroeconomic Variables | D(UNEMP(-1)) | −0.003286 | −0.011902 | −0.075901 | ||
R_GDP_Q2Q(-1) | −0.000169 | 3.81 × 10−5 | 0.054228 | 0.007601 | 0.016925 | 0.038665 | D(CPI(-1)) | 0.000860 | 0.001357 | 0.004810 | |||
D(GDP_MARKET,1) | −1.85 × 10−7 | 1.74 × 10−6 | 2.32 × 10−5 | R_GDP_Q2Q(-1) | −0.000730 | −0.000103 | −0.010835 | ||||||
Bank-specific Variables | D(NPLS(-1)) | 0.400823 | −0.561929 ** | −0.142991 ** | −0.288937 ** | 0.061585 | −0.596344 *** | Bank-specific Variables | D(NPLS(-1)) | −0.140869 | −0.004967 | −0.749663 | |
D(ROA(-1)) | −0.150535 | −0.171537 ** | 0.155848 | −0.051783 | 0.257572 | −2.461562 | D(ROA(-1)) | 0.142126 ** | 0.090678 | −0.487957 | |||
D(CAP(-1)) | 0.009861 | 0.150353 | 0.402339 | −0.150981 | −1.119386 | −1.690986 ** | D(CAP(-1)) | −0.144226 | 0.090874 | −1.531234 | |||
D(LOAN_DISBRS(-1)) | −0.001410 | −0.008798 | −0.009894 | 0.000947 | 0.108287 | 0.039455 | D(LOAN_DISBRS(-1)) | −0.011496 | 0.017691 | −0.109999 | |||
D(PROVISIONS,1) | −2.167336 | −3.437687 | −3.303196 | Regulatory Variables | D(TIER1_CAP,2) | −4.418525 | 0.708464 | −8.000965 | |||||
RISK_CAPITAL | −0.540978 | −1.937135 | −2.298918 | D(COVER_RATIO,2) | −2.616419 | −3.864881 ** | −3.686813 | ||||||
COVID-19 Variables | COVID19_VACCINATED | −0.009343 | 0.002023 | −0.143110 ** | |||||||||
D(OPER_RISK,1) | −0.778553 | −4.675385 | −1.184725 | Regression Main Statistics | R-squared | 0.528754 | 0.382402 | 0.906250 | |||||
D(LIABILITIES,1) | −0.001180 | 2.14 × 10−5 | −0.089222 | Adjusted R-squared | −0.028174 | 0.064245 | 0.765624 | ||||||
D(CASH_BALANCES,1) | −6.340108 ** | −4.477762 | −4.961550 | F-statistic | 0.949412 | 1.201930 | 6.444429 | ||||||
D(FINANCIAL_ASSETS,1) | 0.001218 | 3.96 × 10−5 | 0.064814 | Prob(F-statistic) | 0.541448 | 0.315479 | 0.006610 | ||||||
D(EQUITY) | −8.068984 | −4.959733 | −1.091987 | Durbin-Watson stat | 2.335049 | 1.984339 | 1.199686 | ||||||
D(RETAINED_EARNINGS,1) | 0.042142 | −0.158886 | 0.770446 | ||||||||||
D(DERIVATIVES,2) | −3.186733 | −1.114752 | −3.608660 | ||||||||||
D(CRED_DEPOSITS,1) | −1.481367 | −0.308019 | −7.557611 | ||||||||||
Regulatory Variables | D(TIER1_CAP,2) | 0.112170 | −0.226567 | −0.454617 | |||||||||
D(COVER_RATIO,2) | −2.815370 | −2.034571 | 0.091373 | ||||||||||
D(RWA_VOLUME,1) | 0.000232 | 0.000988 | 0.001412 | ||||||||||
D(OWN_FUNDS_TIER1(-1),1) | −0.000182 | −0.001128 | −0.005464 | ||||||||||
D(SECURITIZATION,1) | −6.982720 | −2.651291 | −4.707613 | ||||||||||
Regression Main Statistics | R-squared | 0.816686 | 0.618123 | 0.549040 | 0.638041 | 0.963809 | 0.759030 | ||||||
Adjusted R-squared | 0.109617 | 0.294996 | 0.007888 | 0.450821 | 0.022846 | 0.491285 | |||||||
F-statistic | 1.155030 | 1.912941 | 1.014577 | 3.407970 | 1.024279 | 2.834898 | |||||||
Prob(F-statistic) | 0.454674 | 0.132821 | 0.489720 | 0.002260 | 0.667778 | 0.066135 | |||||||
Durbin-Watson stat | 2.169879 | 1.812284 | 1.501292 | 2.290640 | 1.313388 | 1.706952 |
PANEL A. This Table Presents the Empirical Results per NPL Type. The Period of Analysis Is the Pre-COVID-19 Period (2015Q1–2019Q4). | PANEL B. This Table Presents the Empirical Results per NPL Type. The Period of Analysis Is the Post-COVID-19 Period (2020Q1–2021Q4). | |||||||||||||||
PANEL A Regression Results—NPL Type—Pre-COVID-19 Period | Dependent Variable | PANEL B Regression Results—NPL Type—Post-COVID-19 Period | Dependent Variable | |||||||||||||
NPL Type Analysis | MODEL (1) | MODEL (2) | MODEL (3) | MODEL (4) | MODEL (5) | MODEL (6) | NPL Type Analysis | MODEL (1) | MODEL (2) | MODEL (3) | MODEL (4) | MODEL (5) | MODEL (6) | |||
Variable Group | Variable Symbol | D(NPLS) | D(NPL_RATIO_CRE) | D(NPL_RATIO_HHS) | D(NPL_RATIO_MORT) | D(NPL_RATIO_NFCS) | D(NPL_RATIO_SME) | Variable Group | Variable Symbol | D(NPLS) | D(NPL_RATIO_CRE) | D(NPL_RATIO_HHS) | D(NPL_RATIO_MORT) | D(NPL_RATIO_NFCS) | D(NPL_RATIO_SME) | |
Macroeconomic Variables | D(UNEMP(-1)) | −0.014412 *** | 0.004447 * | 0.004028 * | 0.003909 * | 0.003590 * | 0.004816 * | Macroeconomic Variables | D(UNEMP(-1)) | −0.045555 * | −0.000300 | 0.000116 | 0.000156 | −0.000161 | −9.26 × 10−5 | |
D(CPI(-1)) | −0.004359 | −0.006894 * | −0.003656 * | −0.003369 * | −0.005314 * | −0.006599 * | D(CPI(-1)) | −0.001392 | −3.02 × 10−5 | 5.55 × 10−7 | −5.91 × 10−6 | −1.70 × 10−5 | −5.81 × 10−6 | |||
R_GDP_Q2Q(-1) | 0.021946 | 0.001510 | 0.001451 | 0.001427 | 0.001649 | 0.002270 | R_GDP_Q2Q(-1) | −0.000562 | 8.21 × 10−7 | −2.30 × 10−5 | −1.58 × 10−5 | −1.11 × 10−5 | −9.82 × 10−6 | |||
Bank-specific Variables | D(NPL_RATIO_CRE(-1)) | −0.160619 *** | Bank-specific Variables | D(NPLS(-1)) | −1011580 * | |||||||||||
D(NPL_RATIO_HHS(-1)) | −0.240182 * | D(NPL_RATIO_CRE(-1)) | −0.674931 * | |||||||||||||
D(NPL_RATIO_MORT(-1)) | −0.243654 * | D(NPL_RATIO_HHS(-1)) | −1.739795 * | |||||||||||||
D(NPL_RATIO_NFCS(-1)) | −0.167326 ** | D(NPL_RATIO_MORT(-1)) | −1.181618 * | |||||||||||||
D(NPL_RATIO_SME(-1)) | −0.185631 | D(NPL_RATIO_NFCS(-1)) | −0.656276 * | |||||||||||||
D(ROA(-1)) | −0.033750 | −0.011243 | 0.000901 | 0.001561 | −0.005135 | −0.004125 | D(NPL_RATIO_SME(-1)) | −0.767985 * | ||||||||
D(CAP(-1)) | −0.388216 * | −0.038143 ** | −0.016790 | −0.014518 | −0.026650 ** | −0.029528 *** | D(ROA(-1)) | −0.240106 | −0.004929 | −0.006432 *** | −0.008763 ** | −0.004389 *** | −0.005456 | |||
D(SECURITIZATION,1) | 5.699070 * | 4.843643 * | 4.933218 * | 4.301169 * | 5.470455 * | D(CAP(-1)) | 0.465061 *** | −3.02 × 10−5 | 0.001676 | 0.002876 | 0.004136 *** | 0.004710 | ||||
D(LOAN_DISBRS(-1)) | 0.018008 ** | 0.000427 | −0.000102 | −0.000174 | 0.000241 | −1.13 × 10−5 | D(LOAN_DISBRS(-1)) | −0.020088 | 1.34 × 10−5 | 5.55 × 10−5 | 6.69 × 10−5 | 5.17 × 10−5 | 4.96 × 10−5 | |||
Regression Main Statistics | R-squared | 0.705563 | 0.645273 | 0.688260 | 0.686605 | 0.677843 | 0.720262 | D(FINANCIAL_ASSETS,1) | −0.000822 | |||||||
Adjusted R-squared | 0.596847 | 0.514297 | 0.573155 | 0.570890 | 0.558893 | 0.582164 | Quantitative Easing Variables | D(ASSET_TO_GDP) | −2.694894 ** | |||||||
F-statistic | 6.489998 | 4.926644 | 5.979449 | 5.933580 | 5.698537 | 5.215574 | D(QE_ANNOUNCEMENT) | −0.000822 | ||||||||
Prob(F-statistic) | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | COVID-19 Variables | COVID19_VACCINATED | −0.000363 *** | −0.000272 | −0.000277 | −0.000234 *** | −0.000307 *** | |||
Durbin-Watson stat | 1.885753 | 2.582328 | 2.393623 | 2.391076 | 2.535094 | 2.639241 | COVID-19 Government Response Variables | GOVT_RESP_STR | 3.76 × 10−7 | 3.46 × 10−6 * | 3.76 × 10−7 | 8.09 × 10−8 | 2.40 × 10−6 * | 1.69 × 10−6 ** | ||
Regression Main Statistics | R-squared | 0.748355 | 0.470007 | 0.557662 | 0.506621 | 0.631051 | 0.586299 | |||||||||
Adjusted R-squared | 0.644502 | 0.288693 | 0.406336 | 0.337834 | 0.504832 | 0.444770 | ||||||||||
F-statistic | 7.205881 | 2.592234 | 3.685163 | 3.001533 | 4.999635 | 4.142598 | ||||||||||
Prob(F-statistic) | 0.000000 | 0.000701 | 0.000005 | 0.000107 | 0.000000 | 0.000001 | ||||||||||
Durbin-Watson stat | 2.097308 | 1.990526 | 0.867767 | 0.878659 | 2.153291 | 1.652758 |
PANEL A. This Table Presents the Empirical NPL Sectoral Results. The Period of Analysis Is the Post-COVID-19 Period (2020Q1–2021Q4). Empirical MODELS 1 to 10 Are Presented for Economy of Space. | |||||||||||
PANEL A Regression Results—NPL Sector—Post-COVID-19 Period | Dependent Variable | ||||||||||
Post-COVID-19: 2020Q1–2021Q4 | |||||||||||
NPL Type Analysis | MODEL (1) | MODEL (2) | MODEL (3) | MODEL (4) | MODEL (5) | MODEL (6) | MODEL (7) | MODEL (8) | MODEL (9) | MODEL (10) | |
Variable Group | Variable Symbol | D(NFCNPL_AGR) | D(NFCNPL_ART) | D(NFCNPL_CON) | D(NFCNPL_EDU) | D(NFCNPL_ELE) | D(NFCNPL_FIN) | D(NFCNPL_HUM) | D(NFCNPL_INF) | D(NFCNPL_MAN) | D(NFCNPL_MIN)) |
Macroeconomic Variables | D(UNEMP(-1)) | 0.000567 | −0.000175 | −0.000175 | −0.000147 | −9.92 × 10−5 | 0.000117 | −0.000156 | −0.000450 *** | −0.000145 | 0.000461 |
D(CPI(-1)) | −0.000154 ** | −2.09 × 10−5 | −2.09 × 10−5 | −2.96 × 10−5 | 1.69 × 10−5 | −0.000107 | 3.71 × 10−5 | −1.78 × 10−5 | −2.09 × 10−5 | −3.12 × 10−6 | |
R_GDP_Q2Q(-1) | 7.71 × 10−5 | −5.36 × 10−5 | −5.36 × 10−5 | −1.49 × 10−5 | −5.49 × 10−5 *** | −0.000127 | −8.60 × 10−5*** | 3.21 × 10−5 | 1.80 × 10−6 | −1.58 × 10−5 | |
Bank-specific Variables | D(NFCNPL_AGR(-1) | −0.507225 * | |||||||||
D(NFCNPL_ART(-1) | −0.336184 * | ||||||||||
D(NFCNPL_CON(-1) | −0.250137 | ||||||||||
D(NFCNPL_EDU(-1) | −0.397752 * | ||||||||||
D(NFCNPL_ELE(-1) | −0.347851 * | ||||||||||
D(NFCNPL_FIN(-1) | −0.376004 * | ||||||||||
D(NFCNPL_HUM(-1) | −0.422962 * | ||||||||||
D(NFCNPL_INF(-1) | −0.464776 * | ||||||||||
D(NFCNPL_MAN(-1) | −0.762066 * | ||||||||||
D(NFCNPL_MIN)(-1) | −0.168169 | ||||||||||
D(ROA(-1)) | −0.007102 | −0.005355 | −0.005355 | −0.008331 *** | 0.002382 | −0.013318 | −0.005936 | −0.002028 | −0.003229 | −0.015687 *** | |
D(CAP(-1)) | 0.010036 | 0.005510 | 0.005510 | 0.010548 ** | 3.86 × 10−5 | 0.025841 | 0.005728 | 0.000372 | 0.005174 *** | −0.011644 | |
D(LOAN_DISBRS(-1)) | 0.000305 | 3.13 × 10−6 | 3.13 × 10−6 | 3.56 × 10−5 | −5.18 × 10−5 | −0.000143 | 0.000238 | −9.97 × 10−5 | 0.000327 | 0.000979 *** | |
COVID-19 Variables | COVID19_VACCINATED | −0.000394 | −0.000201 | −0.000201 | −2.99 × 10−5 | 4.71 × 10−5 | 0.000528 | 0.000133 | −0.000217 | −0.000294 *** | 0.000319 |
COVID-19 Government Response Variables | GOVT_RESP_STR | 7.92 × 10−6 * | 1.74 × 10−6 | 1.74 × 10−6 | 2.68 × 10−6 ** | 5.89 × 10−7 | 3.19 × 10−6 | −2.13 × 10−6 *** | 1.71 × 10−6 *** | 2.10 × 10−6 ** | −1.11 × 10−6 |
Regression Main Statistics | R-squared | 0.605971 | 0.305408 | 0.327182 | 0.382561 | 0.240557 | 0.229595 | 0.501099 | 0.711797 | 0.551537 | 0.325625 |
Adjusted R-squared | 0.471172 | 0.067785 | 0.097007 | 0.171332 | −0.019252 | −0.033965 | 0.330422 | 0.613201 | 0.398116 | 0.094917 | |
F-statistic | 4.495360 | 1.285261 | 1.421452 | 1.811117 | 0.925899 | 0.871129 | 2.935950 | 7.219349 | 3.594917 | 1.411419 | |
Prob(F-statistic) | 0.000000 | 0.199114 | 0.120823 | 0.024287 | 0.573029 | 0.644102 | 0.000144 | 0.000000 | 0.000000 | 0.125524 | |
Durbin–Watson stat | 2.302737 | 2.230066 | 1.802728 | 2.387571 | 2.518205 | 2.558315 | 2.225116 | 2.508357 | 2.086867 | 1.992636 | |
PANEL B. This table presents the empirical NPL sectoral results. The period of analysis is the Post-COVID-19 Period (2020Q1–2021Q4). Empirical MODELS 11 to 19 are presented for economy of space. | |||||||||||
PANEL B Regression Results—NPL Sector—Post-COVID-19 Period | Dependent Variable | ||||||||||
Post-COVID-19: 2020Q1–2021Q4 | |||||||||||
NPL Type Analysis | MODEL (11) | MODEL (12) | MODEL (13) | MODEL (14) | MODEL (15) | MODEL (16) | MODEL (17) | MODEL (18) | MODEL (19) | ||
Variable Group | Variable Symbol | D(NFCNPL_OTH) | D(NFCNPL_PAD) | D(NFCNPL_REA) | D(NFCNPL_PRF) | D(NFCNPL_WRT) | D(NFCNPL_TRA) | D(NFCNPL_WAT) | D(NFCNPL_ACC) | D(NFCNPL_ADM) | |
Macroeconomic Variables | D(UNEMP(-1)) | −0.000202 | −0.000291 | −9.75 × 10−5 | −5.82 × 10−5 | −6.88 × 10−5 | 0.000174 | 1.26 × 10−5 | −0.001094 *** | 2.49 × 10−5 | |
D(CPI(-1)) | −1.35 × 10−5 | −0.000144 | 1.06 × 10−6 | −4.38 × 10−5 | 9.97 × 10−6 | 2.83 × 10−5 | −1.40 × 10−5 | −0.000103 ** | −5.34 × 10−5 | ||
R_GDP_Q2Q(-1) | 8.21 × 10−5 | 0.000279 | 3.26 × 10−5 | 9.65 × 10−7 | −5.91 × 10−5 | −4.35 × 10−5 | −3.51 × 10−5 | 8.33 × 10−5 | 4.08 × 10−6 | ||
Bank-specific Variables | D(NFCNPL_OTH(-1) | −0.627122 * | |||||||||
D(NFCNPL_PAD(-1) | −0.320885 * | ||||||||||
D(NFCNPL_REA(-1) | −0.051564 | ||||||||||
D(NFCNPL_PRF(-1) | −0.423346 * | ||||||||||
D(NFCNPL_WRT(-1) | −0.758765 * | ||||||||||
D(NFCNPL_TRA(-1) | −0.383743 * | ||||||||||
D(NFCNPL_WAT(-1) | −0.103849 | ||||||||||
D(NFCNPL_ACC(-1) | −0.339492 * | ||||||||||
D(NFCNPL_ADM(-1) | −0.196234 | ||||||||||
D(ROA(-1)) | −0.004911 | −0.019703 | −0.003910 | −0.003256 | −0.002876 | 0.000996 | −0.004275 | 0.006024 | −0.006901 | ||
D(CAP(-1)) | −0.000148 | 0.020447 | 0.002607 | 0.008890 | 0.003934 | 0.002777 | 0.005790 ** | 0.002347 | 0.003552 | ||
D(LOAN_DISBRS(-1)) | −0.000509 | 4.50 × 10−5 | −1.44 × 10−5 | −0.000121 | 1.91 × 10−5 | 0.000205 | −0.000152 | −0.000174 | −0.000172 | ||
COVID-19 Variables | COVID19_VACCINATED | 0.000158 | −3.92 × 10−5 | −0.000147 | −0.000212 | −0.000575 * | −0.000246 *** | −0.000196 | 0.000230 | −0.000998 * | |
COVID-19 Government Response Variables | GOVT_RESP_STR | −1.07 × 10−6 | 4.84 × 10−6 | 1.18 × 10−6 | 3.76 × 10−6 ** | 1.62 × 10−6 | 6.89 × 10−7 | 7.68 × 10−7 | 6.87 × 10−6 * | 2.79 × 10−6 *** | |
Regression Main Statistics | R-squared | 0.623453 | 0.405312 | 0.551938 | 0.409734 | 0.567890 | 0.437779 | 0.400247 | 0.451692 | 0.352797 | |
Adjusted R-squared | 0.494635 | 0.201866 | 0.398654 | 0.207801 | 0.420063 | 0.245440 | 0.195069 | 0.264113 | 0.131385 | ||
F-statistic | 4.839774 | 1.992235 | 3.600751 | 2.029057 | 3.841585 | 2.276082 | 1.950726 | 2.408007 | 1.593397 | ||
Prob(F-statistic) | 0.000000 | 0.010911 | 0.000007 | 0.009249 | 0.000003 | 0.003008 | 0.013133 | 0.001640 | 0.061077 | ||
Durbin–Watson stat | 2.091972 | 2.941706 | 2.348241 | 2.452917 | 1.952255 | 2.298212 | 1.767624 | 2.202710 | 1.823173 |
PANEL A. This Table Presents the Empirical Results per European Subregion, Prosperity, NPL Type, and NPL Sector Dimensions, with the Inclusion of the CULTURE_PCA Variable. The Period of Analysis Is the Post-COVID-19 Period (2020Q1–2021Q4). | |||||||||||||||||
PANEL A Regression results for dimensions with the inclusion of the CULTURE_PCA variable: Subregion/Prosperity/NPL Type/NPL Sector Dimensions—Post-COVID-19 Period | Dependent Variable | ||||||||||||||||
Dimension | Subsample Analysis: Central Europe | Subsample Analysis: Northern Europe | Subsample Analysis: Southern Europe | Subsample Analysis: Prosperity (Hard-Core |Intermediate| Extended Periphery) | Subsample Analysis: NPL Type | Subsample Analysis: NPL Sector | |||||||||||
Post-COVID-19: 2020Q1–2021Q4 | Post-COVID-19: 2020Q1–2021Q4 | Post-COVID-19: 2020Q1–2021Q4 | Post-COVID-19: 2020Q1–2021Q4 | Post-COVID-19: 2020Q1–2021Q4 | Post-COVID-19: 2020Q1–2021Q4 | Post-COVID-19: 2020Q1–2021Q4 | Post-COVID-19: 2020Q1–2021Q4 | Post-COVID-19: 2020Q1–2021Q4 | Post-COVID-19: 2020Q1–2021Q4 | Post-COVID-19: 2020Q1–2021Q4 | Post-COVID-19: 2020Q1–2021Q4 | Post-COVID-19: 2020Q1–2021Q4 | Post-COVID-19: 2020Q1–2021Q4 | Post-COVID-19: 2020Q1–2021Q4 | Post-COVID-19: 2020Q1–2021Q4 | ||
MODEL (1) | MODEL (2) | MODEL (3) | MODEL (4) | MODEL (5) | MODEL (6) | MODEL (7) | MODEL (8) | MODEL (9) | MODEL (10) | MODEL (11) | MODEL (12) | MODEL (13) | MODEL (14) | MODEL (15) | MODEL (16) | ||
Variable Group | Variable Symbol | D(NPLS) | D(NPLS) | D(NPLS) | D(NPLS) | D(NPLS) | D(NPLS) | D(NPL_RATIO_CRE) | D(NPL_RATIO_HHS) | D(NPL_RATIO_MORT) | D(NPL_RATIO_NFCS) | D(NPL_RATIO_SME) | D(NFCNPL_AGR) | D(NFCNPL_ART) | D(NFCNPL_CON) | D(NFCNPL_EDU) | D(NFCNPL_ELE) |
Macroeconomic Variables | D(UNEMP(-1)) | −0.007931 | 0.011335 | −0.111700 * | 0.003481 | 0.006406 | 0.053175 | 0.001879 | −6.89 × 10−5 | 6.31 × 10−5 | −0.000329 ** | −0.000326 ** | 0.000238 | −6.76 × 10−5 * | −6.30 × 10−5 | −1.63 × 10−5 * | −0.000208 |
D(CPI(-1)) | 0.001898 | −0.007608 | −0.019499 ** | 0.001383 | −0.000461 *** | 0.005369 | −1.67 × 10−5 | −2.19 × 10−6 | 7.42 × 10−6 | −6.53 × 10−5 ** | −1.45 × 10−5 | −9.36 × 10−6 | −7.78 × 10−6 | 3.51 × 10−5 | 4.44 × 10−6 | −4.57 × 10−5 ** | |
R_GDP_Q2Q(-1) | 0.002009 | −0.004334 ** | −0.004334 * | 0.000253 | −0.000215 ** | −0.034766 ** | −5.12 × 10−5 * | −1.56 × 10−5 | −7.21 × 10−6 | 1.88 × 10−5 | −0.000349 *** | −5.58 × 10−6 | −1.17 × 10−6 | 2.63 × 10−5 | 8.68 × 10−7 | 2.32 × 10−5 | |
Bank-specific Variables | Dep. Variable one lag * | 0.464575 | 0.049432 | −3.775014 *** | −0.863746 * | −0.246730 | −1.815510 | 0.981349 *** | 2083129 *** | 1533147 *** | 0.801145 *** | 0.105791 | −0.534687 * | −0.028861 | 0.130361 | −1112437 *** | 0.264846 * |
D(ROA(-1)) | 0.119711 | −0.415089 *** | 0.302717 | −0.100564 * | −0.035518 | −0.106373 | −0.009202 * | −0.002407 * | −0.000588 * | −0.001405 ** | −0.004141 ** | −0.001777 | −0.000458 | 0.000849 | −0.000192 * | −7.87 × 10−5 | |
D(CAP(-1)) | −0.129604 * | 0.072743 | −0.457852 | −0.011465 | −0.074462 | −7.204265 *** | −0.008419 * | −0.001205 * | −0.001692 * | 0.002382 * | 0.000753 | −0.005993 ** | 8.83 × 10−5 | −0.003073 * | −0.000146 | −0.002629 | |
D(LOAN_DISBRS(-1)) | −0.034574 | 0.032301 * | −0.323045 * | 0.051394 * | 0.028744 | 0.242544 | 0.000381 | 3.00 × 10−5 | −3.65 × 10−5 | 7.86 × 10−5 | 0.000546 | 0.000467 | −1.99 × 10−5 | −1.82 × 10−5 | −1.03 × 10−5 | 3.9 × 10−5 | |
COVID-19 Government Response Variables | GOVT_RESP_STR | 6.68 × 10−5 | 0.000300 * | −0.000541 * | 3628751 | 3159318 ** | 4671116 *** | 0.919157 * | 2676209 * | 0.168257 | 0.973022 * | 1.674120 ** | 0.694395 * | −0.374351 | −2701637 ** | −0.133923 * | 0.762508 * |
COVID-19 Variables | COVID19_VACCINATED | −0.009501 * | 0.014544 | −0.021299 * | −0.007642 * | −0.000959 | −0.114527 * | −0.000249 *** | −6.55 × 10−5 | −3.1 × 10−5 | −5.19 × 10−5 ** | −4.53 × 10−5 *** | 2.98 × 10−5 | 5.22 × 10−5 * | 0.000158 * | −2.22 × 10−5 | −0.000138 ** |
Cultural Dimension Variables | CULTURE_PCA | 0.037043 *** | −0.277838 * | −0.835484 * | −2104299 ** | −0.013389 ** | −2.946179 ** | −6.49 × 10−6 * | −0.000118 * | −3.69 × 10−5 * | −7.52 × 10−5 * | −0.000767 *** | −0.000437 * | 4.74 × 10−5 | −0.000303 * | 2.97 × 10−6 | −0.000449 *** |
Regression Main Statistics | R-squared | 0.545894 | 0.810609 | 0.999153 | 0.960615 | 0.446338 | 0.969491 | 0.499017 | 0.897462 | 0.920342 | 0.569513 | 0.777499 | 0.671304 | 0.470087 | 0.517033 | 0.945442 | 0.198118 |
Adjusted R-squared | 0.405554 | 0.210872 | 0.992798 | 0.812922 | −0.031825 | 0.870338 | 0.381139 | 0.881349 | 0.907824 | 0.394627 | 0.554999 | 0.342609 | 0.325187 | 0.320828 | 0.890885 | 0.009440 | |
F-statistic | 1.641136 | 1.351608 | 1.572255 | 6.504124 | 0.933442 | 9.777706 | 4.233321 | 5.569747 | 7.352284 | 3.256491 | 3.494368 | 2.042329 | 1.871016 | 2.635.166 | 1732.921 | 1.050030 | |
Prob(F-statistic) | 0.051928 | 0.075763 | 0.006337 | 0.041659 | 0.056696 | 0.020277 | 0.000130 | 0.000000 | 0.000000 | 0.003229 | 0.012823 | 0.096970 | 0.090358 | 0.012770 | 0.000002 | 0.020250 | |
Durbin–Watson stat | 2.271937 | 2.005223 | 2.255409 | 2.112149 | 1.950082 | 1.457893 | 1.948111 | 1.535112 | 1.535685 | 2.259323 | 2.021428 | 2.025776 | 2.415203 | 1.614852 | 1.863350 | 2.449369 | |
PANEL B. This table presents the empirical results per NPL SECTOR dimension, with the inclusion of the CULTURE_PCA variable. The period of analysis is the Post-COVID-19 Period (2020Q1–2021Q4). | |||||||||||||||||
PANEL B Regression results for NPL sector dimension with the inclusion of the CULTURE_PCA variable–Post-COVID-19 Period | Dependent Variable | ||||||||||||||||
Dimension | Subsample Analysis: NPL Sector | ||||||||||||||||
Post-COVID-19: 2020Q1-2021Q4 | Post-COVID-19: 2020Q1-2021Q4 | Post-COVID-19: 2020Q1-2021Q4 | Post-COVID-19: 2020Q1-2021Q4 | Post-COVID-19: 2020Q1-2021Q4 | Post-COVID-19: 2020Q1-2021Q4 | Post-COVID-19: 2020Q1-2021Q4 | Post-COVID-19: 2020Q1-2021Q4 | Post-COVID-19: 2020Q1-2021Q4 | Post-COVID-19: 2020Q1-2021Q4 | Post-COVID-19: 2020Q1-2021Q4 | Post-COVID-19: 2020Q1-2021Q4 | Post-COVID-19: 2020Q1-2021Q4 | Post-COVID-19: 2020Q1-2021Q4 | ||||
MODEL (17) | MODEL (18) | MODEL (19) | MODEL (20) | MODEL (21) | MODEL (22) | MODEL (23) | MODEL (24) | MODEL (25) | MODEL (26) | MODEL (27) | MODEL (28) | MODEL (29) | MODEL (30) | ||||
Variable Group | Variable Symbol | D(NFCNPL_FIN) | D(NFCNPL_HUM) | D(NFCNPL_INF) | D(NFCNPL_MAN) | D(NFCNPL_MIN)) | D(NFCNPL_OTH) | D(NFCNPL_PAD) | D(NFCNPL_REA) | D(NFCNPL_PRF) | D(NFCNPL_WRT) | D(NFCNPL_TRA) | D(NFCNPL_WAT) | D(NFCNPL_ACC) | D(NFCNPL_ADM) | ||
Macroeconomic Variables | D(UNEMP(-1)) | −0.000391 * | 8.31 × 10−5 | 0.000189 | 4.35 × 10−5 | 1.80 × 10−5 | −0.000182 | 0.000107 ** | −0.000717 | 2.82 × 10−5 | −0.000160 | 5.40 × 10−6 | −1.69 × 10−5 | −4.55 × 10−5 | 0.000147 | ||
D(CPI(-1)) | 1.53 × 10−6 | 1.86 × 10−6 | −1.19 × 10−5 | 2.36 × 10−5 | −3.10 × 10−5 *** | −4.81 × 10−5 | −3.47 × 10−6 | 5.41 × 10−5 | 1.65 × 10−5 | −2.67 × 10−5 | 3.56 × 10−5 | −2.63 × 10−6 | −1.55 × 10−5 | −0.000343 ** | |||
R_GDP_Q2Q(-1) | 6.36 × 10−5 | −2.42 × 10−5 ** | 5.05 × 10−5 | −5.52 × 10−5 * | −3.15 × 10−7 | −7.68 × 10−5 | −2.42 × 10−5 ** | 0.000304 | −2.16 × 10−5 * | −0.000238 ** | 6.26 × 10−5 ** | −2.64 × 10−5 | 1.05 × 10−5 | 6.63 × 10−7 | |||
Bank-specific Variables | Dep. Variable one lag * | 0.456051 * | 0.457979 | 0.334241 | −0.328069 *** | −0.438023 *** | 0.158705 | 0.859949 *** | 1.079198 *** | −0.834081 *** | 0.681852 * | −1.062127 *** | −0.549158 ** | −0.379988 | −0.487171 | ||
D(ROA(-1)) | −0.000366 | 0.001105 * | 0.000567 | 0.001338 | −0.000457 * | −0.004947 * | −4.57 × 10−6 | 0.000216 | 0.001596 | 0.000774 | 0.000237 | 0.000200 | 0.000902 | −0.009518 * | |||
D(CAP(-1)) | −0.003463 * | 0.000811 | 0.003319 *** | 0.003320 * | −0.000639 | −0.002034 | −0.000316 * | 0.002944 | −0.001678 | −0.003390 | −0.004556 ** | 3.51 × 10−5 * | 0.001617 ** | −0.008479 * | |||
D(LOAN_DISBRS(-1)) | −0.000125 | 4.56 × 10−5 * | 1.32 × 10−5 | −0.000485 *** | −4.09 × 10−5 | 0.000381 | −7.39 × 10−5 | −0.002081 * | 0.000104 | 0.000494 | 0.000719 * | −6.96 × 10−5 | −0.000389 ** | 0.001390 | |||
COVID-19 Government Response Variables | GOVT_RESP_STR | 0.187973 * | 0.294227 * | 0.677779 ** | −1.258017 | 6.409342 *** | −0.726005 | 0.140850 ** | −1.307522 | 0.791880 | −1.124358 | 8.066302 | 0.060199 | −1.656750 | 4.252682 | ||
COVID-19 Variables | COVID19_VACCINATED | 1.64 × 10−5 | −6.01 × 10−5 * | −2.82 × 10−5 | −3.35 × 10−5 * | −0.000124 *** | 0.000181 | 8.28 × 10−6 * | 2.24 × 10−5 | −7.76 × 10−5 | −8.56 × 10−5 * | −0.000631 * | 5.28 × 10−5 | 7.91 × 10−5 | −0.003825 ** | ||
Cultural Dimension Variables | CULTURE_PCA | −0.000120 * | −0.000109 * | 0.000103 | −8.92 × 10−5 * | −0.000131 | −1.88 × 10−5 | −3.01 × 10−5 * | −0.000687 * | −0.004236 | −0.000264 * | −0.002122 * | 2.44 × 10−6 | 0.000107 | −0.012083 * | ||
Regression Main Statistics | R-squared | 0.497624 | 0.465839 | 0.334178 | 0.418653 | 0.628992 | 0.404087 | 0.559674 | 0.538699 | 0.364145 | 0.657442 | 0.809130 | 0.544230 | 0.720942 | 0.703607 | ||
Adjusted R-squared | 0.352909 | 0.348837 | 0.323687 | 0.330861 | 0.478271 | 0.393234 | 0.419347 | 0.477398 | 0.305829 | 0.314883 | 0.618259 | 0.488461 | 0.441884 | 0.407213 | |||
F-statistic | 1.624843 | 2.146698 | 1.235452 | 2.490588 | 4.173201 | 0.678097 | 1.271042 | 1.167781 | 1.409689 | 1.919211 | 4.239156 | 1.194091 | 2.583481 | 2.373894 | |||
Prob(F-statistic) | 0.129538 | 0.039114 | 0.091043 | 0.011063 | 0.000487 | 0.061679 | 0.029881 | 0.087859 | 0.008506 | 0.047440 | 0.005344 | 0.072296 | 0.043295 | 0.058736 | |||
Durbin–Watson stat | 1.467275 | 2.082264 | 2.282751 | 1.867849 | 2.051844 | 2.006813 | 1.321082 | 2.106355 | 1.933857 | 1.741933 | 1.870760 | 1.081447 | 1.835548 | 1.648639 |
1 | The United Kingdom is included in our selected country dataset, even though it exited the EU in January 2020. |
2 | The missing data belong to the following countries/periods: Country group 1: Bulgaria, Croatia, Cyprus, Latvia, Slovakia/Period: 2015Q1–2018Q3, Country group 2: Italy/Period: 2015Q–2016Q3, Country group 3: Greece/Period: 2015Q1–2020Q3. |
3 | Levin–Lin–Chu, Im–Pesaran–Shin, ADF–Fisher Chi-square, and PP–Fisher Chi-square tests were employed to account for data stationarity. Unit root tables for level, first, and second differences are available upon request. |
4 | Second differences only applied on the variables: COVER_RATIO, DERIVATIVES, TIER1_CAP, and CAP. |
5 | All unit root test results are available upon request. |
6 | Durbin–Watson statistic results are depicted in respective tables of Appendix A. |
7 | For instance, the statistics of COVID-19 deaths (COVID19_DEATHS) as well as of the vaccinations against COVID-19 (COVID19_VACCINATED), respectively, are only available in the post-COVID-19 period and not in the pre-COVID-19 period. |
8 | Binary variable with values 1/0, where 1 denotes the existence of COVID-19 and 0 the non-existence of COVID-19. |
9 | The descriptive statistics related to the secondary dependent variables and the control variables employed in this study, as well as the correlation matrix, are not depicted due to space limitations, but are available upon request. |
10 | Tables depicting the regression results related with the NPL sector for the pre-pandemic period, as well as alternative econometric results generated for all the subsamples of the current research, are not included due to space limitations. All regression models are available upon request. |
11 | Table 4 serves as both a supplement and a robustness check for the primary results pertaining to the entire sample period. All other robustness models are available upon request. |
12 | Detailed robustness check results related to the exclusion of the United Kingdom are available upon request. |
13 | Detailed results of the NPL ratio dependent variable collected from the EBA database are available upon request. |
14 | Detailed results of robustness checks related to the alternative econometric methods used are available upon request. |
References
- Ahmed, Shakeel, M. Ejaz Majeed, Eleftherios Thalassinos, and Yannis Thalassinos. 2021. The Impact of Bank Specific and Macro-Economic Factors on Non-Performing Loans in the Banking Sector: Evidence from an Emerging Economy. Journal of Risk and Financial Management 14: 217. [Google Scholar] [CrossRef]
- Alessi, Lucia, Brunella Bruno, Elena Carletti, Katja Neugebauer, and Isabella Wolfskeil. 2022. Cover your assets: Non-performing loans and coverage ratios in Europe. Economic Policy 36: 685–733. [Google Scholar] [CrossRef]
- Alnabulsi, Khalil, Emira Kozarević, and Abdelaziz Hakimi. 2023a. Non-performing loans and net interest margin in the MENA region: Linear and non-linear analyses. International Journal of Financial Studies 11: 64. [Google Scholar] [CrossRef]
- Alnabulsi, Khalil, Emira Kozarević, and Abdelaziz Hakimi. 2023b. Non-performing loans as a driver of banking distress: A systematic literature review. Commodities 2: 111–30. [Google Scholar] [CrossRef]
- Apergis, Nicholas. 2022. Convergence in non-performing loans across EU banks: The role of COVID-19. Cogent Economics & Finance 10: 2024952. [Google Scholar] [CrossRef]
- Arellano, Manuel, and Stephen Bond. 1991. Some tests of specification for panel data: Monte Carlo evidence and an application to employment equations. Review of Economic Studies 58: 277–97. [Google Scholar] [CrossRef]
- Ari, Anil, Sophia Chen, and Lev Ratnovski. 2020. COVID-19 and Non-Performing Loans: Lessons from past Crises. SSRN Electronic Journal. [Google Scholar] [CrossRef]
- Ari, Anil, Sophia Chen, and Lev Ratnovski. 2021. The dynamics of non-performing loans during banking crises: A new database with post-COVID-19 implications. Journal of Banking and Finance 133: 106140. [Google Scholar] [CrossRef]
- Ashraf, Badar Nadeem, Changjun Zheng, and Sidra Arshad. 2016. Effects of national culture on bank risk-taking behavior. Research in International Business and Finance 37: 309–26. [Google Scholar] [CrossRef]
- Banks, James, Heidi Karjalainen, and Carol Propper. 2020. Recessions and Health: The Long-Term Health Consequences of Responses to the Coronavirus. Fiscal Studies 41: 337–44. [Google Scholar] [CrossRef]
- Bassani, Giovanni. 2021. Of Viruses, Economic Crises and Banks: The European Banking Union and the Response to COVID-19. European Business Law Review 32: 437–72. [Google Scholar] [CrossRef]
- Bernanke, Ben S. 2009. The Crisis and the Policy Response: A Speech at the Stamp Lecture. London: London School of Economics, January 13. Speech 442, Board of Governors of the Federal Reserve System (U.S.). [Google Scholar]
- Bettinger, Eric P. 2010. Instrumental Variables. In International Encyclopedia of Education, 3rd ed. Edited by P. Peterson, E. Baker and B. McGaw. Amsterdam: Elsevier, pp. 223–28. [Google Scholar] [CrossRef]
- Bitar, Mohammad, and Amine Tarazi. 2022. Individualism, Formal Institutional Environment and Bank Capital Decisions. Journal of Corporate Finance 76: 102244. [Google Scholar] [CrossRef]
- Boubakri, Narjess, Ali Mirzaei, and Anis Samet. 2017. National culture and bank performance: Evidence from the recent financial crisis. Journal of Financial Stability 29: 36–56. [Google Scholar] [CrossRef]
- Boubakri, Narjess, Zheng Cao, Sadok El Ghoul, Omrane Guedhami, and Xinjie Li. 2023. National culture and bank liquidity creation. Journal of Financial Stability 64: 101086. [Google Scholar] [CrossRef]
- Brunnermeier, Markus, and Arvind Krishnamurthy. 2020. The macroeconomics of corporate debt. Review of Corporate Finance Studies 9: 656–65. [Google Scholar] [CrossRef]
- Ceylan, Rahmiye Figen, Burhan Ozkan, and Esra Mulazimogullari. 2020. Historical evidence for economic effects of COVID-19. European Journal of Health Economics 21: 817–623. [Google Scholar] [CrossRef]
- Cicchiello, Antonella Francesca, Mariacristina Cotugno, Silvia Monferrà, and Stefano Perdichizzi. 2022. Credit spreads in the European green bond market: A daily analysis of the COVID-19 pandemic impact. Journal of International Financial Management & Accounting 33: 383–411. [Google Scholar] [CrossRef]
- Colak, Gonul, and Oğuzhan Öztekin. 2021. The impact of COVID-19 pandemic on bank lending around the world. Journal of Banking and Finance 133: 106207. [Google Scholar] [CrossRef]
- Couppey-Soubeyran, Jézabel, Erica Perego, and Fabien Tripier. 2020. ‘European banks and the COVID-19 crash test’. Europe Econpol 4. [Google Scholar]
- Cowling, Marc, Nick Wilson, Paul Nightingale, and Matej Kacer. 2022. Predicting future default on the COVID-19 bounce back loan scheme: The £46.5 billion question. International Small Business Journal 40: 650–66. [Google Scholar] [CrossRef]
- Demir, Ender, and Gamze Ozturk Danisman. 2021. Banking sector reactions to COVID-19: The role of bank-specific factors and government policy responses. Research in International Business and Finance 58: 101508. [Google Scholar] [CrossRef]
- Di Tommaso, Caterina, and Vincenzo Pacelli. 2022. Does nonperforming loan securitization affect credit default swap spreads? Evidence from European banks. Journal of International Financial Management and Accounting 33: 285–306. [Google Scholar] [CrossRef]
- Duan, Yuejiao, Sadok El Ghoul, Omrane Guedhami, Haifeng Li, and Xinjie Li. 2021. Bank systemic risk around COVID-19: A cross-country analysis. Journal of Banking and Finance 133: 106299. [Google Scholar] [CrossRef] [PubMed]
- Dunbar, Kwamie. 2022. Impact of the COVID-19 event on U.S. banks’ financial soundness. Research in International Business and Finance 59: 101520. [Google Scholar] [CrossRef]
- Durand, Pierre, and Gaëtan Le Quang. 2022. Banks to basics! Why banking regulation should focus on equity. European Journal of Operational Research 301: 349–72. [Google Scholar] [CrossRef]
- EBA. 2019. EBA REPORT ON NPLs, www.eba.europa.eu. Available online: https://www.eba.europa.eu/sites/default/documents/files/document_library/Risk%20Analysis%20and%20Data/Risk%20Assessment%20Reports/2019/Final%20EBA%20Report%20on%20NPLs-for%20publication_final.pdf (accessed on 6 October 2023).
- Foglia, Matteo, Abdelhamid Addi, and Eliana Angelini. 2022. The Eurozone banking sector in the time of COVID-19: Measuring volatility connectedness. Global Finance Journal 51: 100677. [Google Scholar] [CrossRef]
- Gaganis, Chrysovalantis, Iftekhar Hasan, and Fotios Pasiouras. 2020. National culture and housing credit. Journal of Empirical Finance 56: 19–41. [Google Scholar] [CrossRef]
- Giannetti, Mariassunta, and Yishay Yafeh. 2012. Do cultural differences between contracting parties matter? Evidence from syndicated bank loans. Management Science 58: 365–83. [Google Scholar] [CrossRef]
- Hansen, Lars Peter. 1982. Large sample properties of generalized method of moments estimators. Econometrica 50: 1029–54. [Google Scholar] [CrossRef]
- Ho, Kung-Cheng, Hsiu-Yun Huang, Zheng Pan, and Yifan Gu. 2023. Modern pandemic crises and default risk: Worldwide evidence. Journal of International Financial Management & Accounting 34: 211–42. [Google Scholar] [CrossRef]
- Hoang, Thi-Hong-Van, Elysé A. Segbotangni, and Amine Lahiani. 2021. ESG Performance and COVID-19 Pandemic: An Empirical Analysis of European Listed Firms. SSRN Electronic Journal. [Google Scholar] [CrossRef]
- Hofstede, Geert. 2001. Culture’s Consequences: Comparing Values, Behaviors, Institutions and Organizations across Nations. Newcastle upon Tyne: Sage. [Google Scholar]
- Jameaba, Muyanja-Ssenyonga. 2020. Why the Italian Banking System that “Cruised Over” the Global Financial Crisis, Found Itself Roiled by the Sovereign Debt Crisis: Reviewing and Highlighting the Key Issues. SSRN Electronic Journal. [Google Scholar] [CrossRef]
- Kindleberger, Charles P., and Robert Z. Aliber. 2011. Manias, Panics, and Crashes: A History of Financial Crises, 6th ed. London: Palgrave Macmillan. [Google Scholar]
- Kostis, Pantelis C., Kyriaki I. Kafka, and Panagiotis E. Petrakis. 2018. Cultural change and innovation performance. Journal of Business Research 88: 306–13. [Google Scholar] [CrossRef]
- Kozak, Sylwester. 2021. The Impact of COVID-19 on Bank Equity and Performance: The Case of Central Eastern South European Countries. Sustainability 13: 11036. [Google Scholar] [CrossRef]
- Kryzanowski, Lawrence, Jinjing Liu, and Jie Zhang. 2022. Effect of COVID-19 on non-performing loans in China. Finance Research Letters 52: 103372. [Google Scholar] [CrossRef] [PubMed]
- Laeven, Luc, and Fabian Valencia. 2021. Systemic Banking Crises: A New Database. SSRN Electronic Journal. [Google Scholar] [CrossRef]
- Laeven, Luc, and Fabian Valencia. 2018. Systemic Banking Crises Revisited. IMF Working Papers 18. [Google Scholar] [CrossRef]
- Laeven, Luc, and Fabian Valencia. 2020. Systemic Banking Crises Database II. IMF Economic Review 68: 307–61. [Google Scholar] [CrossRef]
- Loang, Ooi Kok, Zamri Ahmad, and R. V. Naveenan. 2023. Non-performing loans, macroeconomic and bank-specific variables in Southeast Asia during COVID-19 pandemic. The Singapore Economic Review 68: 941–61. [Google Scholar] [CrossRef]
- Makri, Vasiliki, Athanasios Tsagkanos, and Athanasios Bellas. 2014. Determinants of non-performing loans: The case of Eurozone. Panoeconomicus 61: 193–206. [Google Scholar] [CrossRef]
- Mateev, Miroslav, Ahmad Sahyouni, and Turki Al Masaeid. 2022. Bank performance before and during the COVID-19 crisis: Does efficiency play a role? Review of Managerial Science 18: 29–82. [Google Scholar] [CrossRef]
- Mayordomo, Sergio, Maria Rodriguez-Moreno, and Juan Ignacio Peña. 2014. Derivatives holdings and systemic risk in the U.S. banking sector. Journal of Banking and Finance 45: 84–104. [Google Scholar] [CrossRef]
- Minsky, Hyman P. 1992. The Financial Instability Hypothesis. SSRN Electronic Journal. [Google Scholar] [CrossRef]
- Naili, Maryem, and Younès Lahrichi. 2022. Banks’ credit risk, systematic determinants and specific factors: Recent evidence from emerging markets. Heliyon 8: e08960. [Google Scholar] [CrossRef] [PubMed]
- Ozili, Peterson K. 2019. Non-performing loans and financial development: New evidence. Journal of Risk Finance 20: 59–81. [Google Scholar] [CrossRef]
- Ozili, Peterson K., and Erick Outa. 2017. Bank loan loss provisions research: A review. Borsa Istanbul Review 17: 144–63. [Google Scholar] [CrossRef]
- Dursun-de Neef, H. Özlem, and Alexander Schandlbauer. 2021. COVID-19 and lending responses of European banks. Journal of Banking and Finance 133: 106236. [Google Scholar] [CrossRef] [PubMed]
- Park, Cyn-Young, and Kwanho Shin. 2021. COVID-19, nonperforming loans, and cross-border bank lending. Journal of Banking and Finance 133: 106233. [Google Scholar] [CrossRef]
- Petrakis, Panagiotis E., Pantelis C. Kostis, and Dionysis G. Valsamis. 2015. Innovation and competitiveness: Culture as a long-term strategic instrument during the European Great Recession. Journal of Business Research 68: 1436–38. [Google Scholar] [CrossRef]
- Petrakis, Panagiotis, and Pantelis Kostis. 2013. Economic growth and cultural change. The Journal of Socio-Economics 47: 147–57. [Google Scholar] [CrossRef]
- Phillips, Peter C. B., and Donggyu Sul. 2007. Transition modeling and econometric convergence tests. Econometrica 75: 1771–855. [Google Scholar] [CrossRef]
- Rinaldi, Laura, and Alicia Sanchis-Arellano. 2021. Household Debt Sustainability: What Explains Household Non-Performing Loans? An Empirical Analysis. SSRN Electronic Journal. [Google Scholar] [CrossRef]
- Rizwan, Muhammad Suhail, Ghufran Ahmad, and Dawood Ashraf. 2020. Systemic risk: The impact of COVID-19. Finance Research Letters 36: 101682. [Google Scholar] [CrossRef] [PubMed]
- Roodman, David. 2009. How to do xtabond2: An introduction to difference and system GMM in Stata. The Stata Journal 9: 86–136. [Google Scholar] [CrossRef]
- Salazar, Yadira, Paloma Merello, and Ana Zorio-Grima. 2023. IFRS 9, Banking Risk and COVID-19: Evidence from Europe. Finance Research Letters 56: 104130. [Google Scholar] [CrossRef]
- Schwartz, Shalom H. 1994. Beyond individualism/collectivism: New cultural dimensions of values. In Individualism and Collectivism: Theory, Method, and Applications. Edited by U. Kim, H. C. Triandis, C. Kagitcibasi, S.-C. Choi and G. Yoon. Thousand Oaks: Sage Publications, pp. 85–119. [Google Scholar]
- Sharif, Arshian, Chaker Aloui, and Larisa Yarovaya. 2020. COVID-19 pandemic, oil prices, stock market, geopolitical risk and policy uncertainty nexus in the US economy: Fresh evidence from the wavelet-based approach. International Review of Financial Analysis 70: 101496. [Google Scholar] [CrossRef] [PubMed]
- Shehzad, Khurram, Liu Xiaoxing, and Hayfa Kazouz. 2020. COVID-19’s disasters are perilous than Global Financial Crisis: A rumor or fact? Finance Research Letters 36: 101669. [Google Scholar] [CrossRef] [PubMed]
- Wellalage, Nirosha Hewa, Vijay Kumar, Arshad Iqbal Hunjra, and Mohammad Al-Faryan. 2022. Environmental performance and firm financing during COVID-19 outbreaks: Evidence from SMEs. Finance Research Letters 47: 102568. [Google Scholar] [CrossRef]
- Xie, Xin, Nabeel Mirza, Muhammad Umar, and Xiang Ji. 2024. COVID-19 and market discipline: Evidence from the banking sector in emerging markets. International Review of Economics & Finance 89: 612–21. [Google Scholar] [CrossRef]
- Yang, Jianlei, and Chunpeng Yang. 2021. Economic policy uncertainty, COVID-19 lockdown, and firm-level volatility: Evidence from China. Pacific Basin Finance Journal 68: 101597. [Google Scholar] [CrossRef]
- Yi, Xingjian, Sheng Liu, and Zhouheng Wu. 2022. What drives credit expansion worldwide?—An empirical investigation with long-term cross-country panel data. International Review of Economics & Finance 80: 225–42. [Google Scholar] [CrossRef]
- Zheng, Chen, and Junru Zhang. 2021. The impact of COVID-19 on the efficiency of microfinance institutions. International Review of Economics & Finance 71: 407–23. [Google Scholar] [CrossRef]
- Žunić, Amila, Kemal Kozarić, and Emina Žunić Dželihodžić. 2021. Non-Performing Loan Determinants and Impact of COVID-19: Case of Bosnia and Herzegovina. Journal of Central Banking Theory and Practice 10: 5–22. [Google Scholar] [CrossRef]
Variable Group | Variable Symbol | Parameter Shown | Explanation | Related Literature | Expected Sign |
---|---|---|---|---|---|
Macroeconomic Variables | UNEMP | Percentage (%) | % of unemployment | (Makri et al. 2014; Ceylan et al. 2020; Bassani 2021) | (+) |
CPI | No. | Quarterly Consumer Price Index | (Makri et al. 2014) | (+) | |
R_GDP_Q2Q | Percentage (%) | Quarterly percentage growth rate of real GDP | (Makri et al. 2014) | (−) | |
GDP_MARKET | No. | Quarterly gross domestic product at market prices | (Makri et al. 2014) | (−) | |
Bank-specific Variables | NPLS (-1) | Percentage (%) | Previous quarter aggregate non-performing loans to total gross loans | (Makri et al. 2014) | (+) |
ROA | Percentage (%) | Return on assets: profit or loss for the year/total assets | (Makri et al. 2014; Colak and Öztekin 2021) | (−) | |
CAP | Percentage (%) | Bank capital and reserves to total assets | (Makri et al. 2014; Colak and Öztekin 2021; Bitar and Tarazi 2022) | (−)/(+) | |
LOAN_DISBRS | Percentage (%) | Loan disbursments to customers | (Naili and Lahrichi 2022) | (+) | |
FINANCIAL_ASSETS | No. | Total financial instruments on the asset side | (Alessi et al. 2022) | (−) | |
PROVISIONS | Percentage (%) | Impairments (credit risk losses)/equity | (Ozili and Outa 2017) | (−) | |
RISK_CAPITAL | Percentage (%) | Total risk exposure amount for position, foreign exchange, and commodities risks/total risk exposure amount | (Bitar and Tarazi 2022) | (−) | |
OPER_RISK | No. | Total risk exposure amount for OpePercentage (%)ns/total risk exposure amount | (Bitar and Tarazi 2022) | (−) | |
LIABILITIES | No. | Total deposits other than from banks/total liabilities | (Ozili and Outa 2017) | (−) | |
CASH_BALANCES | Percentage (%) | Cash positions/total assets | (Alessi et al. 2022) | (−) | |
FINANCIAL_ASSETS | No. | Total financial instruments on the asset side | (Alessi et al. 2022) | (−) | |
EQUITY | Percentage (%) | Equity instruments/total assets | (Durand and Le Quang 2022) | (−) | |
TOTAL_ASSETS | No. | Total assets | (Alessi et al. 2022) | (−) | |
RETAINED_EARNINGS | Percentage (%) | Retained earnings/Tier 1 capital volume | (Ahmed et al. 2021) | (−) | |
DERIVATIVES | Percentage (%) | Derivatives/total assets | (Mayordomo et al. 2014) | (−) | |
CRED_DEPOSITS | Percentage (%) | Deposits from credit institutions/total liabilities | (Ozili 2019) | (−) | |
Regulatory Variables | TIER1_CAP | No. | Additional Tier 1 capital | (Bitar and Tarazi 2022) | (−) |
COVER_PERCENTAGE (%) | Percentage (%) | Accumulated impairment, accumulated negative changes in fair value due to credit risk for non-performing loans and advances/total gross non-performing loans and advances | (Bitar and Tarazi 2022; Alessi et al. 2022) | (−) | |
RWA_VOLUME | No. | RWA volume | (Bitar and Tarazi 2022) | (−) | |
OWN_FUNDS_TIER1 | No. | Tier 1 capital volume | (Bitar and Tarazi 2022) | (−) | |
SECURITIZATION | Percentage (%) | Securitization positions/risk-weighted exposure amounts for credit, counterparty credit, and dilution risks and free deliveries | (Di Tommaso and Pacelli 2022) | (−) | |
Quantitative Easing Variables | PEPP_PURCHASES | No. | Net purchases at book value | (Rizwan et al. 2020; Ari et al. 2021; (Hoang et al. 2021) | (−) |
ASSET_TO_GDP | Percentage (%) | Total assets/quarterly gross domestic product at market prices | (Rizwan et al. 2020; Ari et al. 2021; Hoang et al. 2021) | (−) | |
QE_ANNOUNCEMENT | Binary (1/0) | Quantitative Easing (QE) Announcement: 1 Corresponding to dates: 18/03/2020 and 04/06/2020. | (Rizwan et al. 2020; Ari et al. 2021; Hoang et al. 2021) | (−) | |
EXP_ASSET_PURC | No. | Expanded Asset Purchase Program (APP) | (Rizwan et al. 2020; Ari et al. 2021; Hoang et al. 2021) | (−) | |
BOND_PURC | No. | Covered bonds purchases at book value (CBPP3) | (Rizwan et al. 2020; Ari et al. 2021; Hoang et al. 2021) | (−) | |
COVID-19 Variables | COVID19_DUMMY | Binary (1/0) | COVID-19 pandemic existence | (Demir and Danisman 2021; Laeven and Valencia 2018; Laeven and Valencia 2020, 2021) | (+) |
COVID19_VACCINATED | No. | COVID-19 vaccinated | (Demir and Danisman 2021; Laeven and Valencia 2018; Laeven and Valencia 2020, 2021) | (−) | |
COVID19_DEATHS | No. | COVID-19 deaths | (Demir and Danisman 2021; Laeven and Valencia 2018; Laeven and Valencia 2020, 2021) | (+) | |
Cultural Dimension Variables | CULTURE_PCA | Percentage (%) | Cultural identity | Author’s Calculations | (−) |
COVID-19 Government Response Variables | CONTNMN | Index | Government response containment index | (Hoang et al. 2021; Couppey-Soubeyran et al. 2020; (Bassani 2021) | (+) |
GOVT_RESP_STR | Index | Government response stringency index | (Hoang et al. 2021; Couppey-Soubeyran et al. 2020; Bassani 2021) | (+) | |
GOVT_ECON_SUP | Index | Government response economic support index | (Hoang et al. 2021) | (−) |
NPLS | PEPP_PURCHASES | ASSET_TO_GDP | QE_ANNOUNCEMENT | EXP_ASSET_PURC | BOND_PURC | COVID19_DUMMY | COVID19_VACCINATED | COVID19_DEATHS | CONTNMN | GOVT_RESP_STR | GOVT_ECON_SUP | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | 6.818929 | 5.705593 | 0.006400 | 0.071429 | 8.883617 | 1.006164 | 0.253827 | 2.11 × 108 | 1.069482 | 3.235154 | 3.152849 | 3.848498 |
Median | 3.701882 | 0.000000 | 0.006056 | 0.000000 | 6.361949 | 8.921000 | 0.000000 | 2.568623 | 2.325710 | 3.624000 | 3.454800 | 4.125000 |
Maximum | 4.774785 | 3.395420 | 0.025949 | 1.000000 | 2.019962 | 3.416300 | 1.000000 | 3.49 × 109 | 8.680039 | 5.402000 | 5.516100 | 6.600000 |
Minimum | 0.208018 | 0.000000 | 0.000700 | 0.000000 | 0.000000 | −6.250000 | 0.000000 | 0.000000 | 1.000000 | 5.450000 | 5.044000 | 0.000000 |
Std. Dev. | 8.858129 | 1.026505 | 0.004267 | 0.257704 | 9.174503 | 9.572955 | 0.435477 | 5.48 × 108 | 1.847337 | 1.305790 | 1.389047 | 1.986842 |
Skewness | 2.744479 | 1.405314 | 0.489372 | 3.328201 | 0.073791 | 1.157496 | 1.131313 | 3.807389 | 2.416297 | −0.576944 | −0.365652 | −0.442150 |
Kurtosis | 1.064595 | 3.465069 | 2.403187 | 1.207692 | 1.080539 | 3.403692 | 2.279869 | 1.837132 | 8.485477 | 2.054388 | 1.840860 | 1.989601 |
Jarque–Bera | 2.524793 | 9.468567 | 3.756203 | 4.138809 | 4.323796 | 6.442512 | 1.841768 | 2.550274 | 4.297823 | 1.928888 | 1.627956 | 1.562507 |
Probability | 0.000000 | 0.008789 | 0.000000 | 0.000000 | 0.115106 | 0.039905 | 0.000000 | 0.000000 | 0.000000 | 0.000065 | 0.000292 | 0.000405 |
Sum | 4.664148 | 1.597566 | 4.390062 | 5.600000 | 2.487413 | 2.817260 | 1.990000 | 4.39 × 1010 | 2.06 × 108 | 6.729120 | 6.557925 | 8.004875 |
Sum Sq. Dev. | 53,592.59 | 2.85 × 1011 | 0.012472 | 5.200000 | 2.272630 | 2.47 × 109 | 1.484885 | 6.22 × 1019 | 6.55 × 1014 | 3.53 × 108 | 3.99 × 108 | 8.17 × 108 |
Observations | 684 | 208 | 686 | 784 | 208 | 208 | 784 | 208 | 193 | 208 | 208 | 208 |
Empirical Model: | Empirical Model 1 | Empirical Model 2 | Empirical Model 3 | Empirical Model 4 | Empirical Model 5 | Empirical Model 6 | Empirical Model 7 |
---|---|---|---|---|---|---|---|
Period Examined: | Total | Before COVID-19 | After COVID-19 | After COVID-19 | After COVID-19 | After COVID-19 | After COVID-19 |
Variable Symbol | Dependent Variable: D(NPLS) | ||||||
D(NPLS(-1)) | −0.342359 | −0.183453 ** | −1.020644 *** | −1.206490 *** | −1.203173 *** | −1.168123 *** | −1.145578 *** |
D(UNEMP(-1)) | −0.035229 *** | 0.015602 *** | −0.045157 *** | −0.019558 | −0.023334 | −0.028111 | −0.026744 |
D(ROA(-1)) | −0.291491 *** | −0.109478 | −0.175687 | −0.170662 | −0.216442 | −0.206493 | −0.204913 |
D(CPI(-1)) | −0.000515 | 0.002510 | −0.001905 | −0.005244 *** | −0.001308 | −0.001966 | −0.002714 |
D(CAP(-1)) | 0.149963 | −0.254603 *** | 0.377711 * | 0.318489 | 0.140830 | 0.230260 | 0.263534 |
D(LOAN_DISBRS(-1)) | −0.003586 | 0.014573 * | −0.021015 | −0.036377 | −0.028291 | −0.049109 | −0.056952 |
R_GDP_Q2Q(-1) | −0.001371 | 0.022920 | −0.002708 | 0.002934 | 0.000898 | −0.000133 | −0.000636 |
COVID19_DUMMY | 0.032328 | ||||||
COVID19_VACCINATED | −33.38 × 10−9 *** | −0.036204 *** | −0.027599 ** | −0.027225 ** | |||
GOVT_RESP_STR | 0.000140 ** | 572.9648 ** | |||||
CONTNMN | 578.1687 ** | ||||||
GOVT_ECON_SUP | 0.000058 | 6.64 × 10−5 | |||||
D(ASSET_TO_GDP) | −0.002029 * | −2.775.504 | |||||
COVID19_DEATHS | −3.305.095 | ||||||
C | −0.411011 | −0.381554 | −0.657638 | −0.772071 | −0.493559 | −0.677555 | −0.709040 |
Observations: | 402 | 305 | 97 | 90 | 85 | 97 | 90 |
R-squared: | 0.529274 | 0.656643 | 0.762686 | 0.730969 | 0.745125 | 0.738525 | 0.740121 |
F-statistic: | 6.573298 | 6.731721 | 8.652614 | 7.942145 | 0.637128 | 0.641406 | 0.632869 |
Prob(F-stat): | 0.000000 | 0.000000 | 0.000000 | 0.000001 | 0.000000 | 0.000000 | 0.000000 |
Empirical Model: | Empirical Model 1 | Empirical Model 2 | Empirical Model 3 | Empirical Model 4 | Empirical Model 5 | Empirical Model 6 | Empirical Model 7 |
---|---|---|---|---|---|---|---|
Period Examined: | Total | Before COVID-19 | After COVID-19 | After COVID-19 | After COVID-19 | After COVID-19 | After COVID-19 |
Variable Symbol | Dependent Variable: D(NPLS) | ||||||
D(NPLS(-1)) | −0.785255 *** | −0.019509 | −1.704412 *** | −2.807484 *** | −1.125098 *** | −2.606772 *** | −2.542010 *** |
D(UNEMP(-1)) | −0.000233 *** | 0.018100 *** | −0.135149 *** | 0.054589 | −0.055827 | 0.026299 | 0.048239 |
D(ROA(-1)) | −0.003389 *** | 0.005782 | −1.482710 ** | −1.177897 * | −0.529568 | −1.178363 | −1.486075 * |
D(CPI(-1)) | −0.000159 *** | 0.001973 | −0.020326 | −0.031509 * | 0.001022 | −0.033672 | −0.039164 * |
D(CAP(-1)) | 0.304569 *** | −0.236408 *** | 0.213311 | 1.441384 *** | 0.716930 | 1.040842 * | 1.862165 ** |
D(LOAN_DISBRS(-1)) | −7.51 × 10−5 | 0.009489 | −0.169374 | −0.352748 * | −0.047177 | −0.206157 | −0.286899 * |
R_GDP_Q2Q(-1) | −0.000220 *** | 0.016549 | −0.024380 | −0.041457 * | −0.030766 | −0.031095 | −0.037303 |
COVID19_DUMMY | 0.005049 | ||||||
COVID19_VACCINATED | −2.13 × 10−9 | −0.099896 *** | 0.025171 | 0.023815 | |||
GOVT_RESP_STR | 0.000196 ** | 1365.652 *** | |||||
CONTNMN | −9.796766 | ||||||
GOVT_ECON_SUP | 0.000135 | −46.53331 | |||||
D(ASSET_TO_GDP) | −84.60416 | −13.21214 ** | |||||
COVID19_DEATHS | 11.64699 * | ||||||
CULTURE_PCA | −0.000780 *** | 0.007468 | −0.169073 *** | −0.105757 * | −0.412581 *** | −0.137801 * | −0.114973 * |
C | −0.001125 | −0.353802 | −0.693554 | −1.527742 | −0.259571 | −1.184283 | −1.366887 |
Observations: | 355 | 261 | 94 | 87 | 82 | 94 | 87 |
R-squared: | 0.993921 | 0.723856 | 0.958924 | 0.976036 | 0.956702 | 0.945497 | 0.978265 |
F-statistic: | 6.799609 | 8.493018 | 8.646293 | 4.329519 | 9.722032 | 6.425089 | 1.166894 |
Prob(F-stat): | 0.000000 | 0.000000 | 0.000000 | 0.000476 | 0.000000 | 0.001973 | 0.001288 |
Empirical Model: | Empirical Model 1 | Empirical Model 2 | Empirical Model 3 | Empirical Model 4 | Empirical Model 5 | Empirical Model 6 | Empirical Model 7 |
---|---|---|---|---|---|---|---|
Period Examined: | Total | Before COVID-19 | After COVID-19 | After COVID-19 | After COVID-19 | After COVID-19 | After COVID-19 |
Variable Symbol | Dependent Variable: D(NPLS) | ||||||
D(NPLS(-1)) | −0.181402 ** | −0.019509 | −0.301656 * | −0.278239 * | −0.498079 ** | −0.271632 * | −0.270032 * |
D(UNEMP(-1)) | −0.005908 * | 0.003338 * | −0.000312 * | −0.001151 | 0.013107 | 0.000785 | 0.002276 |
D(ROA(-1)) | −0.298137 * | 0.019812 | −0.305789 * | −0.368425 * | −0.318869 | −0.279971 | −0.281101 * |
D(CPI(-1)) | −0.000642 * | 0.002699 | −0.001511 | −0.000592 * | −0.000191 | −0.000225 | −0.000689 * |
D(CAP(-1)) | 0.100329 * | −0.144452 * | 0.221153 | 0.248323 * | 0.041593 | 0.137912 * | 0.167602 * |
D(LOAN_DISBRS(-1)) | −0.007724 | 0.006638 | −0.002502 | −0.010842 * | 0.026314 | 0.009312 | 0.004685 |
R_GDP_Q2Q(-1) | −0.000593 ** | 0.011218 | −0.003963 | −0.003617 * | −0.002826 | −0.002181 | −0.002388 |
COVID19_DUMMY | 0.003182 | ||||||
COVID19_VACCINATED | −0.030673 *** | −0.032643 ** | −0.030712 *** | −0.030607 *** | |||
GOVT_RESP_STR | 180.3136 * | 198.7774 * | |||||
CONTNMN | −179.7631 * | ||||||
GOVT_ECON_SUP | 5.78 × 10−5 | 4.84 × 10−5 | |||||
D(ASSET_TO_GDP) | −10.65967 | −3.051043 * | |||||
COVID19_DEATHS | 0.410834 * | ||||||
CULTURE_PCA | −0.020594 * | −0.015615 | −0.002635 ** | −0.005780 * | −0.013931 ** | −0.005301 * | −0.011990 * |
C | −0.025936 | −0.042776 | −0.131299 | −0.008730 | −0.165630 | −0.063473 | −0.034680 |
Observations: | 355 | 261 | 94 | 87 | 82 | 94 | 87 |
R-squared: | 0.549349 | 0.587550 | 0.740867 | 0.705801 | 0.762225 | 0.731266 | 0.736555 |
F-statistic: | 9.351394 | 4.843548 | 16.133090 | 13.471660 | 16.768050 | 16.745510 | 14.378710 |
Prob(F-stat): | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.001288 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Plikas, J.H.; Kenourgios, D.; Savvakis, G.A. COVID-19 and Non-Performing Loans in Europe. J. Risk Financial Manag. 2024, 17, 271. https://doi.org/10.3390/jrfm17070271
Plikas JH, Kenourgios D, Savvakis GA. COVID-19 and Non-Performing Loans in Europe. Journal of Risk and Financial Management. 2024; 17(7):271. https://doi.org/10.3390/jrfm17070271
Chicago/Turabian StylePlikas, John Hlias, Dimitrios Kenourgios, and Georgios A. Savvakis. 2024. "COVID-19 and Non-Performing Loans in Europe" Journal of Risk and Financial Management 17, no. 7: 271. https://doi.org/10.3390/jrfm17070271
APA StylePlikas, J. H., Kenourgios, D., & Savvakis, G. A. (2024). COVID-19 and Non-Performing Loans in Europe. Journal of Risk and Financial Management, 17(7), 271. https://doi.org/10.3390/jrfm17070271