Financial Distress Premium or Discount? Some New Evidence
Abstract
:1. Introduction
2. Default Probability Measure
3. Data and Summary Statistics
4. Methodology
4.1. Default Probability Measure Construction
4.2. Default Probability Measure Construction
4.3. Regression Analysis
5. Empirical Analysis and Findings
5.1. Single-Sort Portfolio Analysis
5.2. Subperiod Analysis
5.3. Double-Sort Portfolio Analysis Based on Default Risk and Size
5.4. Double-Sort Portfolio Analysis Based on Default Risk and the Book-to-Market Ratio
5.5. Regression Analysis
5.6. Distress Risk and Equity Returns across Economic Regimes
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
data work.CCM; | |||||
set “C:\Users\konen\Downloads\Sas May 24\CCM.sas7bdat”; | |||||
run; | |||||
data work.RF; | |||||
set “C:\Users\konen\Downloads\Sas May 24\RF.sas7bdat”; | |||||
run; | |||||
data work.dailycrsp1; | |||||
set “C:\Users\konen\Downloads\Sas May 24\dailycrsp.sas7bdat”; | |||||
run; | |||||
data rf1; | |||||
set rf; | |||||
/* Create year and month variables from the date variable */ | |||||
year = year(dateff); | |||||
month = month(dateff); | |||||
/* Drop the original date variable */ | |||||
drop dateff; | |||||
run; | |||||
proc sort data = rf1 nodupkey out = rf1; | |||||
by year month; | |||||
run; | |||||
data ccm1; | |||||
set ccm; | |||||
/* Create year and month variables from the date variable */ | |||||
permno = lpermno; | |||||
year = year(datadate); | |||||
month = month(datadate); | |||||
run; | |||||
/* Sort the ‘ccm1’ dataset by year and month */ | |||||
proc sort data = ccm1; | |||||
by year month; | |||||
run; | |||||
/* Merge the ‘ccm1’ and ‘rf1’ datasets by year and month, dropping non-merged observations */ | |||||
data ccm1; | |||||
merge ccm1(in = a) rf1(in = b); | |||||
by year month; | |||||
if a and b; | |||||
r = rf; | |||||
run; | |||||
proc sort data = ccm1 nodupkey; by permno datadate; run; | |||||
data ccm2; | |||||
set ccm1; | |||||
by permno datadate; | |||||
/* remove firms with only one quarter’s observation */ | |||||
if not (first.permno and last.permno); | |||||
/* replace missing debt with 0 */ | |||||
if missing(dd1q) then dd1q = 0; | |||||
if missing(dlttq) then dlttq = 0; | |||||
/* align date to quarter-end date */ | |||||
qtrdate = intnx(‘quarter’, datadate, 0, ‘e’); | |||||
format qtrdate date9.; | |||||
run; | |||||
proc sort data = ccm2 nodupkey; by permno qtrdate; run; | |||||
proc expand data = ccm2 out = temp from = qtr to = month; | |||||
id qtrdate; by permno; | |||||
convert permno dd1q dlttq/method = step; | |||||
run; | |||||
%let year_start = 1963; | |||||
%let year_end = 2024; | |||||
proc sql; | |||||
/* COMP dataset: risk-free rate and face value of debt */ | |||||
create table comp as | |||||
select a.permno, | |||||
/* align to month-end */ | |||||
intnx(‘month’,a.qtrdate,0,‘e’) as cdt format = date9., | |||||
/* monthly risk-free rate (1-month Treasury Bill) */ | |||||
b.rf as r1 label = “risk-free rate”, | |||||
/* face value of debt | |||||
“Following Vassalou and Xing (2004), we take F, | |||||
the face value of debt, to be debt due in one year | |||||
plus one-half of longterm debt.” */ | |||||
1000*(a.dd1q + 0.5 * a.dlttq) as f label =“face value of debt” | |||||
from temp as a, rf as b | |||||
where | |||||
calculated cdt = b.dateff and not missing(b.rf) | |||||
and (&year_start. <= year(calculated cdt) <= &year_end.) | |||||
order by permno, cdt; | |||||
quit; | |||||
proc sql; | |||||
/* CRSP dataset: market value of equity */ | |||||
create table crsp as | |||||
select permno, date, | |||||
/* market value of equity */ | |||||
abs(prc)*shrout as e label = “market value of equity”, | |||||
/* align date to month-end */ | |||||
intnx(‘month’, date, 0, ‘e’) as cdt format = date9. | |||||
from dailycrsp1(keep = permno date shrout prc) | |||||
where | |||||
/* extend by 1yr to allow for rolling window */ | |||||
(&year_start.-1 <= year(date) <= &year_end.); | |||||
quit; | |||||
data kmv; curdat = 0; | |||||
%macro itera(yyy,mmm); | |||||
proc sql; | |||||
/* COMP-CRSP merged sample, past-12m data for each firm*/ | |||||
/* placed inside the macro to reduce disk requirement */ | |||||
create table sample as | |||||
select | |||||
comp.*, crsp.date, crsp.e, | |||||
(crsp.e+comp.f) as a label = “market value of assets” | |||||
from comp, crsp | |||||
where | |||||
year(comp.cdt)=&yyy. and month(comp.cdt)=&mmm. and | |||||
crsp.permno=comp.permno and not missing(crsp.permno) | |||||
and crsp.cdt between intnx(‘year’,comp.cdt,-1) and comp.cdt | |||||
order by comp.permno, comp.cdt, crsp.date; | |||||
quit; | |||||
/* Get volatility of total asset returns and equity returns */ | |||||
data one; set sample; by permno; | |||||
ra = log(a/lag1(a)); re = log(e/lag1(e)); | |||||
if first.permno then do ra = .; re = .; end; | |||||
if f > 0 and e ne . and a ne . and permno ne . and e ne 0; | |||||
run; | |||||
/* Get init value of VA, sigma_E * E/(E+F) as stated in the paper */ | |||||
proc means noprint data=one; var ra re f e; by permno; output out=bob; | |||||
data bob1(keep=permno va); set bob; | |||||
if _stat_ = ‘STD’ and _freq_ >= 50; | |||||
/* here ‘re’ is the std.dev of equity return */ | |||||
/* later we multiply E/A */ | |||||
va = sqrt(252) * re; | |||||
data bob2(keep=permno largev); set bob; | |||||
if _stat_ = ‘MEAN’; | |||||
if f > 100,000 and e > 100,000 then largev = 1; else largev = 0; | |||||
data one; merge one bob1 bob2; by permno; | |||||
/* note a side-effect here: | |||||
(e/a) is varying daily, and so is va as a result */ | |||||
va = va * (e/a); | |||||
if va < 0.01 then va = 0.01; | |||||
if va = . then delete; | |||||
if largev = 1 then do; f = f/10,000; e = e/10,000; a = a/10,000; end; | |||||
drop ra; | |||||
run; | |||||
data conv; permno = 0; | |||||
* iteration; | |||||
%do j = 1 %to 15; | |||||
dm ‘log;clear;’; | |||||
ods _all_ close; | |||||
ods listing close; | |||||
proc model noprint data = one; | |||||
endogenous a; | |||||
exogenous r1 f va e; | |||||
e = a*probnorm((log(a/f) + (r1+va*va/2))/va) | |||||
- f*exp(-r1)*probnorm((log(a/f) + (r1-va*va/2))/va); | |||||
solve a/out = two; | |||||
data two; set two; num = _n_; keep a num; | |||||
data one; set one; num = _n_; drop a; | |||||
data two; merge one two; by num; l1p = lag1(permno); l1a = lag1(a); | |||||
data two; set two; if l1p = permno then ra = log(a/l1a); | |||||
proc means noprint data = two; var ra; by permno; output out = bob; | |||||
data bar; set bob; if _stat_ = ‘MEAN’; mu = 252*ra; keep permno mu; | |||||
data bob; set bob; if _stat_ = ‘STD’; va1 = sqrt(252)*ra; | |||||
if va1 < 0.01 then va1 = 0.01; keep permno va1; | |||||
data one; merge two bob bar; by permno; vdif = va1 - va; | |||||
if abs(vdif) < 0.001 and vdif ne . then do; conv = 1; end; | |||||
data fin; set one; if conv = 1; assetvol = va1; | |||||
proc sort; by permno descending date; | |||||
data fin; set fin; if permno ne lag1(permno); curdat = 100*&yyy + &mmm; iter = &j; | |||||
data conv; merge conv fin; by permno; drop va re ra l1p l1a conv cdt num; | |||||
data one; set one; if conv ne 1; va = va1; drop va1; | |||||
%end; | |||||
data kmv; merge kmv conv; by curdat; | |||||
DD=((log(a/f) + (mu-(assetvol**2)/2))/assetvol); | |||||
edf = 100 * probnorm(-((log(a/f) + (mu-(assetvol**2)/2))/assetvol)); | |||||
if permno = 0 or curdat = 0 then delete; drop va1; | |||||
label edf = ‘expected default frequency’; | |||||
label curdat = ‘date in yyyymm format’; | |||||
label e = ‘market equity’; | |||||
label iter = ‘iterations required’; | |||||
label assetvol = ‘volatility of a’; | |||||
label f = ‘debt due in one year + 0.5LTD’; | |||||
label vdif = ‘assetvol - penultimate VA’; | |||||
label a = ‘total firm value’; | |||||
label r1 = ‘risk-free rate’; | |||||
label largev = ‘one if assets, equity and f deflated’; | |||||
label mu = ‘expected asset return’; | |||||
run; | |||||
%mend itera; | |||||
%macro bob; | |||||
%do i = &year_start. %to &year_end.; | |||||
%do m = 1 %to 12; | |||||
%itera(&i, &m); | |||||
%end; | |||||
%end; | |||||
%mend bob; | |||||
%bob; |
References
- Afik, Zvika, Ohad Arad, and Koresh Galil. 2016. Using Merton model for default prediction: An empirical assessment of selected alternatives. Journal of Empirical Finance 35: 43–67. [Google Scholar] [CrossRef]
- Altman, Edward I. 1968. Financial ratios, discriminant analysis and the prediction of corporate bankruptcy. Journal of Finance 23: 589–609. [Google Scholar] [CrossRef]
- Bharath, Sreedhar T., and Tyler Shumway. 2006. Forecasting Default with the Kmv-Merton Model. AFA 2006 Boston Meetings Paper. Available online: https://ssrn.com/abstract=637342 (accessed on 20 May 2024). [CrossRef]
- Bharath, Sreedhar T., and Tyler Shumway. 2008. Forecasting default with the Merton distance to default model. Review of Financial Studies 21: 1339–69. [Google Scholar] [CrossRef]
- Black, Fischer, and Myron Scholes. 1973. The pricing of options and corporate liabilities. Journal of Political Economy 81: 637–54. [Google Scholar] [CrossRef]
- Campbell, John Y., Jens Hilscher, and Jan Szilagyi. 2008. In search of distress risk. Journal of Finance 63: 2899–939. [Google Scholar] [CrossRef]
- Carhart, Mark M. 1997. On persistence in mutual fund performance. Journal of Finance 52: 57–82. [Google Scholar] [CrossRef]
- Chen, Long, Ralitsa Petkova, and Lu Zhang. 2008. The expected value premium. Journal of Financial Economics 87: 269–80. [Google Scholar] [CrossRef]
- Da, Zhi, and Pengjie Gao. 2010. Clientele change, liquidity shock, and the return on financially distressed stocks. Journal of Financial and Quantitative Analysis 45: 27–48. [Google Scholar] [CrossRef]
- Dichev, Ilia D. 1998. Is the risk of bankruptcy a systematic risk? Journal of Finance 53: 1131–47. [Google Scholar] [CrossRef]
- Elton, Edwin J., Martin J. Gruber, Deepak Agrawal, and Christopher Mann. 2001. Explaining the rate spread on corporate bonds. Journal of Finance 56: 247–77. [Google Scholar] [CrossRef]
- Fama, Eugene F., and James D. MacBeth. 1973. Risk, return, and equilibrium: Empirical tests. Journal of Political Economy 81: 607–36. [Google Scholar] [CrossRef]
- Fama, Eugene F., and Kenneth R. French. 1992. The cross-section of expected stock returns. Journal of Finance 47: 427–65. [Google Scholar]
- Fama, Eugene F., and Kenneth R. French. 1993. Common risk factors in the returns on stocks and bonds. Journal of Financial Economics 33: 3–56. [Google Scholar] [CrossRef]
- Fama, Eugene F., and Kenneth R. French. 1996. Multifactor explanations of asset pricing anomalies. Journal of Finance 51: 55–84. [Google Scholar] [CrossRef]
- Garlappi, Lorenzo, and Hong Yan. 2011. Financial distress and the cross-section of equity returns. Journal of Finance 66: 789–822. [Google Scholar] [CrossRef]
- George, Thomas J., and Chuan-Yang Hwang. 2010. A resolution of the distress risk and leverage puzzles in the cross-section of stock returns. Journal of Financial Economics 96: 56–79. [Google Scholar] [CrossRef]
- Griffin, John M., and Michael L. Lemmon. 2002. Book-to-market equity, distress risk, and stock returns. Journal of Finance 57: 2317–36. [Google Scholar] [CrossRef]
- Hillegeist, Stephen A., Elizabeth K. Keating, Donald P. Cram, and Kyle G. Lundstedt. 2004. Assessing the probability of bankruptcy. Review of Accounting Studies 9: 5–34. [Google Scholar] [CrossRef]
- Liu, Xiaoqun, Yuchen Zhang, Mengqiao Tian, and Youcong Chao. 2023. Financial distress and jump tail risk: Evidence from China’s listed companies. International Review of Economics & Finance 85: 316–36. [Google Scholar]
- Merton, Robert C. 1974. On the pricing of corporate debt: The risk structure of interest rates. Journal of Finance 29: 449–70. [Google Scholar]
- Newey, Whitney K., and Kenneth D. West. 1987. Hypothesis testing with efficient method of moments estimation. International Economic Review 28: 777–87. [Google Scholar] [CrossRef]
- Ohlson, James A. 1980. Financial ratios and the probabilistic prediction of bankruptcy. Journal of Accounting Research 18: 109–31. [Google Scholar] [CrossRef]
- Opler, Tim C., and Sheridan Titman. 1994. Financial distress and corporate performance. Journal of Finance 49: 1015–40. [Google Scholar] [CrossRef]
- Ozdagli, Ali K. 2013. Distressed, but Not Risky: Reconciling the Empirical Relationship between Financial Distress, Market-Based Risk Indicators, and Stock Returns (and More). University of Connecticut Finance Seminars. Available online: https://finance.business.uconn.edu/wp-content/uploads/sites/723/2014/08/Distressed-but-not-Risky.pdf (accessed on 20 May 2024).
- Vassalou, Maria, and Yuhang Xing. 2004. Default risk in equity returns. Journal of Finance 59: 831–68. [Google Scholar] [CrossRef]
- Von Kalckreuth, Ulf. 2005. A ‘Wreckers Theory’ of Financial Distress. Deutsche Bundesbank Discussion Paper Series 1; Frankfurt am Main: Deutsche Bundesbank, p. 40. [Google Scholar]
N | Mean | SD | Median | Min | Max | |
---|---|---|---|---|---|---|
# of obs. | 221,944 | |||||
# of firms | 22,189 | |||||
Default risk | 4.3602 | 14.5543 | 9.90 × 10−7 | 0.0000 | 100.0000 | |
Market cap | 1311.0703 | 2626.7966 | 178.112 | 5.3902 | 10,412.274 | |
BM | 1.0201 | 1.6941 | 0.6145 | 0.0315 | 13.7485 | |
Return | 0.0054 | 0.1187 | 0.0000 | −0.2202 | 0.2587 | |
FF3 return | 7.97 × 10−12 | 0.1096 | −0.0031 | −0.4224 | 0.4407 | |
FFC4 return | −2.29 × 10−11 | 0.1095 | −0.0030 | −0.4314 | 0.4385 |
Panel A: Equal Weighted | ||||
---|---|---|---|---|
Default Risk | Ave. Default Risk | Average Return | FF3 Return | FFC4 Return |
1 (Low) | 0.0003 | 0.0174 | 0.0125 | 0.0124 |
2 | 0.0836 | 0.0163 | 0.0112 | 0.0111 |
3 | 0.3763 | 0.0114 | 0.0068 | 0.0066 |
4 | 1.0478 | 0.0034 | −0.0016 | −0.0017 |
5 (High) | 24.9805 | −0.0205 | −0.0255 | −0.0257 |
5-1 | −0.0400 | −0.0400 | −0.0400 | |
t-stat | −21.0436 | −21.0440 | −21.0440 | |
p-value | 0.0000 | 0.0000 | 0.0000 | |
Panel B: Value Weighted | ||||
Default Risk | Ave. Default Risk | Average Return | FF3 Return | FFC4 Return |
1 (Low) | 0.0000 | 0.0176 | 0.0126 | 0.0126 |
2 | 0.0011 | 0.0160 | 0.0110 | 0.0109 |
3 | 0.0944 | 0.0109 | 0.0063 | 0.0062 |
4 | 0.6279 | 0.0036 | −0.0015 | −0.0016 |
5 (High) | 13.8112 | −0.0113 | −0.0164 | −0.0165 |
5-1 | −0.0310 | −0.0310 | −0.0310 | |
t-stat | −12.6877 | −12.6878 | −12.6878 | |
p-value | 0.0000 | 0.0000 | 0.0000 |
(A) | |||
Panel A: Equal Weighted (1971–1999) | |||
Default Risk | Average Return | FF3 Return | FFC4 Return |
1 (Low) | 0.0211 | 0.0159 | 0.0159 |
2 | 0.0167 | 0.0118 | 0.0118 |
3 | 0.0121 | 0.0070 | 0.0069 |
4 | 0.0025 | −0.0024 | −0.0024 |
5 (High) | −0.0214 | −0.0266 | −0.0266 |
5-1 | −0.0411 | −0.0411 | −0.0411 |
t-stat | −17.4314 | −17.4315 | −17.4315 |
p-value | 0.0000 | 0.0000 | 0.0000 |
Panel B: Value Weighted (1971–1999) | |||
Default Risk | Average Return | FF3 Return | FFC4 Return |
1 (Low) | 0.0206 | 0.0154 | 0.0154 |
2 | 0.0163 | 0.0113 | 0.0113 |
3 | 0.0115 | 0.0063 | 0.0063 |
4 | 0.0015 | −0.0034 | −0.0034 |
5 (High) | −0.0132 | −0.0183 | −0.0183 |
5-1 | −0.0323 | −0.0323 | −0.0323 |
t-stat | −11.4964 | −11.4965 | −11.4965 |
p-value | 0.0000 | 0.0000 | 0.0000 |
(B) | |||
Panel A: Equal Weighted (2000–2023) | |||
Default Risk | Average Return | FF3 Return | FFC4 Return |
1 (Low) | 0.0144 | 0.0094 | 0.0095 |
2 | 0.0165 | 0.0109 | 0.0109 |
3 | 0.0114 | 0.0064 | 0.0065 |
4 | 0.0038 | −0.0018 | −0.0018 |
5 (High) | −0.0218 | −0.0273 | −0.0272 |
5-1 | −0.0404 | −0.0404 | −0.0404 |
t-stat | −14.8378 | −14.8379 | −14.8379 |
p-value | 0.0000 | 0.0000 | 0.0000 |
Panel B: Value Weighted (2000–2023) | |||
Default Risk | Average Return | FF3 Return | FFC4 Return |
1 (Low) | 0.0146 | 0.0096 | 0.0097 |
2 | 0.0160 | 0.0104 | 0.0105 |
3 | 0.0117 | 0.0067 | 0.0067 |
4 | 0.0044 | −0.0012 | −0.0011 |
5 (High) | −0.0112 | −0.0168 | −0.0167 |
5-1 | −0.0301 | −0.0301 | −0.0301 |
t-stat | −8.0550 | −8.0551 | −8.0551 |
p-value | 0.0000 | 0.0000 | 0.0000 |
(A) | |||||
Panel A: Average Returns | |||||
Default Risk | Size | ||||
1 (Small) | 2 | 3 | 4 | 5 (Big) | |
1 (Low) | 0.0030 | 0.0163 | 0.0198 | 0.0213 | 0.0206 |
2 | −0.0015 | 0.0119 | 0.0193 | 0.0198 | 0.0192 |
3 | −0.0083 | 0.0088 | 0.0148 | 0.0176 | 0.0181 |
4 | −0.0191 | −0.0003 | 0.0080 | 0.0132 | 0.0144 |
5 (High) | −0.0445 | −0.0219 | −0.0103 | −0.0038 | 0.0033 |
5-1 | −0.0471 | −0.0367 | −0.0303 | −0.0250 | −0.0163 |
t-stat | −30.4450 | −21.1766 | −15.7135 | −14.5279 | −9.2897 |
p-value | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
Panel B: FF3 Abnormal Returns | |||||
Default Risk | Size | ||||
1 (Small) | 2 | 3 | 4 | 5 (Big) | |
1 (Low) | −0.0019 | 0.0112 | 0.0152 | 0.0163 | 0.0155 |
2 | −0.0065 | 0.0069 | 0.0142 | 0.0147 | 0.0142 |
3 | −0.0133 | 0.0040 | 0.0100 | 0.0128 | 0.0134 |
4 | −0.0242 | −0.0054 | 0.0029 | 0.0082 | 0.0093 |
5 (High) | −0.0492 | −0.0265 | −0.0151 | −0.0084 | −0.0014 |
5-1 | −0.0471 | −0.0367 | −0.0303 | −0.0250 | −0.0163 |
t-stat | −30.4450 | −21.1768 | −15.7136 | −14.5280 | −9.2898 |
p-value | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
Panel C: FFC4 Abnormal Returns | |||||
Default Risk | Size | ||||
1 (Small) | 2 | 3 | 4 | 5 (Big) | |
1 (Low) | −0.0020 | 0.0111 | 0.0150 | 0.0162 | 0.0154 |
2 | −0.0066 | 0.0068 | 0.0141 | 0.0146 | 0.0141 |
3 | −0.0134 | 0.0039 | 0.0098 | 0.0127 | 0.0133 |
4 | −0.0243 | −0.0055 | 0.0028 | 0.0081 | 0.0092 |
5 (High) | −0.0493 | −0.0266 | −0.0152 | −0.0085 | −0.0015 |
5-1 | −0.0471 | −0.0367 | −0.0303 | −0.0250 | −0.0163 |
t-stat | −30.4450 | −21.1768 | −15.7136 | −14.5280 | −9.2898 |
p-value | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
(B) | |||||
Panel A: Average Return | |||||
Default Risk | Size | ||||
1 (Small) | 2 | 3 | 4 | 5 (Big) | |
1 (Low) | 0.0049 | 0.0171 | 0.0200 | 0.0211 | 0.0198 |
2 | 0.0003 | 0.0126 | 0.0197 | 0.0198 | 0.0183 |
3 | −0.0067 | 0.0092 | 0.0147 | 0.0176 | 0.0169 |
4 | −0.0175 | −0.0002 | 0.0078 | 0.0132 | 0.0131 |
5 (High) | −0.0424 | −0.0211 | −0.0100 | −0.0035 | 0.0030 |
5-1 | −0.0471 | −0.0368 | −0.0303 | −0.0245 | −0.0158 |
t-stat | −29.4823 | −20.4890 | −15.5301 | −13.9200 | −8.3350 |
p-value | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
Panel B: FF3 Abnormal Returns | |||||
Default Risk | Size | ||||
1 (Small) | 2 | 3 | 4 | 5 (Big) | |
1 (Low) | 0.0000 | 0.0120 | 0.0154 | 0.0161 | 0.0147 |
2 | −0.0047 | 0.0075 | 0.0147 | 0.0147 | 0.0132 |
3 | −0.0117 | 0.0043 | 0.0099 | 0.0128 | 0.0122 |
4 | −0.0225 | −0.0053 | 0.0027 | 0.0082 | 0.0080 |
5 (High) | −0.0471 | −0.0257 | −0.0148 | −0.0081 | −0.0016 |
5-1 | −0.0471 | −0.0368 | −0.0303 | −0.0245 | −0.0158 |
t-stat | −29.4823 | −20.4891 | −15.5301 | −13.9201 | −8.3351 |
p-value | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
Panel C: FFC4 Abnormal Returns | |||||
Default Risk | Size | ||||
1 (Small) | 2 | 3 | 4 | 5 (Big) | |
1 (Low) | −0.0001 | 0.0120 | 0.0153 | 0.0160 | 0.0146 |
2 | −0.0048 | 0.0074 | 0.0146 | 0.0146 | 0.0131 |
3 | −0.0118 | 0.0042 | 0.0097 | 0.0127 | 0.0121 |
4 | −0.0226 | −0.0053 | 0.0026 | 0.0081 | 0.0079 |
5 (High) | −0.0472 | −0.0259 | −0.0149 | −0.0082 | −0.0017 |
5-1 | −0.0471 | −0.0368 | −0.0303 | −0.0245 | −0.0158 |
t-stat | −29.4823 | −20.4891 | −15.5301 | −13.9201 | −8.3351 |
p-value | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
(A) | |||||
Panel A: Average Return | |||||
Default Risk | Book-to-Market Ratio | ||||
1 (Low) | 2 | 3 | 4 | 5 (High) | |
1 (Low) | 0.0248 | 0.0192 | 0.0147 | 0.0091 | 0.0022 |
2 | 0.0269 | 0.0193 | 0.0135 | 0.0089 | −0.0022 |
3 | 0.0277 | 0.0185 | 0.0104 | 0.0046 | −0.0099 |
4 | 0.0209 | 0.0135 | 0.0075 | −0.0008 | −0.0204 |
5 (High) | 0.0013 | −0.0008 | −0.0076 | −0.0172 | −0.0437 |
5-1 | −0.0252 | −0.0191 | −0.0221 | −0.0257 | −0.0459 |
t-stat | −12.9714 | −10.7868 | −12.1276 | −13.4838 | −23.6286 |
p-value | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
Panel B: FF3 Abnormal Returns | |||||
Default Risk | Book-to-Market Ratio | ||||
1 (Low) | 2 | 3 | 4 | 5 (High) | |
1 (Low) | 0.0198 | 0.0140 | 0.0096 | 0.0039 | −0.0030 |
2 | 0.0219 | 0.0141 | 0.0082 | 0.0037 | −0.0074 |
3 | 0.0221 | 0.0132 | 0.0054 | −0.0007 | −0.0148 |
4 | 0.0160 | 0.0083 | 0.0022 | −0.0060 | −0.0256 |
5 (High) | −0.0037 | −0.0056 | −0.0124 | −0.0221 | −0.0485 |
5-1 | −0.0252 | −0.0191 | −0.0221 | −0.0257 | −0.0459 |
t-stat | −12.9715 | −10.7869 | −12.1277 | −13.4837 | −23.6287 |
p-value | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
Panel C: FFC4 Abnormal Returns | |||||
Default Risk | Book-to-Market Ratio | ||||
1 (Low) | 2 | 3 | 4 | 5 (High) | |
1 (Low) | 0.0197 | 0.0139 | 0.0095 | 0.0038 | −0.0031 |
2 | 0.0218 | 0.0140 | 0.0081 | 0.0036 | −0.0075 |
3 | 0.0221 | 0.0131 | 0.0053 | −0.0008 | −0.0149 |
4 | 0.0159 | 0.0081 | 0.0021 | −0.0061 | −0.0257 |
5 (High) | −0.0038 | −0.0057 | −0.0125 | −0.0221 | −0.0485 |
5-1 | −0.0252 | −0.0191 | −0.0221 | −0.0257 | −0.0459 |
t-stat | −12.9715 | −10.7869 | −12.1277 | −13.4837 | −23.6287 |
p-value | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
(B) | |||||
Panel A: Average Return | |||||
Default Risk | Book-to-Market Ratio | ||||
1 (Low) | 2 | 3 | 4 | 5 (High) | |
1 (Low) | 0.0211 | 0.0176 | 0.0150 | 0.0108 | 0.0074 |
2 | 0.0248 | 0.0174 | 0.0129 | 0.0076 | 0.0016 |
3 | 0.0265 | 0.0160 | 0.0094 | 0.0046 | −0.0068 |
4 | 0.0195 | 0.0112 | 0.0050 | −0.0017 | −0.0190 |
5 (High) | 0.0077 | 0.0024 | −0.0051 | −0.0134 | −0.0329 |
5-1 | −0.0146 | −0.0143 | −0.0199 | −0.0236 | −0.0403 |
t-stat | −6.0614 | −6.5059 | −8.3026 | −9.6858 | −15.2679 |
p-value | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
Panel B: FF3 Abnormal Returns | |||||
Default Risk | Book-to-Market Ratio | ||||
1 (Low) | 2 | 3 | 4 | 5 (High) | |
1 (Low) | 0.0161 | 0.0124 | 0.0099 | 0.0056 | 0.0022 |
2 | 0.0198 | 0.0122 | 0.0077 | 0.0024 | −0.0035 |
3 | 0.0209 | 0.0107 | 0.0044 | −0.0006 | −0.0117 |
4 | 0.0146 | 0.0060 | −0.0002 | −0.0069 | −0.0241 |
5 (High) | 0.0027 | −0.0024 | −0.0100 | −0.0182 | −0.0377 |
5-1 | −0.0146 | −0.0143 | −0.0199 | −0.0236 | −0.0403 |
t-stat | −6.0614 | −6.5061 | −8.3025 | −9.6858 | −15.2680 |
p-value | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
Panel C: FFC4 Abnormal Returns | |||||
Default Risk | Book-to-Market Ratio | ||||
1 (Low) | 2 | 3 | 4 | 5 (High) | |
1 (Low) | 0.0160 | 0.0123 | 0.0098 | 0.0055 | 0.0021 |
2 | 0.0197 | 0.0121 | 0.0076 | 0.0023 | −0.0036 |
3 | 0.0209 | 0.0107 | 0.0043 | −0.0007 | −0.0118 |
4 | 0.0145 | 0.0059 | −0.0003 | −0.0070 | −0.0242 |
5 (High) | 0.0027 | −0.0025 | −0.0100 | −0.0183 | −0.0377 |
5-1 | −0.0146 | −0.0143 | −0.0199 | −0.0236 | −0.0403 |
t-stat | −6.0614 | −6.5061 | −8.3025 | −9.6858 | −15.2680 |
p-value | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
Fama–French 3 | Fama–French–Carhart 4 | |
---|---|---|
Default risk | −0.0009 | −0.0009 |
(−10.0700) | (−9.9700) | |
Market (beta) | 0.6604 | 0.6390 |
(6.3900) | (3.0000) | |
Size (SMB) | 0.6322 | 0.3165 |
(4.9400) | (1.0000) | |
Value (HML) | 0.3717 | 0.1230 |
(2.0700) | (0.3500) | |
Momentum (MOM) | 0.2732 | |
(0.9300) | ||
Intercept | 0.0011 (0.4500) | −0.0023 (−0.5200) |
R-squared | 0.1042 | 0.1062 |
(A) | |||
Panel A: Expansionary periods | |||
Default Risk | Average Return | FF3 Return | FFC4 Return |
1 (Low) | 0.0173 | 0.0120 | 0.0119 |
2 | 0.0163 | 0.0110 | 0.0109 |
3 | 0.0118 | 0.0068 | 0.0067 |
4 | 0.0039 | −0.0013 | −0.0014 |
5 (High) | −0.0195 | −0.0248 | −0.0249 |
5-1 | −0.0393 | −0.0393 | −0.0393 |
t-stat | −19.5241 | −19.5245 | −19.5245 |
p-value | 0.0000 | 0.0000 | 0.0000 |
Panel B: Recessionary periods | |||
Default Risk | Average Return | FF3 Return | FFC4 Return |
1 (Low) | 0.0181 | 0.0162 | 0.0162 |
2 | 0.0162 | 0.0131 | 0.0131 |
3 | 0.0083 | 0.0068 | 0.0068 |
4 | −0.0003 | −0.0034 | −0.0034 |
5 (High) | −0.0272 | −0.0303 | −0.0303 |
5-1 | −0.0447 | −0.0447 | −0.0447 |
t-stat | −8.0085 | −8.0086 | −8.0086 |
p-value | 0.0000 | 0.0000 | 0.0000 |
Panel C: COVID-19 pandemic period | |||
Default Risk | Average Return | FF3 Return | FFC4 Return |
1 (Low) | 0.0134 | 0.0122 | 0.0123 |
2 | 0.0157 | 0.0126 | 0.0127 |
3 | 0.0119 | 0.0089 | 0.0089 |
4 | −0.0011 | −0.0041 | −0.0041 |
5 (High) | −0.0300 | −0.0331 | −0.0330 |
5-1 | −0.0501 | −0.0501 | −0.0501 |
t-stat | −6.4108 | −6.4108 | −6.4108 |
p-value | 0.0000 | 0.0000 | 0.0000 |
(B) | |||
Panel A: Expansionary periods | |||
Default Risk | Average Return | FF3 Return | FFC4 Return |
1 (Low) | 0.0174 | 0.0121 | 0.0120 |
2 | 0.0164 | 0.0111 | 0.0110 |
3 | 0.0112 | 0.0062 | 0.0061 |
4 | 0.0037 | −0.0015 | −0.0016 |
5 (High) | −0.0108 | −0.0161 | −0.0162 |
5-1 | −0.0307 | −0.0307 | −0.0307 |
t-stat | −12.1834 | −12.1836 | −12.1836 |
p-value | 0.0000 | 0.0000 | 0.0000 |
Panel B: Recessionary periods | |||
Default Risk | Average Return | FF3 Return | FFC4 Return |
1 (Low) | 0.0187 | 0.0168 | 0.0168 |
2 | 0.0137 | 0.0106 | 0.0106 |
3 | 0.0085 | 0.0071 | 0.0071 |
4 | 0.0025 | −0.0006 | −0.0006 |
5 (High) | −0.0147 | −0.0179 | −0.0179 |
5-1 | −0.0329 | −0.0329 | −0.0329 |
t-stat | −4.1348 | −4.1348 | −4.1348 |
p-value | 0.0001 | 0.0001 | 0.0001 |
Panel C: COVID-19 pandemic period | |||
Default Risk | Average Return | FF3 Return | FFC4 Return |
1 (Low) | 0.0156 | 0.0144 | 0.0145 |
2 | 0.0175 | 0.0145 | 0.0145 |
3 | 0.0150 | 0.0120 | 0.0120 |
4 | 0.0062 | 0.0032 | 0.0032 |
5 (High) | −0.0080 | −0.0111 | −0.0110 |
5-1 | −0.0304 | −0.0304 | −0.0304 |
t-stat | −3.0513 | −3.0513 | −3.0513 |
p-value | 0.0044 | 0.0044 | 0.0044 |
Panel A: Expansionary Periods | (1) | (2) |
---|---|---|
Default risk | −0.0009 | −0.0009 |
(−9.9700) | (−9.8700) | |
Market (beta) | 0.7078 | 0.5635 |
(5.9100) | (2.2900) | |
Size (SMB) | −0.0015 | 0.0600 |
(−0.0000) | (0.1700) | |
Value (HML) | 0.2174 | 0.1541 |
(0.7900) | (0.3600) | |
Momentum (MOM) | 0.3165 | |
(0.9400) | ||
Intercept | 0.0261 (1.2400) | 0.0114 (1.6900) |
R-squared | 0.0882 | 0.0899 |
Panel B: Recessionary periods | (1) | (2) |
Default risk | −0.0008 | −0.0009 |
(−4.0900) | (−4.1100) | |
Market (beta) | −0.7807 | −1.4340 |
(−0.3900) | (−0.6500) | |
Size (SMB) | 5.3366 | 8.1186 |
(1.3800) | (1.4400) | |
Value (HML) | 1.7831 | −3.8937 |
(0.5600) | (−0.4300) | |
Momentum (MOM) | 1.2719 | |
(0.6800) | ||
Intercept | −0.0473 (−0.4700) | −0.1885 (−1.8100) |
R-squared | 0.1121 | 0.1131 |
Panel C: COVID-19 pandemic period | (1) | (2) |
Default risk | −0.0008 | −0.0008 |
(−6.6300) | (−6.5400) | |
Market (beta) | 0.9700 | 1.2183 |
(1.7300) | (1.9900) | |
Size (SMB) | 1.5576 | 1.6029 |
(1.7800) | (0.7800) | |
Value (HML) | 0.0988 | −0.0218 |
(0.7400) | (−0.0400) | |
Momentum (MOM) | 1.7599 | |
(2.0300) | ||
Intercept | −0.0020 (−0.2800) | −0.0553 (−2.8600) |
R-squared | 0.1733 | 0.1768 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aroul, R.R.; Kone, N.K.; Sabherwal, S. Financial Distress Premium or Discount? Some New Evidence. J. Risk Financial Manag. 2024, 17, 286. https://doi.org/10.3390/jrfm17070286
Aroul RR, Kone NK, Sabherwal S. Financial Distress Premium or Discount? Some New Evidence. Journal of Risk and Financial Management. 2024; 17(7):286. https://doi.org/10.3390/jrfm17070286
Chicago/Turabian StyleAroul, Ramya R., Noura K. Kone, and Sanjiv Sabherwal. 2024. "Financial Distress Premium or Discount? Some New Evidence" Journal of Risk and Financial Management 17, no. 7: 286. https://doi.org/10.3390/jrfm17070286
APA StyleAroul, R. R., Kone, N. K., & Sabherwal, S. (2024). Financial Distress Premium or Discount? Some New Evidence. Journal of Risk and Financial Management, 17(7), 286. https://doi.org/10.3390/jrfm17070286