The End of Mean-Variance? Tsallis Entropy Revolutionises Portfolio Optimisation in Cryptocurrencies
Abstract
:1. Introduction
2. Literature Review
3. Data and Methods
3.1. Data
3.2. Methods
3.2.1. Markowitz’s General Framework
- is the vector of weights allocated to assets 1, 2…, n,
- is the (n*n) covariance matrix of asset returns,
- is the vector of expected returns,
- is the minimum return desired by the investor,
- guarantees that all capital is invested,
- prevents short selling (long-only).
Efficient Frontier
3.2.2. Proposed Models
Why Entropy?
Why Mutual Information?
3.2.3. Construction of the Modified Risk Matrix
3.2.4. Entropic Value-at-Risk
Discretisation of EVAR
EVAR Minimisation
The Construction of the Objective Function
- is the vector of portfolio weights.
- is the vector of expected returns.
- is the risk aversion coefficient.
4. Results
4.1. Performance Analysis
4.2. Analysis of the Efficient Frontier
4.2.1. Basics of Portfolio Theory
4.2.2. Comparison of Approaches
4.2.3. Deep Border Analysis
4.2.4. The Influence of 2020 on Efficient Frontiers
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ahmadi-Javid, A. (2012). Entropic value-at-risk: A new coherent risk measure. Journal of Optimization Theory and Applications, 155, 1105–1123. [Google Scholar] [CrossRef]
- Ahn, K., Lee, D., Sohn, S., & Yang, B. (2019). Stock market uncertainty and economic fundamentals: An entropy-based approach. Quantitative Finance, 19(7), 1151–1163. [Google Scholar] [CrossRef]
- Assaf, A., Charif, H., & Demir, E. (2022). Information sharing among cryptocurrencies: Evidence from mutual information and approximate entropy during COVID-19. Finance Research Letters, 47, 102556. [Google Scholar] [CrossRef] [PubMed]
- Barbi, A. Q., & Prataviera, G. A. (2019). Nonlinear dependencies on Brazilian equity network from mutual information minimum spanning trees. Physica A: Statistical Mechanics and its Applications, 523, 876–885. [Google Scholar] [CrossRef]
- Bariviera, A. F., & Merediz-Solà, I. (2021). Where do we stand in cryptocurrency economic research? A survey based on hybrid analysis. Journal of Economic Surveys, 35(2), 377–407. [Google Scholar] [CrossRef]
- Bera, A. K., & Park, S. Y. (2008). Optimal portfolio diversification using the maximum entropy principle. Econometric Reviews, 27(4–6), 484–512. [Google Scholar] [CrossRef]
- Bhattacharyya, R., Chatterjee, A., & Kar, S. (2013). Uncertainty theory based multiple objective mean-entropy-skewness stock portfolio selection model with transaction costs. Journal of Uncertainty Analysis and Applications, 1, 1–17. [Google Scholar] [CrossRef]
- Bhattacharyya, R., Hossain, S. A., & Kar, S. (2014). Fuzzy cross-entropy, mean, variance, skewness models for portfolio selection. Journal of King Saud University-Computer and Information Sciences, 26(1), 79–87. [Google Scholar] [CrossRef]
- Boyd, S. P., & Vandenberghe, L. (2004). Convex optimization. Cambridge University Press. [Google Scholar]
- Cajas, D. (2021). Owa portfolio optimization: A disciplined convex programming framework. Available online: https://ssrn.com/abstract=3988927 (accessed on 13 January 2025).
- Chokor, A., & Alfieri, E. (2021). Long and short-term impacts of regulation in the cryptocurrency market. The Quarterly Review of Economics and Finance, 81, 157–173. [Google Scholar] [CrossRef]
- Chopra, V. K., & Ziemba, W. T. (2013). The effect of errors in means, variances, and covariances on optimal portfolio choice. In Handbook of the fundamentals of financial decision making: Part I (pp. 365–373). World Scientific. [Google Scholar]
- Chortane, S. G., & Naoui, K. (2022). Information entropy theory and asset valuation: A literature survey. International Journal of Accounting, Business and Finance, 2(1), 42–60. [Google Scholar] [CrossRef]
- Cont, R. (2001). Empirical properties of asset returns: Stylized facts and statistical issues. Quantitative Finance, 1(2), 223. [Google Scholar] [CrossRef]
- Corbet, S., Larkin, C., & Lucey, B. (2020). The contagion effects of the COVID-19 pandemic: Evidence from gold and cryptocurrencies. Finance Research Letters, 35, 101554. [Google Scholar] [CrossRef] [PubMed]
- Cover, T. M., & Thomas, J. A. (2006). Elements of information theory (2nd ed.). Wiley-Interscience. [Google Scholar]
- DeMiguel, V., Garlappi, L., & Uppal, R. (2009). Optimal versus naive diversification: How inefficient is the 1/N portfolio strategy? The review of Financial studies, 22(5), 1915–1953. [Google Scholar] [CrossRef]
- Dionisio, A., Menezes, R., & Mendes, D. A. (2004). Mutual information: A measure of dependency for nonlinear time series. Physica A: Statistical Mechanics and its Applications, 344(1–2), 326–329. [Google Scholar] [CrossRef]
- Fama, E. F. (1970). Efficient capital markets. Journal of Finance, 25(2), 383–417. [Google Scholar] [CrossRef]
- Fama, E. F., & French, K. R. (2004). The capital asset pricing model: Theory and evidence. Journal of economic perspectives, 18(3), 25–46. [Google Scholar] [CrossRef]
- Fama, E. F., & French, K. R. (2015). A five-factor asset pricing model. Journal of financial economics, 116(1), 1–22. [Google Scholar] [CrossRef]
- Fiedor, P. (2014). Networks in financial markets based on the mutual information rate. Physical Review E, 89(5), 052801. [Google Scholar] [CrossRef]
- Granger, C., & Lin, J. L. (1994). Using the mutual information coefficient to identify lags in nonlinear models. Journal of Time Series Analysis, 15(4), 371–384. [Google Scholar] [CrossRef]
- Grant, M. C., & Boyd, S. P. (2008). Graph implementations for nonsmooth convex programs. In Recent advances in learning and control (pp. 95–110). Springer. [Google Scholar]
- Haluszczynski, A., Laut, I., Modest, H., & Räth, C. (2017). Linear and nonlinear market correlations: Characterizing financial crises and portfolio optimization. Physical Review E, 96(6), 062315. [Google Scholar] [CrossRef]
- Harvey, C. R., & Siddique, A. (2000). Conditional skewness in asset pricing tests. The Journal of Finance, 55(3), 1263–1295. [Google Scholar] [CrossRef]
- Huang, X. (2008). Mean-entropy models for fuzzy portfolio selection. IEEE Transactions on Fuzzy Systems, 16(4), 1096–1101. [Google Scholar] [CrossRef]
- Jensen, M. C. (1968). The performance of mutual funds in the period 1945–1964. The Journal of finance, 23(2), 389–416. [Google Scholar]
- Joe, H. (1989). Relative entropy measures of multivariate dependence. Journal of the American Statistical Association, 84(405), 157–164. [Google Scholar] [CrossRef]
- Kolm, P. N., Tütüncü, R., & Fabozzi, F. J. (2014). 60 years of portfolio optimization: Practical challenges and current trends. European Journal of Operational Research, 234(2), 356–371. [Google Scholar] [CrossRef]
- Kraft, D. (1988). A software package for sequential quadratic programming. Report DFVLR-FR 88–28. Deutsche Forschungs-und Versuchsanstalt für Luftund Raumfahrt. [Google Scholar]
- Kraskov, A., Stögbauer, H., & Grassberger, P. (2004). Estimating mutual information. Physical Review E—Statistical, Nonlinear, and Soft Matter Physics, 69(6), 066138. [Google Scholar] [CrossRef]
- Krokhmal, P., Palmquist, J., & Uryasev, S. (2002). Portfolio optimization with conditional value-at-risk objective and constraints. Journal of Risk, 4, 43–68. [Google Scholar] [CrossRef]
- Lahmiri, S., & Bekiros, S. (2020). Renyi entropy and mutual information measurement of market expectations and investor fear during the COVID-19 pandemic. Chaos, Solitons & Fractals, 139, 110084. [Google Scholar]
- Lassance, N., & Vrins, F. (2019). Rényi minimum entropy portfolios. Annals of Operations Research, 299, 23–46. [Google Scholar] [CrossRef]
- Le Tran, V., & Leirvik, T. (2020). Efficiency in the markets of crypto-currencies. Finance Research Letters, 35, 101382. [Google Scholar] [CrossRef]
- Ledoit, O., & Wolf, M. (2003a). Honey, I shrunk the sample covariance matrix. UPF Economics and Business Working Paper, 691. [Google Scholar] [CrossRef]
- Ledoit, O., & Wolf, M. (2003b). Improved estimation of the covariance matrix of stock returns with an application to portfolio selection. Journal of Empirical Finance, 10(5), 603–621. [Google Scholar] [CrossRef]
- Ledoit, O., & Wolf, M. (2004). A well-conditioned estimator for large-dimensional covariance matrices. Journal of Multivariate Analysis, 88(2), 365–411. [Google Scholar] [CrossRef]
- Lo, A. W. (2004). The adaptive markets hypothesis: Market efficiency from an evolutionary perspective. Journal of Portfolio Management. forthcoming. [Google Scholar]
- MacLean, L., Yu, L., & Zhao, Y. (2022). A generalized entropy approach to portfolio selection under a hidden Markov model. Journal of Risk and Financial Management, 15(8), 337. [Google Scholar] [CrossRef]
- Mahmoud, I., & Naoui, K. (2017). Measuring systematic and specific risk: Approach mean-entropy. Asian Journal of Empirical Research, 7(3), 42–60. [Google Scholar] [CrossRef]
- Mandelbrot, B. (1963). New methods in statistical economics. Journal of Political Economy, 71(5), 421–440. [Google Scholar] [CrossRef]
- Markowitz, H. (1952). The utility of wealth. Journal of Political Economy, 60(2), 151–158. [Google Scholar] [CrossRef]
- Martin, I. W., & Nagel, S. (2022). Market efficiency in the age of big data. Journal of Financial Economics, 145(1), 154–177. [Google Scholar] [CrossRef]
- Mercurio, P. J., Wu, Y., & Xie, H. (2020). An entropy-based approach to portfolio optimization. Entropy, 22(3), 332. [Google Scholar] [CrossRef]
- Nocedal, J., & Wright, S. J. (Eds.). (1999). Numerical optimization. Springer. [Google Scholar]
- Ormos, M., & Zibriczky, D. (2014). Entropy-based financial asset pricing. PLoS ONE, 9(12), e115742. [Google Scholar] [CrossRef] [PubMed]
- Philippatos, G. C., & Wilson, C. J. (1972). Entropy, market risk, and the selection of efficient portfolios. Applied Economics, 4(3), 209–220. [Google Scholar] [CrossRef]
- Rockafellar, R. T., & Uryasev, S. (2000). Optimization of conditional value-at-risk. Journal of Risk, 2, 21–42. [Google Scholar] [CrossRef]
- Shannon, C. E. (1948). A mathematical theory of communication. The Bell System Technical Journal, 27(3), 379–423. [Google Scholar] [CrossRef]
- Sharpe, W. F. (1964). Capital asset prices: A theory of market equilibrium under conditions of risk. The Journal of Finance, 19(3), 425–442. [Google Scholar]
- Song, R., & Chan, Y. (2020). A new adaptive entropy portfolio selection model. Entropy, 22(9), 951. [Google Scholar] [CrossRef]
- Tsallis, C. (1988). Possible generalisation of Boltzmann-Gibbs statistics. Journal of Statistical Physics, 52, 479–487. [Google Scholar] [CrossRef]
- Urquhart, A. (2016). The inefficiency of Bitcoin. Economics Letters, 148, 80–82. [Google Scholar] [CrossRef]
- Urquhart, A. (2017). Price clustering in Bitcoin. Economics Letters, 159, 145–148. [Google Scholar] [CrossRef]
- Urquhart, A. (2018). What causes the attention of Bitcoin? Economics Letters, 166, 40–44. [Google Scholar] [CrossRef]
- Vidal-Tomás, D. (2021). Transitions in the cryptocurrency market during the COVID-19 pandemic: A network analysis. Finance Research Letters, 43, 101981. [Google Scholar] [CrossRef] [PubMed]
- Whittaker, E. T. (1955). Albert Einstein, 1879–1955. Biographical Memoirs of Fellows of the Royal Society, 1, 137–67. [Google Scholar] [CrossRef]
- Zhang, W. G., Liu, Y. J., & Xu, W. J. (2012). A possibilistic mean-semivariance-entropy model for multi-period portfolio selection with transaction costs. European Journal of Operational Research, 222(2), 341–349. [Google Scholar] [CrossRef]
- Zhou, R., Cai, R., & Tong, G. (2013). Applications of entropy in finance: A review. Entropy, 15(11), 4909–4931. [Google Scholar] [CrossRef]
- Zhu, S., & Fukushima, M. (2009). Worst-case conditional value-at-risk with application to robust portfolio management. Operations Research, 57(5), 1155–1168. [Google Scholar] [CrossRef]
Return% | Alpha | Stdev | P1 | P99 | Sharpe | Entropy | GLR | |
---|---|---|---|---|---|---|---|---|
MV | 0.045 | NA | 0.006 | 0 | 4.99 | 0.070 | 29.133 | 0.183 |
MI | 0.091 | 0 | 0.354 | 0 | 1.14 | 0.003 | 190.063 | 0.106 |
MI X+Y | 0.091 | 0 | 0.137 | 0 | 1.14 | 0.007 | 190.071 | 0.106 |
MI Min | 0.091 | 0 | 0.194 | 0 | 1.14 | 0.005 | 190.072 | 0.106 |
MI Max | 0.091 | 0 | 0.194 | 0 | 1.14 | 0.005 | 190.064 | 0.106 |
MI XY | 0.081 | 0 | 0.122 | 0 | 0.64 | 0.007 | 323.368 | 0.117 |
MI Sqrt | 0.091 | 0 | 0.194 | 0 | 1.14 | 0.005 | 190.071 | 0.106 |
EVAR | 0.055 | 0 | 0.016 | 0 | 7.18 | 0.034 | 17.038 | 0.203 |
Return% | Alpha | Stdev | P1 | P99 | Sharpe | Entropy | GLR | |
---|---|---|---|---|---|---|---|---|
MV | 0.264 | NA | 0.034 | 0.00 | 83.49 | 0.078 | 1.451 | 0.765 |
MI | 0.361 | 0 | 0.886 | 7.56 | 13.06 | 0.004 | 9.830 | 0.519 |
MI X+Y | 0.361 | 0 | 0.352 | 7.56 | 13.06 | 0.010 | 9.830 | 0.519 |
MI Min | 0.361 | 0 | 0.497 | 7.56 | 13.06 | 0.007 | 9.830 | 0.519 |
MI Max | 0.361 | 0 | 0.497 | 7.56 | 13.06 | 0.007 | 9.830 | 0.519 |
MI XY | 0.353 | 0 | 0.396 | 8.98 | 11.29 | 0.009 | 9.970 | 0.524 |
MI Sqrt | 0.361 | 0 | 0.497 | 7.56 | 13.06 | 0.007 | 9.830 | 0.519 |
EVAR | 0.280 | 0 | 0.041 | 0.00 | 76.27 | 0.069 | 1.759 | 0.646 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gaied Chortane, S.; Naoui, K. The End of Mean-Variance? Tsallis Entropy Revolutionises Portfolio Optimisation in Cryptocurrencies. J. Risk Financial Manag. 2025, 18, 77. https://doi.org/10.3390/jrfm18020077
Gaied Chortane S, Naoui K. The End of Mean-Variance? Tsallis Entropy Revolutionises Portfolio Optimisation in Cryptocurrencies. Journal of Risk and Financial Management. 2025; 18(2):77. https://doi.org/10.3390/jrfm18020077
Chicago/Turabian StyleGaied Chortane, Sana, and Kamel Naoui. 2025. "The End of Mean-Variance? Tsallis Entropy Revolutionises Portfolio Optimisation in Cryptocurrencies" Journal of Risk and Financial Management 18, no. 2: 77. https://doi.org/10.3390/jrfm18020077
APA StyleGaied Chortane, S., & Naoui, K. (2025). The End of Mean-Variance? Tsallis Entropy Revolutionises Portfolio Optimisation in Cryptocurrencies. Journal of Risk and Financial Management, 18(2), 77. https://doi.org/10.3390/jrfm18020077