Energy Management Strategy Based on Multiple Operating States for a Photovoltaic/Fuel Cell/Energy Storage DC Microgrid
Abstract
:1. Introduction
2. DC Microgrid Description and Experimental Set-Up
2.1. DC Microgrid Configuration
2.2. Photovoltaic Array Simulator
2.3. Proton Exchange Membrane Fuel Cell Generation System
2.4. Battery Energy Storage System
3. Energy Management Strategy Based on Multiple Operating States
- (1)
- To maintain the stability of the DC bus voltage.
- (2)
- To keep the PV array simulator working at the maximum output power under varying environment states.
- (3)
- To protect the battery bank from deep discharging and overcharging.
- (4)
- To avoid the PEMFC system output power from fluctuations frequently.
- (5)
- To reduce the hydrogen consumption by keeping the PEMFC system and the battery bank works in the optimal efficiency point as much as possible.
4. Results and Discussions
4.1. Case I: Experiment with Initial State of Charge of 25%
4.2. Case II: Experiment with Initial State of Charge of 60%
4.3. Case III: Experiment with Initial State of Charge of 95%
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Nejabatkhah, F.; Li, Y.W. Overview of power management strategies of hybrid AC/DC microgrid. IEEE Trans. Power Electron. 2014, 30, 7072–7089. [Google Scholar] [CrossRef]
- Marzband, M.; Yousefnejad, E.; Sumper, A. Real time experimental implementation of optimum energy management system in standalone Microgrid by using multi-layer ant colony optimization. Int. J. Electr. Power Energy Syst. 2016, 75, 265–274. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Vasquez, J.C.; Guerrero, J.M. Convergence analysis of distributed control for operation cost minimization of droop controlled DC microgrid based on multiagent. In Proceedings of the 31st Annual IEEE Applied Power Electronics Conference and Exposition, Long Beach, CA, USA, 20–24 March 2016.
- Ding, M.; Zhang, Y.Y.; Mao, M.Q. Key technologies for microgrids—A review. In Proceedings of the International Conference on Sustainable Power Generation and Supply, Nanjing, China, 6–7 April 2009.
- Mehrasa, M.; Pouresmaeil, E.; Mehrjerdi, H.; Jørgensen, B.N.; Catalão, J.P.S. Control technique for enhancing the stable operation of distributed generation units within a microgrid. Energy Convers. Manag. 2015, 97, 362–373. [Google Scholar] [CrossRef]
- Vigneysh, T.; Kumarappan, N. Autonomous operation and control of photovoltaic/solid oxide fuel cell/battery energy storage based microgrid using fuzzy logic controller. Int. J. Hydrog. Energy 2015, 41, 1877–1891. [Google Scholar] [CrossRef]
- Mehrasa, M.; Pouresmaeil, E.; Jrgensen, B.N.; Catalão, J.P.S. A control plan for the stable operation of microgrid during the grid-connected and islanding modes. Electr. Power Syst. Res. 2015, 129, 10–22. [Google Scholar] [CrossRef]
- Angelino, R.; Bracale, A.; Carpinelli, G.; Mangoni, M.; Proto, D. A fuel cell-based dispersed generation system providing local and system ancillary services through power electronic interfaces. Renew. Energy J. 2011, 36, 2312–2323. [Google Scholar] [CrossRef]
- Lonkar, M.; Ponnaluri, S. An overview of DC microgrid operation and control. In Proceedings of the Renewable Energy Congress, Sousse, Tunisia, 24–26 March 2015.
- Chen, Y.K.; Wu, Y.C.; Song, C.C.; Chen, Y.S. Design and implementation of energy management system with fuzzy control for DC microgrid systems. IEEE Trans. Power Electron. 2013, 28, 1563–1570. [Google Scholar] [CrossRef]
- Kakigano, H.; Miura, Y.; Ise, T. Low-Voltage bipolar-type DC microgrid for super high quality distribution. IEEE Trans. Power Electron. 2011, 25, 3066–3075. [Google Scholar] [CrossRef]
- Kwasinski, A. Quantitative evaluation of DC microgrids availability: Effects of system architecture and converter topology design choices. IEEE Trans. Power Electron. 2011, 26, 835–851. [Google Scholar] [CrossRef]
- Bracale, A.; Caramia, P.; Carpinelli, G.; Mancini, E.; Mottola, F. Optimal control strategy of a DC micro grid. Int. J. Electr. Power Energy Syst. 2015, 67, 25–38. [Google Scholar] [CrossRef]
- Liu, Y.; Pratt, A.; Kumar, P.; Xu, M.; Lee, F.C. 390 V input VRM for high efficiency server power architecture. In Proceedings of the 22nd IEEE Applied Power Electronics Conference and Exposition, Anaheim, CA, USA, 25 February–1 March 2007.
- Schulz, W. ETSI standards and guides for efficient powering of telecommunication and Datacom. In Proceedings of the 29th International Telecommunications Energy Conference, Rome, Italy, 30 September–4 October 2007.
- Du, Y.; Zhou, X.H.; Bai, S.Z.; Lukic, S.; Huang, A. Review of non-isolated bi-directional DC-DC converters for plug-in hybrid electric vehicle charge station application at municipal parking decks. In Proceedings of the 25th IEEE Applied Power Electronics Conference and Exposition, Palm Springs, CA, USA, 21–25 February 2010.
- Marzband, M.; Parhizi, N.; Savaghebi, M.; Guerrero, J.M. Distributed smart decision-making for a multimicrogrid system based on a hierarchical interactive architecture. IEEE Trans. Energy Convers. 2015, 31, 637–648. [Google Scholar] [CrossRef]
- Sun, K.; Zhang, L.; Xing, Y. A distributed control strategy based on DC bus signaling for modular photovoltaic generation systems with battery energy storage. IEEE Trans. Power Electron. 2011, 26, 3032–3045. [Google Scholar] [CrossRef]
- Sechilariu, M.; Wang, B.C.; Locment, F.; Jouglet, A. DC microgrid power flow optimization by multi-layer supervision control. Design and experimental validation. Energy Convers. Manag. 2014, 82, 1–10. [Google Scholar] [CrossRef]
- Bracale, A.; Angelino, R.; Carpinelli, G.; Mangoni, M.; Proto, D. Dispersed generation units providing system ancillary services in distribution networks by a centralized control. IET Renew. Power Gener. 2011, 5, 311–321. [Google Scholar] [CrossRef]
- Valverde, L.; Rosa, F.; Real, A.J.D.; Arce, A.; Bordons, C. Modeling, simulation and experimental set-up of a renewable hydrogen-based domestic microgrid. Int. J. Hydrog. Energy. 2013, 38, 11672–11684. [Google Scholar] [CrossRef]
- Thounthong, P.; Chunkag, V.; Sethakul, P.; Sikkabut, S.; Pierfederici, S.; Davat, B. Energy management of fuel cell/solar cell/supercapacitor hybrid power source. J. Power Sources 2011, 196, 313–324. [Google Scholar] [CrossRef]
- Brka, A.; Kothapalli, G.; Al-Abdeli, Y.M. Predictive power management strategies for stand-alone hydrogen systems: Lab-scale validation. Int. J. Hydrog. Energy 2015, 40, 9907–9916. [Google Scholar] [CrossRef]
- Amin; Bambang, R.T.; Rohman, A.S.; Dronkers, C.J.; Ortega, R.; Sasongko, A. Energy management of fuel cell/battery/supercapacitor hybrid power sources using model predictive control. IEEE Trans. Ind. Electron. 2014, 10, 1992–2002. [Google Scholar]
- Valverde, L.; Bordons, C.; Rosa, F. Integration of fuel cell technologies in renewable energy based microgrids optimizing operational costs and durability. IEEE Trans. Ind. Electron. 2015, 63, 167–177. [Google Scholar] [CrossRef]
- Bizon, N.; Radut, M.; Oproescu, M. Energy control strategies for the fuel cell hybrid power source under unknown load profile. Energy 2015, 86, 31–41. [Google Scholar] [CrossRef]
- Marzband, M.; Ghazimirsaeid, S.S.; Uppal, H.; Fernando, T. A real-time evaluation of energy management systems for smart hybrid home Microgrids. Electr. Power Syst. Res. 2017, 143, 624–633. [Google Scholar] [CrossRef]
- Han, J.; Charpentier, J.F.; Tang, T. An energy management system of a fuel cell/battery hybrid boat. Energies 2014, 7, 2799–2820. [Google Scholar] [CrossRef] [Green Version]
- Zhou, W.; Yang, H.X.; Fang, Z.H. A novel model for photovoltaic array performance prediction. Appl. Energy 2007, 84, 1187–1198. [Google Scholar] [CrossRef]
Subsystems | Descriptions | Values |
---|---|---|
PV array simulator | open-circuit voltage | 50 V |
voltage of the maximum power | 36 V | |
short-circuit current | 30 A | |
current of the maximum power | 28 A | |
rated power | 1000 W | |
Fuel cell | rated power | 1000 W |
voltage range | 32–34 V | |
maximum current | 32 A | |
maximum temperature | 65 °C | |
Battery bank | rated voltage | 12 × 3 V |
rated capacity | 36 Ah | |
set numbers | 3 series | |
Load | DC bus voltage | 60 V |
rated power | 1500 W |
SOC State | State | Net Demand Power Characteristics | Pfc*(t) |
---|---|---|---|
Low SOC | 1 | Pnet(t) < Pfcopt | Pfcopt |
2 | (Pfc*(t − ∆t) = Pfcopt) & (Pnet(t) < Pbatopt) | Pfcopt | |
3 | Pnet(t) > Pfcmax | Pfcmax | |
4 | (Pfc*(t − ∆t) = Pfcmax) & (Pnet(t) > Pbatopt+Pfcopt) | Pfcmax | |
5 | otherwise | Pfcopt + Pbatopt | |
Normal SOC | 6 | Pnet(t) < Pfcopt | Pfcopt |
7 | (Pfc*(t − ∆t) = Pfcopt) & (Pnet < Pbatopt) | Pfcopt | |
8 | Pnet(t) > Pfcmax | Pfcmax | |
9 | otherwise | Pnet(t) | |
High SOC | 10 | Pnet(t) < Pfcmin | Pfcmin |
11 | (Pfc*(t − ∆t) = Pfcmin) & (Pnet(t) < Pfcopt) | Pfcmin | |
12 | Pnet(t) > Pfcmax + Pbatopt | Pfcmax | |
13 | otherwise | Pnet(t) − Pbatopt |
Description | Values | Description | Values |
---|---|---|---|
SOCmin | 30% | Pfcmin | 100 W |
SOCnom1 | 40% | Pfcopt | 230 W |
SOCnom2 | 70% | Pfcmax | 1000 W |
SOCmax | 80% | Pbatopt | 400 W |
Performance Index | Case I | Case II | Case III |
---|---|---|---|
Average Efficiency of FC Generation System (%) | 54.0% | 56.6% | 50.5% |
Hydrogen Consumption of FC Generation System (g) | 109.3 | 84.5 | 35.6 |
SOC of Battery Bank (%) | 25%→34% | 60%→61.5% | 95%→73% |
© 2017 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, Y.; Chen, W.; Li, Q. Energy Management Strategy Based on Multiple Operating States for a Photovoltaic/Fuel Cell/Energy Storage DC Microgrid. Energies 2017, 10, 136. https://doi.org/10.3390/en10010136
Han Y, Chen W, Li Q. Energy Management Strategy Based on Multiple Operating States for a Photovoltaic/Fuel Cell/Energy Storage DC Microgrid. Energies. 2017; 10(1):136. https://doi.org/10.3390/en10010136
Chicago/Turabian StyleHan, Ying, Weirong Chen, and Qi Li. 2017. "Energy Management Strategy Based on Multiple Operating States for a Photovoltaic/Fuel Cell/Energy Storage DC Microgrid" Energies 10, no. 1: 136. https://doi.org/10.3390/en10010136
APA StyleHan, Y., Chen, W., & Li, Q. (2017). Energy Management Strategy Based on Multiple Operating States for a Photovoltaic/Fuel Cell/Energy Storage DC Microgrid. Energies, 10(1), 136. https://doi.org/10.3390/en10010136