Numerical Investigation on the Flow and Heat Transfer Characteristics of Supercritical Liquefied Natural Gas in an Airfoil Fin Printed Circuit Heat Exchanger
Abstract
:1. Introduction
2. Computational Fluid Dynamic Analysis for Thermal-Hydraulic Performance
2.1. Thermal–Physical Properties of Supercritical LNG
2.2. Physical Models and Definition of Airfoil Fin Arrangement Parameters
2.3. Numerical Method and Grid Independence
2.4. Model Validation
3. Objective Function Parameters
4. Results and Discussion
4.1. Comparison of Straight Channel PCHE and Airfoil Fin PCHE
4.2. Effect of Fin Arrangement: Staggered Pitch (Ls)
4.3. Effect of Fin Arrangement: Vertical Pitch (Lv)
5. Conclusions
- (1)
- The numerical model and methods were validated with experimental data. Supercritical liquid nitrogen was used as a cold fluid for simulation and experiment. The SST model followed by the enhanced wall treatment method well predicted the outlet temperature and pressure drop of a single airfoil fin in the PCHE. The error between the numerical and experimental data was within 14%, indicating the heat transfer and flow characteristics of supercritical LNG in airfoil fin PCHE could be reliably simulated by the model and method.
- (2)
- As a new type of discontinuous fins, airfoil fins can boost the thermal-hydraulic performance compared with that of a straight channel PCHE using supercritical LNG as the working fluid. The minimum and maximum differences of Nu/Eu between straight channel and airfoil fin PCHEs were 46.2% and 51.07%, respectively. The convective heat transfer coefficient and pressure drop increased in both PCHEs with rising mass flux.
- (3)
- A staggered fin arrangement was more beneficial to the thermal-hydraulic performance of the airfoil fin PCHE than a parallel fin arrangement using supercritical LNG as the working fluid. At the same Lv and Lh, airfoil fins arranged at Ls = 4 mm displayed better thermal-hydraulic performance than those of the fins at other Ls.
- (4)
- The velocity of supercritical LNG in the airfoil fin channels increased along the channel length and then plummeted with increasing Lv. The effect of vertical number Lv on the thermal-hydraulic performance of airfoil fin PCHE was more evident than that of staggered pitch Ls. Based on a comprehensive analysis of heat transfer coefficient and pressure drop, a sparser staggered arrangement of fins can enhance the thermal-hydraulic performance of an airfoil fin PCHE.
Acknowledgments
Author Contributions
Conflicts of Interest
Nomenclature
f | Fanning factor |
v | Velocity (m/s) |
Re | Reynolds number |
h | Convective heat transfer coefficient (W/m2∙K) |
Nu | Nusselt number |
Cp | Specific heat (kJ/kg∙K) |
Dh | Hydraulic diameter (mm) |
Mass flow rate (kg/s) | |
u | Velocity (m/s) |
q’’ | Heat flux (W/m2) |
G | Mass flux (kg/m2∙s) |
Lv | The pitch between one airfoil head and adjacent row in the vertical direction (mm) |
Ls | The pitch of the staggered arrangement (mm) |
Lh | The pitch between one airfoil head and adjacent airfoil head in a row (mm) |
Pressure drop (Pa) | |
Pressure drop due to friction (Pa) | |
Pressure drop due to acceleration (Pa) | |
Density at the inlet of the channel (kg/m3) | |
Density at the outlet of the channel (kg/m3) | |
Shear stress at the wall (Pa) | |
Greek symbols | |
Viscosity [Pa·s] | |
Density [kg/m3] | |
Thermal conductivity [W/m2∙K] | |
Subscript | |
w | Wall |
b | Bulk mean |
acc | Acceleration |
fric | Friction |
v | Vertical |
s | Staggered |
h | Horizontal |
in | Inlet |
out | Outlet |
References
- Yousefi, A.; Birouk, M. Investigation of natural gas energy fraction and injection timing on the performance and emissions of a dual-fuel engine with pre-combustion chamber under low engine load. Appl. Energy 2017, 189, 492–505. [Google Scholar] [CrossRef]
- Pham, T.N.; Long, V.N.D.; Lee, S.; Lee, M. Enhancement of single mixed refrigerant natural gas liquefaction process through process knowledge inspired optimization and modification. Appl. Therm. Eng. 2017, 110, 1230–1239. [Google Scholar] [CrossRef]
- Pu, L.; Qu, Z.; Bai, Y.; Qi, D.; Song, K.; Yi, P. Thermal performance analysis of intermediate fluid vaporizer for liquefied natural gas. Appl. Therm. Eng. 2014, 65, 564–574. [Google Scholar] [CrossRef]
- Wang, T.; Lin, B. China’s natural gas consumption peak and factors analysis: A regional perspective. J. Clean. Prod. 2017, 142, 548–564. [Google Scholar] [CrossRef]
- Pan, J.; Li, R.; Lv, T.; Wu, G.; Deng, Z. Thermal performance calculation and analysis of heat transfer tube in super open rack vaporizer. Appl. Therm. Eng. 2016, 93, 27–35. [Google Scholar] [CrossRef]
- Liu, S.; Jiao, W.; Wang, H. Three-dimensional numerical analysis of the coupled heat transfer performance of LNG ambient air vaporizer. Renew. Energy 2016, 87, 1105–1112. [Google Scholar] [CrossRef]
- Han, C.-L.; Ren, J.J.; Wang, Y.Q.; Dong, W.-P.; Bi, M.S. Experimental investigation on fluid flow and heat transfer characteristics of a submerged combustion vaporizer. Appl. Therm. Eng. 2017, 113, 529–536. [Google Scholar] [CrossRef]
- Yoon, S.-J.; Sabharwall, P.; Kim, E.-S. Numerical study on crossflow printed circuit heat exchanger for advanced small modular reactors. Int. J. Heat Mass Transf. 2014, 70, 250–263. [Google Scholar] [CrossRef]
- Tsuzuki, N.; Kato, Y.; Ishiduka, T. High Performance Printed Circuit Heat Exchanger. Appl. Therm. Eng. 2007, 27, 1702–1707. [Google Scholar] [CrossRef]
- Kim, I.H.; No, H.C. Thermal hydraulic performance analysis of a printed circuit heat exchanger using a helium–water test loop and numerical simulations. Appl. Therm. Eng. 2011, 31, 4064–4073. [Google Scholar] [CrossRef]
- Kim, I.H.; No, H.C.; Lee, J.I.; Jeon, B.G. Thermal hydraulic performance analysis of the printed circuit heat exchanger using a helium test facility and CFD simulations. Nucl. Eng. Des. 2009, 239, 2399–2408. [Google Scholar] [CrossRef]
- Kim, I.H.; No, H.C. Physical model development and optimal design of PCHE for intermediate heat exchangers in HTGRs. Nucl. Eng. Des. 2012, 243, 243–250. [Google Scholar] [CrossRef]
- Mylavarapu, S.K.; Sun, X.D.; Christensen, R.N.; Unocic, R.R.; Glosup, R.E.; Patterson, M.W. Fabrication and design aspects of high-temperature compact diffusion bonded heat exchangers. Nucl. Eng. Des. 2012, 249, 49–56. [Google Scholar] [CrossRef]
- Mortean, M.V.V.; Paiva, K.V.; Mantelli, M.B.H. Diffusion bonded cross-flow compact heat exchangers: Theoretical predictions and experiments. Int. J. Therm. Sci. 2016, 110, 285–298. [Google Scholar] [CrossRef]
- Hun, K.I.; Xiaoqin, Z.; Christensen, R.; Sun, X. Disign study and cost assessment of straighe, zigzag, S-shape, and OSF PCHEs for a FLiNaK-SCO2 Secondary Heat Exchanger in FHRs. Ann. Nucl. Energy 2016, 94, 129–137. [Google Scholar]
- Natesan, K.; Moisseytsev, A.; Majumdar, S. Preliminary issues associated with the next generation nuclear plant intermediate heat exchanger design. J. Nucl. Mater. 2009, 392, 307–315. [Google Scholar] [CrossRef]
- Hosseini, S.B.; Khoshkhoo, R.H.; Malabad, S.M.J. Experimental and numerical investigation on particle deposition in a compact heat exchanger. Appl. Therm. Eng. 2017, 115, 406–417. [Google Scholar] [CrossRef]
- Starace, G.; Fiorentino, M.; Longo, M.P.; Carluccio, E. A hybrid method for the cross flow compact heat exchangers design. Appl. Therm. Eng. 2017, 111, 1129–1142. [Google Scholar] [CrossRef]
- Park, M.Y.; Song, M.S.; Kim, E.S. Development of tritium permeation model for Printed Circuit Heat Exchanger. Ann. Nucl. Energy 2016, 98, 166–177. [Google Scholar] [CrossRef]
- Baek, S.; Kim, J.; Jeong, S.; Jung, J. Development of highly effective cryogenic printed circuit heat exchanger (PCHE) with low axial conduction. Cryogenics 2012, 52, 366–374. [Google Scholar] [CrossRef]
- Kim, I.H.; No, H.C. Thermal–hydraulic physical models for a printed circuit heat exchanger covering he, he–CO2 mixture, and water fluids using experimental data and cfd. Exp. Therm. Fluid Sci. 2013, 48, 213–221. [Google Scholar] [CrossRef]
- Lee, S.-M.; Kim, W.Y. Comparative study on performance of a zigzag printed circuit heat exchanger with various channel shapes and configurations. Int. J. Heat Mass Transf. 2013, 49, 1021–1028. [Google Scholar] [CrossRef]
- Lee, S.-M.; Kim, W.Y. Multi-objective optimization of arc-shaped ribs in the channels of a printed circuit heat exchanger. Int. J. Therm. Sci. 2015, 94, 1–8. [Google Scholar] [CrossRef]
- Mylavarapu, S.K.; Sun, X.D.; Glosup, R.E.; Christensen, R.N.; Patterson, M.W. Thermal hydraulic performance testing of printed circuit heat exchangers in a high-temperature helium test facility. Appl. Therm. Eng. 2014, 65, 605–614. [Google Scholar] [CrossRef]
- Ma, T.; Li, L.; Xu, X.Y.; Chen, Y.T.; Wang, Q.W. Study on local thermal-hydraulic performance and optimization of zigzag-type printed circuit heat exchanger at high temperature. Energy Convers. Manag. 2015, 104, 55–66. [Google Scholar] [CrossRef]
- Figley, J.; Sun, X.; Mylavarapu, S.K.; Hajek, B. Numerical study on thermal hydraulic performance of a printed circuit heat exchanger. Prog. Nucl. Energy 2013, 68, 89–96. [Google Scholar] [CrossRef]
- Aneesh, A.M.; Sharma, A.; Srivastava, A.; Vyas, K.N.; Chaudhuri, P. Thermal-hydraulic characteristics and performance of 3D straight channel based printed circuit heat exchanger. Appl. Therm. Eng. 2016, 98, 474–482. [Google Scholar] [CrossRef]
- Hamid, H.K.; Aneesh, A.M.; Autl, S.; Chaudhuri, P. Thermal hydraulic characteristics and performance of 3D wavy channel based printed circuit heat exchanger. Appl. Therm. Eng. 2015, 87, 519–528. [Google Scholar]
- Ngo, T.L.; Kato, Y.; Nikitin, K.; Tsuzuki, N. New printed circuit heat exchanger with S-shaped fins for hot water supplier. Exp. Therm. Fluid Sci. 2006, 30, 811–819. [Google Scholar] [CrossRef]
- Kim, D.E.; Kim, M.H.; Cha, J.E.; Kim, S.O. Numerical investigation on thermal-hydraulic performance of new printed circuit heat exchanger model. Nucl. Eng. Des. 2008, 238, 3269–3276. [Google Scholar] [CrossRef]
- Xu, X.; Ma, T.; Li, L.; Zeng, M.; Chen, Y.; Huang, Y.; Wang, Q. Optimization of fin arrangement and channel configuration in an airfoil fin PCHE for supercritical CO2 cycle. Appl. Therm. Eng. 2014, 113, 867–875. [Google Scholar] [CrossRef]
- Han, C.-L.; Ren, J.-J.; Dong, W.-P.; Bi, M.-S. Numerical investigation of supercritical LNG convective heat transfer in a horizontal serpentine tube. Cryogenics 2016, 78, 1–13. [Google Scholar] [CrossRef]
- Bae, Y.Y. A new formulation of variable turbulent prandtl number for heat transfer to supercritical fluids. Int. J. Heat Mass Transf. 2016, 92, 792–806. [Google Scholar] [CrossRef]
- Jeon, S.; Baik, Y.; Byon, C.; Kim, W. Thermal performance of heterogeneous PCHE for supercritical CO2 energy cycle. Int. J. Heat Mass Transf. 2016, 102, 867–876. [Google Scholar] [CrossRef]
- Kruizenga, A.; Anderson, M.; Fatima, R.; Corradini, M.; Towne, A.; Ranjan, D. Heat transfer of supercritical carbon dioxide in printed circuit heat exchanger geometries. J. Therm. Sci. Eng. Appl. 2011, 3, 1–8. [Google Scholar] [CrossRef]
- Kim, T.H.; Kwon, J.G.; Yoon, S.H.; Park, H.S.; Kim, M.H.; Cha, J.E. Numerical analysis of air-foil shaped fin performance in printed circuit heat exchanger in a supercritical carbon dioxide power cycle. Nucl. Eng. Des. 2015, 288, 110–118. [Google Scholar] [CrossRef]
- Zhao, Z.; Zhang, X.; Zhao, K.; Jiang, P.; Chen, Y. Numerical investigation on heat transfer and flow characteristics of supercritical nitrogen in a straight channel of printed circuit heat exchanger. Appl. Therm. Eng. 2017, 126, 717–729. [Google Scholar] [CrossRef]
(1) 121–227 K |
ρ = 8256.5933 − 285.3922 T + 4.3559 T2 − 0.035267 T3 + 1.5894 × 10−4 T4 − 3.7784 × 10−7 T5 + 3.6917 × 10−1 T6 |
Cp = −1.0199 × 106 + 3.8183 × 104 T − 589.1061 T2 + 4.8079 T3 − 0.02189 T4 + 5.28734 × 10−5 T5 − 5.23296 × 10−8 T6 |
λ = 1.6663 − 0.051726 T + 7.9379 × 10−4 T2 − 6.6085 × 10−6 T3 + 3.0653 × 10−8 T4 − 7.4993 10−11 T5 + 7.5617 × 10−14 T6 |
μ = 4.0977 × 10−3 − 1.2117 × 10−4 T + 1.5988 × 10−6 T2 − 1.1623 × 10−8 T3 + 4.8332 × 10−11 T4 − 1.0811 × 10−13 T5 + 1.01103 × 10−16 T6 |
(2) 227–315 K |
ρ = −3.89476 + 7.7791 × 103 T − 63.6984 T2 + 0.273703 T3 − 6.4991 × 10−4 T4 + 8.06233 × 10−7 T5 − 4.06261 × 10−10 T6 |
Cp = −4.48732 × 107 + 9.7441 × 105 T − 8.78917 × 103 T2 + 42.17166 T3 − 0.011355 T4 + 1.62727 × 10−4 T5 − 9.6971 × 10−8 T6 |
λ = −99.92683 + 2.24495 T − 0.0208241 T2 + 1.02288 × 10−4 T3 − 2.8093 × 10−7 T4 + 4.09353 × 10− 10 T5 − 2.47389 × 10−13 T6 |
μ = 1.58763 × 10−2 + 3.9445 × 10−4 T − 3.96736 × 10−6 T2 + 2.08564 × 10−8 T3 − 6.07355 × 10−11 T4 + 9.3195 × 10−14 T5 − 5.8999 × 10−17 T6 |
(3) 315–385 K |
ρ = 9403.1676 − 140.8996 T + 0.90485 T2 − 3.14226 × 10−3 T3 + 6.19397 × 10−6 T4 − 6.55485 × 10−9 T5 + 2.905 × 10−12 T6 |
Cp = −4.28439 × 105 − 6.56712 × 103 T + 42.6554 T2 − 0.14901 T3 + 2.94672 × 10−4 T4 − 3.12279 × 10−7 T5 + 1.383995 × 10−10 T6 |
λ = 2.2909 − 0.03353 T + 2.35313 × 10−4 T2 − 8.3695 × 10−7 T3 + 1.68679 × 10−9 T4 − 1.8217 × 10−12 T5 + 8.22556 × 10−16 T6 |
μ = 4.92979 × 10−3 − 8.37086 × 10−5 T + 5.94466 × 10−7 T2 − 2.25336 × 10−9 T3 + 4.8073 × 10−12 T4 − 5.47099 × 10−15 T5 + 2.5942 × 10−18 T6 |
Pressure (MPa) | Experiment Results of ∆P/L (Pa/m) | Simulation Results of ∆P/L (Pa/m) | Error (%) | Experiment Results of Tout (K) | Simulation Results of Tout (K) | Error (%) |
---|---|---|---|---|---|---|
5.5 | 37,090.61172 | 35,226.12 | 5.03% | 279.45 | 278.13 | 0.472% |
6 | 33,988.7737 | 32,023.7 | 5.78% | 281.15 | 281.96 | 0.288% |
6.5 | 25,650.67624 | 27,635.15 | 7.74% | 282.55 | 283.67 | 1.12% |
7 | 24,175.74669 | 26,985.37 | 11.62% | 284.35 | 285.96 | 0.669% |
7.5 | 23,834.30936 | 24,865.35 | 4.33% | 285.65 | 288.87 | 1.127% |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Z.; Zhao, K.; Jia, D.; Jiang, P.; Shen, R. Numerical Investigation on the Flow and Heat Transfer Characteristics of Supercritical Liquefied Natural Gas in an Airfoil Fin Printed Circuit Heat Exchanger. Energies 2017, 10, 1828. https://doi.org/10.3390/en10111828
Zhao Z, Zhao K, Jia D, Jiang P, Shen R. Numerical Investigation on the Flow and Heat Transfer Characteristics of Supercritical Liquefied Natural Gas in an Airfoil Fin Printed Circuit Heat Exchanger. Energies. 2017; 10(11):1828. https://doi.org/10.3390/en10111828
Chicago/Turabian StyleZhao, Zhongchao, Kai Zhao, Dandan Jia, Pengpeng Jiang, and Rendong Shen. 2017. "Numerical Investigation on the Flow and Heat Transfer Characteristics of Supercritical Liquefied Natural Gas in an Airfoil Fin Printed Circuit Heat Exchanger" Energies 10, no. 11: 1828. https://doi.org/10.3390/en10111828
APA StyleZhao, Z., Zhao, K., Jia, D., Jiang, P., & Shen, R. (2017). Numerical Investigation on the Flow and Heat Transfer Characteristics of Supercritical Liquefied Natural Gas in an Airfoil Fin Printed Circuit Heat Exchanger. Energies, 10(11), 1828. https://doi.org/10.3390/en10111828