The Environmental Burdens of Lead-Acid Batteries in China: Insights from an Integrated Material Flow Analysis and Life Cycle Assessment of Lead
Abstract
:1. Introduction
2. Methodology
2.1. Material Flow Analysis (MFA)
2.2. Life Cycle Assessment (LCA)
2.2.1. Goal and Scope
2.2.2. Data Source and LCI Analysis
2.2.3. LCIA Impact Categories
3. Results and Discussion
3.1. Lead Flow Analysis of Lead-Acid Batteries in Mainland China
3.1.1. Raw material extraction stage
3.1.2. LABs Production stage
3.1.3. LABs use stage
3.1.4. End of life stage
3.1.5. Regenerated lead production stage
3.2. The Environmental Burdens of LABs Based on Lead Material Flow
3.2.1. Environmental Burdens of LABs
3.2.2. Environmental Burdens of Primary and Regenerated Lead
3.3. Pathways to Reduce the Environmental Burdens of LABs
3.3.1. Increase the Utilization Efficiency of Lead
3.3.2. Increase the Recycling Rate of LABs
3.3.3. Increase the Proportion of Regenerated Lead in the Production of LABs
3.3.4. Regulating the Production of Regenerated Lead
3.3.5. Optimize LABs Industrial Layout and Reduce Transportation Distance
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Martha, S.K.; Hariprakash, B.; Gaffoor, S.A.; Shukla, A.K. Performance characteristics of a gelled-electrolyte valve-regulated lead-acid battery. Bull. Mater. Sci. 2003, 26, 465–469. [Google Scholar] [CrossRef]
- Newnham, R.H. Advantages and disadvantages of valve-regulated, lead-acid-batteries. J. Power Sources 1994, 52, 149–153. [Google Scholar]
- Zhang, H.; Wang, H.M.; Ma, C.L.; Xu, Y. Life cycle assessment of lead-acid battery. Chin. J. Environ. Manag. 2013, 5, 39–48. [Google Scholar]
- National Bureau of Statistics (NBS). China Statistical Yearbook 2015; China Statistics Press: Beijing, China, 2015.
- Chen, K.; Huang, L.; Yan, B.Z.; Li, H.B.; Sun, H.; Bi, J. Effect of Lead Pollution Control on Environmental and Childhood Blood Lead Level in Nantong, China: An Interventional Study. Environ. Sci. Technol. 2014, 48, 12930–12936. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Zhang, C.; Zhang, Z.; Li, F.S.; Guo, G.L. Distribution and integrated assessment of lead in an abandoned lead-acid battery site in Southwest China before redevelopment. Ecotoxicol. Environ. Saf. 2016, 128, 126–132. [Google Scholar] [CrossRef] [PubMed]
- Cheng, H.F.; Hu, Y.A. Lead (Pb) isotopic fingerprinting and its applications in lead pollution studies in China: A review. Environ. Pollut. 2010, 158, 1134–1146. [Google Scholar] [CrossRef] [PubMed]
- He, K.M.; Wang, S.Q.; Zhang, J.L. Blood Lead Levels of Children and Its Trend in China. Sci. Total Environ. 2009, 407, 3986–3993. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Sang, J.; Chen, L.; Tian, J.; Zhang, H.; Olvera Palma, G. Life cycle assessment of lead-acid batteries used in electric bicycles in China. J. Clean. Prod. 2015, 108, 1149–1156. [Google Scholar] [CrossRef]
- Wang, D. Develop circular economy for heavy metal pollution prevention and control. Renew. Resour. Circ. Econ. 2012, 5, 1–3. [Google Scholar]
- Brunner, P.H.; Rechberger, H. Practical Handbook of Material Flow Analysis; Lewis Publishers: Boca Raton, FL, USA, 2004. [Google Scholar]
- Zhang, L.; Yuan, Z.W.; Bi, J. Substance flow analysis (SFA): A critical review. China Acta Ecol. Sin. 2009, 29, 6189–6198. [Google Scholar]
- Ling-Chin, J.; Heidrich, O.; Roskilly, A.P. Life cycle assessment (LCA)—From analysing methodology development to introducing an LCA framework for marine photovoltaic (PV) systems. Renew. Sustain. Energy Rev. 2016, 59, 352–378. [Google Scholar] [CrossRef]
- Bai, L.; Qiao, Q.; Li, Y.P.; Xie, M.H.; Wan, S.; Zhong, Q.D. Substance flow analysis of production process: A case study of a lead smelting process. J. Clean. Prod. 2015, 104, 502–512. [Google Scholar] [CrossRef]
- Guo, X.Y.; Zhong, J.Y.; Song, Y.; Tian, Q.H. Lead flow analysis in mainland China. J. Beijing Univ. Technol. 2009, 35, 1554–1561. [Google Scholar]
- Liang, J.; Mao, J.S. A dynamic analysis of environmental losses from anthropogenic lead flow and their accumulation in China. Trans. Nonferr. Met. Soc. 2014, 24, 1125–1133. [Google Scholar] [CrossRef]
- Mao, J.S.; Lu, Z.W.; Yang, Z.F. Lead Flow Analysis for Lead-Acid Battery System. China J. Environ. Sci. 2006, 27, 3442–3447. [Google Scholar]
- Mao, J.S.; Yang, Z.F.; Lu, Z.W. Industrial flow of lead in China. Trans. Nonferr. Met. Soc. 2007, 17, 400–411. [Google Scholar] [CrossRef]
- Matheys, J.; Timmermans, J.M.; Van Mierlo, J.; Meyer, S.; Van den Bossche, P. Comparison of the environmental impact of five electric vehicle battery technologies using LCA. Int. J. Sustain. Manuf. 2009, 1, 318–329. [Google Scholar] [CrossRef]
- Sullivan, J.L.; Gaines, L. Status of life cycle inventories for batteries. Energy Convers. Manag. 2012, 58, 134–148. [Google Scholar] [CrossRef]
- Van den Bossche, P.; Vergels, F.; Van Mierlo, J.; Matheys, J.; Van Autenboer, W. SUBAT: An assessment of sustainable battery technology. J. Power Sources 2006, 162, 913–919. [Google Scholar] [CrossRef]
- Oliveira, L.; Messagie, M.; Mertens, J.; Laget, H.; Coosemans, T.; Van Mierlo, J. Environmental performance of electricity storage systems for grid applications, a life cycle approach. Energy Convers Manag. 2015, 101, 326–335. [Google Scholar] [CrossRef]
- Premrudee, K.; Jantima, U.; Kittinan, A.; Naruetep, L.; Kittiwan, K.; Sudkla, B. Life cycle assessment of lead acid battery: Case study for Thailand. Environ. Prot. Eng. 2013, 39, 101–114. [Google Scholar]
- Hiremath, M.; Derendorf, K.; Vogt, T. Comparative life cycle assessment of battery storage systems for stationary applications. Environ. Sci. Technol. 2015, 49, 4825–4833. [Google Scholar] [CrossRef] [PubMed]
- Spanos, C.; Turney, D.E.; Fthenakis, V. Life-cycle analysis of flow-assisted nickel zinc-, manganese dioxide-, and valve-regulated lead-acid batteries designed for demand-charge reduction. Renew. Sustain. Energy Rev. 2015, 43, 478–494. [Google Scholar] [CrossRef]
- Rydh, C.J. Environmental assessment of vanadium redox and lead-acid batteries for stationary energy storage. J. Power Sources 1999, 80, 21–29. [Google Scholar] [CrossRef]
- Unterreiner, L.; Jülch, V.; Reith, S. Recycling of Battery Technologies—Ecological Impact Analysis Using Life Cycle Assessment (LCA). Energy Procedia 2016, 99, 229–234. [Google Scholar] [CrossRef]
- Davidson, A.J.; Binks, S.P.; Gediga, J. Lead industry life cycle studies: Environmental impact and life cycle assessment of lead battery and architectural sheet production. Int. J. Life Cycle Assess. 2016, 21, 1624–1636. [Google Scholar] [CrossRef]
- Hendriks, C.; Obernosterer, R.; Muller, D.; Kytzia, S.; Baccini, P.; Brunner, P.H. Material flow analysis: A tool to support environmental policy decision making, Case-studies on the city of Vienna and the Swiss lowlands. Local Environ. 2000, 5, 238–311. [Google Scholar] [CrossRef]
- International Organization for Standardization (ISO). Environmental Management-Life Cycle Assessment—Requirements and Guidelines; ISO Copyright Office: Geneva, Switzerland, 2006. [Google Scholar]
- International Organization for Standardization (ISO). Environmental Management-Life Cycle Assessment—Principles and Framework; ISO Copyright Office: Geneva, Switzerland, 2006. [Google Scholar]
- Zhang, Z.J.; Li, J.L. Management of waste lead acid batteries to collect the best possible model to explore. China Renew. Resour. 2013, 2, 67–69. [Google Scholar]
- Ecoinvent. Ecoinvent Data v2.2. Swiss Center for Life Cycle Inventories; Ecoinvent: Zurich, Switzerland, 2012. [Google Scholar]
- Liu, W.; Chen, L.; Tian, J. Uncovering the Evolution of Lead In-Use Stocks in Lead-Acid Batteries and the Impact on Future Lead Metabolism in China. Environ. Sci. Technol. 2016, 50, 5412–5419. [Google Scholar] [CrossRef] [PubMed]
- Building Research Association of New Zealand (BRANZ). New Zealand Whole Building Whole of Life Framework: Life Cycle Assessment-Based Indicators; BRANZ: Judgeford, New Zealand, 2014. [Google Scholar]
- Huang, X.H.; Fang, X.W.; Chen, J.X.; Gu, X.J. Review of product environmental. China J. Mech. Electr. Eng. 2014, 31, 1554–1561. [Google Scholar]
- Lawrence, P. Technology-transfer funds and the Law—Recent amendments to the Monteeal protocol on substances that deplete the ozone-layer. J. Environ. Law 1992, 4, 15–27. [Google Scholar] [CrossRef]
- Ferreira, J.G.; Andersen, J.H.; Borja, A.; Bricker, S.B.; Camp, J.; da Silva, M.C.; Garces, E.; Heiskanen, A.S.; Humborg, C.; Ignatiades, L.; et al. Overview of eutrophication indicators to assess environmental status within the European Marine Strategy Framework Directive. Estuar. Coast. Shelf Sci. 2011, 93, 117–131. [Google Scholar] [CrossRef]
- Hunter, K.A.; Liss, P.S.; Surapipith, V.; Dentener, F.; Duce, R.; Kanakidou, M.; Kubilay, N.; Mahowald, N.; Okin, G.; Sarin, M.; et al. Impacts of anthropogenic SOx, NOx and NH3 on acidification of coastal waters and shipping lanes. Geophys. Res. Lett. 2011, 38, 142–154. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change (IPCC). Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. In Climate Change 2014: Mitigation of Climate Change; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Jensen, N.R.; Putaud, J.P.; Borowiak, A. Literature Review on ODS (Ozone Depleting Substances) Measurement Methods and Data; Publications Office of the European Union: Ispra, Italy, 2015. [Google Scholar]
- Joint Research Centre (JRC). ILCD Handbook: Framework and Requirements for LCIA Models and Indicators; Publications Office of the European Union: Luxembourg, 2010. [Google Scholar]
- Morales-Mora, M.A.; Rodriguez-Perez, B.; Martinez-Delgadillo, S.A.; Rosa-Dominguez, E.; Nolasco-Hipolito, C. Human and ecotoxicological impacts assessment from the Mexican oil industry in the Coatzacoalcos region, as revealed by the USEtox (TM) model. Environ. Sci. Pollut. Res. 2014, 21, 9819–9831. [Google Scholar] [CrossRef] [PubMed]
- Rosenbaum, R.K.; Huijbregts, M.A.J.; Henderson, A.D.; Margni, M.; McKone, T.E.; van de Meent, D.; Hauschild, M.Z.; Shaked, S.; Li, D.S.; Gold, L.S.; et al. USEtox human exposure and toxicity factors for comparative assessment of toxic emissions in life cycle analysis: Sensitivity to key chemical properties. Int. J. Life Cycle Assess. 2011, 16, 710–727. [Google Scholar] [CrossRef]
- Seppala, J.; Posch, M.; Johansson, M.; Hettelingh, J.P. Country-dependent characterisation factors for acidification and terrestrial eutrophication based on accumulated exceedance as an impact category indicator. Int. J. Life Cycle Assess. 2006, 11, 403–416. [Google Scholar] [CrossRef]
- Van Zelm, R.; Huijbregts, M.A.J.; Van Jaarsveld, H.A.; Reinds, G.J.; De Zwart, D.; Struijs, J.; Van de Meent, D. Time horizon dependent characterization factors for acidification in life-cycle assessment based on forest plant species occurrence in Europe. Environ. Sci. Technol. 2007, 41, 922–927. [Google Scholar] [CrossRef] [PubMed]
- Lovarelli, D.; Bacenetti, J.; Fiala, M. Water Footprint of crop productions: A review. Sci. Total Environ. 2016, 548, 236–251. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.C.; Huang, J.; Ridoutt, B.G.; Liu, J.J.; Chen, F. Calculation method and case analysis of product water footprint based on life cycle assessment. China J. Nat. Resour. 2013, 28, 873–880. [Google Scholar]
- Canals, L.M.I. LCA Methodology and Modelling Considerations for Vegetable Production and Consumption; Centre for Environmental Strategy, University of Surrey: Surrey, UK, 2007. [Google Scholar]
- Mao, J.S.; Cao, J.; Graedel, T.E. Losses to the environment from the multilevel cycle of anthropogenic lead. Environ. Pollut. 2009, 157, 2670–2677. [Google Scholar] [CrossRef] [PubMed]
- Tian, X.; Gong, Y.; Wu, Y.; Agyeiwaa, A.; Zuo, T. Management of used lead acid battery in China: Secondary lead industry progress, policies and problems. Resour. Conserv. Recycl. 2014, 93, 75–84. [Google Scholar] [CrossRef]
- Hu, G.F. Ministry of Industry and Information Technology Encourages Secondary Lead Enterprise Mergers and Acquisitions and There Is a Lot of Room for Industrial Upgrading. Available online: http://finance.eastday.com/stock/m3/20120321/u1a6438439.html (accessed on 21 March 2012).
- Haefliger, P.; Mathieu-Nolf, M.; Lociciro, S.; Ndiaye, C.; Coly, M.; Diouf, A.; Faye, A.L.; Sow, A.; Tempowski, J.; Pronczuk, J.; et al. Mass Lead Intoxication from Informal Used Lead-Acid Battery Recycling in Dakar, Senegal. Environ. Health Perspect. 2009, 117, 1535–1540. [Google Scholar] [CrossRef] [PubMed]
- An, S.Y. Present development situation and recovery of lead-acid battery. J. Heilongjiang Sci. Technol. 2012, 13, 83. [Google Scholar]
- Xiao, X.K. Development of American secondary lead industry. Enterp. Technol. Dev. 2012, 12, 18–20. [Google Scholar]
- China Nonferrous Metals Industry Association (CNIA). China Nonferrous Metals Industry Yearbook; China Industry Press: Beijing, China, 2014. [Google Scholar]
- Ge, R.J.; Jiang, G. Most the material of secondary lead comes from illegal recycling. China Econ. Inf. 2011, 3, 287–288. [Google Scholar]
- Raghupathy, L.; Chaturvedi, A. Secondary resources and recycling in developing economies. Sci. Total Environ. 2013, 461–462, 830–834. [Google Scholar] [CrossRef] [PubMed]
In Put or Out Put | Material | Mass/kg |
---|---|---|
Input | Waste LABs | 1084.13 |
Lead alloy | 188.80 | |
Pure lead | 124.31 | |
Output | Regenerated lead | 1000 |
Lead sludge | 0.35 | |
Lead smoke/lead dust | 0.02 | |
Waste lead residue | 2.20 |
In Put or Out Put | Material | Mass/kg |
---|---|---|
Input | Positive plate lead-regenerated | 3.15 |
Negative plate lead-regenerated | 2.47 | |
Lead powder-primary | 7.48 | |
Cast lead-regenerated | 1.12 | |
Output | Lead in waste water | 4.64 × 10−6 |
Lead sludge | 9.71× 10−3 | |
Lead smoke | 6.17× 10−5 | |
Waste lead residue | 2.97 × 10−1 | |
Waste positive and negative plates | 2.84 × 10−1 | |
Lead sludge (workshop) | 9.19 × 10−3 | |
Lead dust | 7.49 × 10−4 | |
Waste positive and negative plate lead | 3.86 × 10−2 |
LCIA Impact Categories | Abbreviation | Unit | Reference [35] |
---|---|---|---|
Global warming potential | GWP | Kg CO2eq. | CML(100 year) from Forster et al. (2007) |
Ozone depletion potential | ODP | Kg CFC-11eq. | CML from WMO(2003) |
Respiratory inorganics | RI | Kg PM2.5eq. | Rispoll |
Ionizing radiation | IR | Kg U235eq. | ReCiPe 1.08 Midpoint from Frischknecht et al. (2000) |
Photochemical ozone creation potential | POCP | Kg C2H4eq. | CML from Jenkin & Hayman(1999) and Derwent et al. (1998) |
Acidification potential | AP | Kg SO2eq. | CML baseline factors from Huijbregts (1999) |
Eutrophication Potential-land | EP-land | Kg PO43− | CML from Heijungs et al. (1992) |
Eutrophication Potential-water | EP-water | Kg PO43− | CML from Heijungs et al. (1992) |
Abiotic resource depletion potential | ADP | Kg Sbeq. | CML from Guinee et al. (2002) and van Oers et al. (2002) |
Environmental toxicity potential | ETP | CTUeco | USETox (Rosenbaum et al., 2008) |
Human toxicity potential-cancer | HTP-CA | CTUh | USETox (Rosenbaum et al., 2008) |
Human toxicity potential-non-cancer | HTP-NCA | CTUh | USETox (Rosenbaum et al., 2008) |
LCIA Impact | Value | Percentage by Stages | |||
---|---|---|---|---|---|
Materials Extraction and Processing | Manufacture | Transportation | Recycling | ||
GWP | 3.78 Kg CO2eq. | 80.33% | 0.22% | 7.18% | 12.27% |
ODP | 2.03 × 10−6 Kg CFC-11eq. | 52.68% | 0.54% | 17.31% | 29.47% |
RI | 8.98 × 10−3 Kg PM2.5eq. | 87.91% | 0.13% | 4.35% | 7.61% |
IR | 2.83 Kg U235eq. | 92.74% | 0.08% | 2.65% | 4.52% |
POCP | 3.17 × 10−3 Kg C2H4eq. | 58.94% | 0.47% | 15.02% | 25.58% |
AP | 3.45 × 10−2 Kg SO2eq. | 81.10% | 0.21% | 6.90% | 11.79% |
EP-land | 2.01 × 10−3 Kg PO43− | 81.10% | 0.21% | 6.88% | 11.80% |
EP-water | 3.40 × 10−3 Kg PO43− | 71.42% | 0.32% | 10.44% | 17.82% |
ADP | 5.81 Kg Sbeq. | 60.82% | 0.44% | 14.32% | 24.41% |
ETP | 9.78 CTUeco | 96.40% | 0.06% | 1.31% | 2.23% |
HTP-CA | 1.68 × 10−8 CTUh | 97.66% | 0.04% | 0.85% | 1.45% |
HTP-NCA | 1.11 × 10−5 CTUh | 99.47% | 0.01% | 0.19% | 0.33% |
WF | 9.01 m3 | 82.59% | 0.00% | 0.00% | 17.41% |
LU | 12.72 KgC | 99.96% | 0.02% | 0.00% | 0.01% |
Average | 81.65% | 0.20% | 6.24% | 11.91% |
LCIA Impact | Primary Lead Value | Regenerated Lead Value | Difference | Unit |
---|---|---|---|---|
GWP | 6.77 | 5.99× 10−1 | 6.17 | Kg CO2eq. |
ODP | 1.88× 10−6 | 7.74× 10−7 | 1.11× 10−6 | Kg CFC-11eq. |
RI | 1.82× 10−2 | 8.83× 10−7 | 1.73× 10−2 | Kg PM2.5eq. |
IR | 6.16 | 1.65× 10−1 | 6.00 | Kg U235eq. |
POCP | 3.55× 10−3 | 1.05× 10−3 | 2.51× 10−3 | Kg C2H4eq. |
AP | 6.27× 10−2 | 5.26× 10−3 | 5.75× 10−2 | Kg SO2eq. |
EP-land | 3.66× 10−3 | 3.07× 10−4 | 3.35× 10−3 | Kg PO43− |
EP-water | 5.13× 10−3 | 7.82× 10−4 | 4.35× 10−3 | Kg PO43− |
ADP | 6.85 | 1.83 | 5.02 | Kg Sbeq. |
ETP | 22.5 | 2.82× 10−1 | 22.2 | CTUeco |
HTP-CA | 3.92× 10−8 | 3.15× 10−10 | 3.89× 10−8 | CTUh |
HTP-NCA | 2.66× 10−5 | 4.75× 10−8 | 2.66× 10−5 | CTUh |
WF | 16.1 | 2.03 | 14.1 | m3 |
LU | 30.6 | 1.68× 10−3 | 30.6 | kgC |
LCIA Impact | Unit | Impact (48% Regenerated Lead ) | Impact (100% Regenerated Lead) | Difference | Reduced Percentage |
---|---|---|---|---|---|
GWP | Kg CO2eq. | 3.78 | 1.22 | 2.56 | 67.82% |
ODP | Kg CFC-11eq. | 2.03× 10−6 | 1.57× 10−6 | 4.59× 10−7 | 22.60% |
RI | Kg PM2.5eq. | 8.98× 10−3 | 1.78× 10−3 | 7.19× 10−3 | 80.14% |
IR | Kg U235eq. | 2.83 | 3.35× 10−1 | 2.49 | 88.13% |
POCP | Kg C2H4eq. | 3.17× 10−3 | 2.13× 10−3 | 1.04× 10−3 | 32.83% |
AP | Kg SO2eq. | 3.45× 10−2 | 1.07× 10−2 | 2.39× 10−2 | 69.07% |
EP-land | Kg PO43− | 2.01× 10−3 | 6.24× 10−4 | 1.39× 10−3 | 69.06% |
EP-water | Kg PO43− | 3.40× 10−3 | 1.5× 10−3 | 1.80× 10−3 | 53.23% |
ADP | Kg Sbeq. | 5.81 | 3.72 | 2.09 | 35.91% |
ETP | CTUeco | 9.78 | 5.7× 10−1 | 9.21 | 94.13% |
HTP-CA | CTUh | 1.68× 10−8 | 6.41× 10−10 | 1.61× 10−8 | 96.18% |
HTP-NCA | CTUh | 1.11× 10−5 | 9.70× 10−8 | 1.10× 10−5 | 99.13% |
WF | m3 | 9.01 | 3.17 | 5.84 | 64.82% |
LU | kgC | 12.72 | 5.78× 10−3 | 12.71 | 99.95% |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, S.; Lian, Z.; Li, S.; Kim, J.; Li, Y.; Cao, L.; Liu, Z. The Environmental Burdens of Lead-Acid Batteries in China: Insights from an Integrated Material Flow Analysis and Life Cycle Assessment of Lead. Energies 2017, 10, 1969. https://doi.org/10.3390/en10121969
Chen S, Lian Z, Li S, Kim J, Li Y, Cao L, Liu Z. The Environmental Burdens of Lead-Acid Batteries in China: Insights from an Integrated Material Flow Analysis and Life Cycle Assessment of Lead. Energies. 2017; 10(12):1969. https://doi.org/10.3390/en10121969
Chicago/Turabian StyleChen, Sha, Zhenyue Lian, Sumei Li, Junbeum Kim, Yipei Li, Lei Cao, and Zunwen Liu. 2017. "The Environmental Burdens of Lead-Acid Batteries in China: Insights from an Integrated Material Flow Analysis and Life Cycle Assessment of Lead" Energies 10, no. 12: 1969. https://doi.org/10.3390/en10121969
APA StyleChen, S., Lian, Z., Li, S., Kim, J., Li, Y., Cao, L., & Liu, Z. (2017). The Environmental Burdens of Lead-Acid Batteries in China: Insights from an Integrated Material Flow Analysis and Life Cycle Assessment of Lead. Energies, 10(12), 1969. https://doi.org/10.3390/en10121969