Gas Hydrate and Free Gas Concentrations in Two Sites inside the Chilean Margin (Itata and Valdivia Offshores)
Abstract
:1. Introduction
2. Material and Methods
2.1. Seismic Data
2.2. Advanced Processing and Inversion Modelling
2.3. BSR-Derived Geothermal Gradient
2.4. Estimate of Gas Hydrate and Free Gas Concentrations
3. Results
3.1. Velocity Model and PreSDM Sections
3.2. BSR-Derived Geothermal Gradient
3.3. Estimate of Gas Hydrate and Free Gas Concentration
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Kennett, J.P.; Cannariato, K.G.; Hendy, I.L.; Behl, R.J. Methane Hydrates in Quaternary Climate Change: The Clathrate Gun Hypothesis. In Methane Hydrates in Quaternary Climate Change: The Clathrate Gun Hypothesis; American Geophysical Union: Washington, DC, USA, 2003; pp. 1–217. [Google Scholar]
- Milkov, A.V. Global estimates of hydrate—Bound gas in marine sediments: How much is really out there? Earth Sci. Rev. 2004, 66, 183–197. [Google Scholar] [CrossRef]
- Moridis, G.J.; Collett, T.S.; Boswell, R.; Hancock, S.; Rutqvist, J.; Santamarina, C.; Kneafsey, T.; Reagan, M.; Pooladi-Darvish, T.M.; Kowalsky, M. Gas Hydrates as a Potential Energy Source: State of Knowledge and Challenges. Adv. Biofuels Bioprod. 2013, 977–1033. [Google Scholar] [CrossRef]
- IPCC. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. In Climate Change 2014: Synthesis Report; Pachauri, R.K., Meyer, L.A., Eds.; IPCC: Geneva, Switzerland, 2014; pp. 1–151. ISBN 978-92-9169-143-2. [Google Scholar]
- Kvenvolden, K.A. Natural gas hydrate: Background and history of discovery. In Natural Gas Hydrate in Oceanic and Permafrost Environments; Max, M.D., Ed.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2000; pp. 9–16. ISBN 978-94-011-4387-5. [Google Scholar]
- Burwicz, L.E.; Rüpke, B.H.; Wallmann, K. Estimation of the global amount of submarine gas hydrates formed via microbial methane formation based on numerical reaction-transport modeling and a novel parameterization of Holocene sedimentation. Geochim. Cosmochim. Acta 2011, 75, 4562–4576. [Google Scholar] [CrossRef] [Green Version]
- Wallmann, K.; Pinero, E.; Burwicz, E.; Haeckel, M.; Hensen, C.; Dale, A.; Ruepke, L. The Global Inventory of Methane Hydrate in Marine Sediments: A Theoretical Approach. Energies 2013, 5, 2449–2498. [Google Scholar] [CrossRef] [Green Version]
- Marin-Moreno, H.; Giustiniani, M.; Tinivella, U.; Pinero, E. The challenges of quantifying the carbon stored in Arctic marine gas hydrate. Mar. Pet. Geol. 2016, 71, 76–82. [Google Scholar] [CrossRef]
- Hyndman, R.D.; Spence, G.D. A seismic study of methane hydrate marine bottom-simulating-reflectors. J. Geophys. Res. 1992, 97, 6683–6698. [Google Scholar] [CrossRef]
- Mienert, J.; Bünz, S. Bottom Simulating Seismic Reflectors (BSR). Encyclopedia of Marine. Geosciences 2017, 62–67. [Google Scholar] [CrossRef]
- Bangs, N.L.; Brown, K.M. Regional heat flow in the vicinity of the Chile Triple Junction constrained by the depth of the bottom simulating reflector. In Proceedings of the Ocean Drilling Program, Scientific Results; Lewis, S.D., Behrmann, J.H., Musgrave, R.J., Cande, S.C., Eds.; Ocean Drilling Program: College Station, TX, USA, 1995; Volume 141, pp. 253–258. [Google Scholar] [CrossRef]
- Brown, K.M.; Bangs, N.L.; Froelich, P.N.; Kvenvolden, K.A. The nature, distribution, and origin of gas hydrate in the Chile Triple Junction region. Earth Planet. Sci. Lett. 1996, 139, 471–483. [Google Scholar] [CrossRef]
- Diaz–Naveas, J. Sediment Subduction and Accretion at the CHILEAN Convergent Margin between 35° and 40°S. Ph.D. Dissertation, University of Kiel, Kiel, Germany, 1999; pp. 1–130. [Google Scholar]
- Grevemeyer, I.; Diaz–Naveaz, J.L.; Ranero, C.R.; Villenger, H.W. Ocean Drilling Program Scientific Party. Heat Flow over the descending Nazca plate in Central Chile, 32° S to 41° S: Observations from ODP Leg 202 and the occurrence of natural gas hydrates. Earth Planet. Sci. Lett. 2003, 213, 285–298. [Google Scholar] [CrossRef]
- Morales, E. Methane hydrates in the Chilean continental margin. Electron. J. Biotechnol. 2003, 6, 80–84. [Google Scholar] [CrossRef]
- Vargas–Cordero, I.C. Gas Hydrate Occurrence and Morpho—Structures along Chilean Margin. Ph.D. Dissertation, University of Trieste, Trieste, Italy, 2009; pp. 1–138. [Google Scholar]
- Vargas-Cordero, I.; Tinivella, U.; Accaino, F.; Loreto, M.F.; Fanucci, F. Thermal state and concentration of gas hydrate and free gas of Coyhaique Chilean Margin (44°30′S). Mar. Pet. Geol. 2010, 27, 1148–1156. [Google Scholar] [CrossRef]
- Vargas-Cordero, I.; Tinivella, U.; Accaino, F.; Fanucci, F.; Loreto, M.F.; Lascano, M.E.; Reichert, C. Basal and Frontal Accretion Processes versus BSR Characteristics along the Chilean Margin. J. Geophys. Res. 2011, 2011, 846101. [Google Scholar] [CrossRef]
- Vargas Cordero, I.; Tinivella, U.; Villar Muñoz, L.; Giustiniani, M. Gas hydrate and free gas estimation from seismic analysis offshore Chiloé island (Chile). Andean Geol. 2016, 43, 263–274. [Google Scholar] [CrossRef]
- Villar-Muñoz, L.; Behrmann, J.H.; Diaz-Naveas, J.; Klaeschen, D.; Karstens, J. Heat flow in the southern Chile forearc controlled by large-scale tectonic processes. Geo-Mar. Lett. 2014, 34, 185–198. [Google Scholar] [CrossRef]
- Bangs, N.L.; Sawyer, D.S.; Golovchenko, X. Free gas at the base of the gas hydrate zone in the vicinity of the Chile triple Junction. Geology 1993, 21, 905–908. [Google Scholar] [CrossRef]
- Rodrigo, C.; Gonzalez–Fernández, A.; Vera, E. Variability of the bottom-simulating reflector (BSR) and its association with tectonic structures in the Chilean margin between Arauco Gulf (37°S) and Valdivia (40°S). Mar. Geophys. Res. 2009, 30, 1–19. [Google Scholar] [CrossRef]
- Tinivella, U.; Carcione, J.M. Estimation of gas hydrate concentration and free gas saturation from log and seismic data. Lead. Edge 2001, 20, 200–203. [Google Scholar] [CrossRef]
- Bünz, S.; Mienert, J. Acoustic imaging of gas hydrate and free gas at the Storegga Slide. J. Geophys. Res. 2004, 109, 1–15. [Google Scholar] [CrossRef]
- Lee, M.W.; Hutchinson, D.R.; Collett, T.S.; Dillon, W.P. Seismic velocities for hydrate-bearing sediments using weighted equation. J. Geophys. Res. Solid Earth 1996, 101, 20347–20358. [Google Scholar] [CrossRef]
- Dvorkin, J.; Nur, A. Elasticity of high-porosity sandstones: Theory for two North Sea data sets. Geophysics 1996, 61, 1363–1370. [Google Scholar] [CrossRef]
- Ecker, C.; Dvorkin, J.; Nur, A. Sediments with gas hydrates: Internal structure from seismic AVO. Geophysics 1998, 63, 1659–1669. [Google Scholar] [CrossRef]
- Helgerud, M.B.; Dvorkin, J.; Nur, A.; Sakai, A.; Collett, T.S. Elastic wave velocity in marine sediments with gas hydrates: Effective medium modelling. Geophys. Res. Lett. 1999, 26, 2021–2024. [Google Scholar] [CrossRef]
- Chand, S.; Minshull, T.A.; Gei, D.; Carcione, J.M. Elastic velocity models for gas hydrate bearing sediments a comparison. Geophys. J. Int. 2004, 159, 573–590. [Google Scholar] [CrossRef]
- Tinivella, U. A method for estimating gas hydrate and free gas concentrations in marine sediments. Boll. Geofis. Teor. Appl. 1999, 40, 19–30. [Google Scholar]
- Tinivella, U. The seismic response to overpressure versus gas 638 hydrate and free gas concentration. J. Seism. Explor. 2002, 11, 283–305. [Google Scholar]
- Tinivella, U.; Lodolo, E. The Blake Ridge bottom simulating reflector transect: Tomographic velocity field and theoretical models to estimate hydrate quantities. In Proceedings of the Ocean Drilling Program, Scientific Results; Paull, C.K., Matsumoto, R., Wallace, P.J., Dillon, W.P., Eds.; Ocean Drilling Program: College Station, TX, USA, 2000; Volume 164, pp. 273–281. [Google Scholar] [CrossRef]
- Carcione, J.M.; Tinivella, U. Bottom simulating reflectors: Seismic velocities and AVO effects. Geophysics 2000, 65, 54–67. [Google Scholar] [CrossRef]
- Carcione, J.M.; Tinivella, U. The seismic response to overpressure: A modelling study based on laboratory, well and seismic data. Geophys. Prospect. 2001, 49, 523–539. [Google Scholar] [CrossRef]
- Angermann, D.; Klotz, J.; Reiberg, C. Space—Geodetic estimation of the Nazca—South American Euler vector. Earth Planet. Sci. Lett. 1999, 171, 329–334. [Google Scholar] [CrossRef]
- Kendrick, E.; Bevis, M.; Smalley, R., Jr.; Brooks, B.; Vargas, R.C.; Lauría, E.; Fortes, L.P.S. The Nazca–South America Euler vector and its rate of change. J. South Am. Earth Sci. 2003, 16, 125–131. [Google Scholar] [CrossRef]
- Cohen, J.K.; Stockwell, J.W. CWP/SU: Seismic Unix Release 4.0: A free Package for Seismic Research and Processing; Center for Wave Phenomena, Colorado School of Mines: Golden, CO, USA, 2008; pp. 1–153. [Google Scholar]
- Tinivella, U.; Loreto, M.F.; Accaino, F. Regional versus detailed velocity analysis to quantify hydrate and free gas in marine sediments: The south Shetland margin target study. Geol. Soc. Spec. Publ. 2009, 319, 103–119. [Google Scholar] [CrossRef]
- Loreto, M.F.; Tinivella, U.; Accaino, F.; Giustiniani, M. Gas hydrate reservoir characterization by geophysical data analysis (offshore Antarctic Peninsula). Energies. 2011, 4, 39–56. [Google Scholar] [CrossRef]
- Yilmaz, O. Seismic Data Analysis: Processing, Inversion and Interpretation of Seismic Data, 2nd ed.; Society of Exploration Geophysicists: Tulsa, OK, USA, 2001; pp. 1–2027. ISBN 978-1-56080-094-1. [Google Scholar]
- Liu, Z.; Bleistein, N. Migration velocity analysis: Theory and an iterative algorithm. Geophysics 1995, 60, 142–153. [Google Scholar] [CrossRef]
- Grevemeyer, I.; Villinger, H. Gas hydrate stability and the assessment of heat flow through continental margins. Geophys. J. Int. 2001, 145, 647–660. [Google Scholar] [CrossRef]
- Dickens, G.R.; Quinby-Hunt, M.S. Methane hydrate stability in seawater. Geophys. Res. Lett. 1994, 21, 2115–2118. [Google Scholar] [CrossRef]
- Sloan, E.D. Clathrate Hydrates of Natural Gases, 2nd ed.; Marcel Dekker, Inc.: New York, NY, USA, 1998; pp. 1–641. ISBN 0824799372. [Google Scholar]
- Froelich, P.N.; Kvenvolden, K.A.; Torres, M.E.; Waseda, A.; Didyk, BM.; Lorenson, T.D. Geochemical evidence for gas hydrate in sediment near the Chile triple junction. In Proceedings of the Ocean Drilling Program, Scientific Results; Lewis, S.D., Behrmann, J.H., Musgrave, R.J., Cande, S.C., Eds.; Ocean Drilling Program: College Station, TX, USA, 1995; Volume 141, pp. 276–286. [Google Scholar] [CrossRef]
- Hamilton, E.L. Sound velocity gradients in marine sediments. J. Acoust. Soc. Am. 1979, 65, 909–922. [Google Scholar] [CrossRef]
- Mix, A.C.; Tiedemann, R.; Blum, P.; Abrantes, F.F.; Benway, H.; Cacho-Lascorz, I.; Chen, M.; Delaney, M.L.; Flores, J.A.; Giosan, L.; Holbourn, A.E.; et al. Proceeding ODP Initial Reptorts 202; Ocean Drilling Program: College Station, TX, USA, 2003. [Google Scholar] [CrossRef]
- Marsaglia, K.M.; Torrez, X.V.; Padilla, I.; Rimkus, K.C. Provenance of Pleistocene and Pliocene sand and sandstone, ODP leg 141, Chile margin. In Proceedings of the Ocean Drilling Program, Scientific Results; Lewis, S.D., Behrmann, J.H., Musgrave, R.J., Cande, S.C., Eds.; Ocean Drilling Program: College Station, TX, USA, 1995; Volume 141, pp. 133–151. [Google Scholar] [CrossRef]
- Loreto, F.M.; Tinivella, U.; Ranero, C.R. Evidence for fluid circulation, overpressure and tectonic style along the Southern Chilean margin. Tectonophysics 2007, 429, 183–200. [Google Scholar] [CrossRef]
- Rabassa, J.; Clapperton, C. Quaternary glaciations of the Southern Andes, Quaternary glaciations in the Southern Hemisphere. Quat. Sci. Rev. 1990, 9, 153–174. [Google Scholar] [CrossRef]
- Accaino, F.; Bohm, G.; Brancolini, G. Analysis of Antarctic glaciations by seismic reflection and refraction tomography. Mar. Geol. 2005, 216, 145–154. [Google Scholar] [CrossRef]
- Loreto, M.F.; Tinivella, U. Gas hydrate versus geological features: The South Shetland case study. Mar. Pet. Geol. 2012, 36, 164–171. [Google Scholar] [CrossRef]
- Boobalan, A.J.; Ramanujam, N. Triggering mechanism of gas hydrate dissociation and subsequent sub marine landslide and ocean wide Tsunami after Great Sumatra—Andaman 2004 earthquake. Arch. Appl. Sci. Res. 2013, 5, 105–110. [Google Scholar]
Seismic Line | Modelledm Layers (Top-Bottom) | Number of Iterations |
---|---|---|
RC2901-727 | Seawater-seafloor | 4 |
Seafloor-BSR | 30 | |
BSR-BGR | 10 | |
SO161-29 | Seawater-Seafloor | 6 |
Seafloor-Horizon 1 | 25 | |
Horizon 1-BSR | 45 | |
BSR-BGR | BGR not recognisable |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iván, V.-C.; Umberta, T.; Lucía, V.-M. Gas Hydrate and Free Gas Concentrations in Two Sites inside the Chilean Margin (Itata and Valdivia Offshores). Energies 2017, 10, 2154. https://doi.org/10.3390/en10122154
Iván V-C, Umberta T, Lucía V-M. Gas Hydrate and Free Gas Concentrations in Two Sites inside the Chilean Margin (Itata and Valdivia Offshores). Energies. 2017; 10(12):2154. https://doi.org/10.3390/en10122154
Chicago/Turabian StyleIván, Vargas-Cordero, Tinivella Umberta, and Villar-Muñoz Lucía. 2017. "Gas Hydrate and Free Gas Concentrations in Two Sites inside the Chilean Margin (Itata and Valdivia Offshores)" Energies 10, no. 12: 2154. https://doi.org/10.3390/en10122154
APA StyleIván, V.-C., Umberta, T., & Lucía, V.-M. (2017). Gas Hydrate and Free Gas Concentrations in Two Sites inside the Chilean Margin (Itata and Valdivia Offshores). Energies, 10(12), 2154. https://doi.org/10.3390/en10122154