The Impact of Shale Gas on the Cost and Feasibility of Meeting Climate Targets—A Global Energy System Model Analysis and an Exploration of Uncertainties
Abstract
:1. Introduction
1.1. What Is Shale Gas and How Does It Differ from Conventional Gas?
1.2. Why Has Shale Gas Extraction Been Proposed?
1.3. What Are the Known Risks?
1.4. What Can Energy System Modelling Tell Us about the Role of Shale Gas?
2. Literature on Shale Gas Resource Availability, Extraction Costs, and Fugitive Emissions
2.1. Levels of Supply
2.2. Field Depletion and Economic Feasibility
2.3. Methane Leakage Rates
2.4. Shale Gas Supply Curves in Previous Energy System Modelling Studies
2.5. Analytical Gap
- (1)
- Setting out plausible scenarios of cost relativities of shale and conventional gas resources, by reflecting existing uncertainty in the costs of both conventional and shale gas, rather than just uncertainty in shale gas costs. We achieve this by considering a high, medium and low case for both shale and conventional gas costs.
- (2)
- Using an energy system model (TIAM-Grantham) to calculate cost-optimised energy system pathways to 2100, consistent with the 2 °C long-term temperature goal, under the cost scenarios outlined above.
- (3)
- Exploring the climate change consequences of plausible rates of methane leakage from shale gas, to understand the additional warming that might occur if leakage rates were higher than for non-shale gas.
3. Methods
- High cost conventional/Low-cost shale gas (denoted “HC_LS”);
- Medium-cost conventional/medium cost shale (denoted “MC_MS”);
- Low-cost conventional/High-cost shale (denoted “LC_HS”);
- Medium-cost conventional/No shale (denoted “MC_NS”).
4. Results
4.1. Energy System and Mitigation Costs
4.2. Primary Energy Share of Natural Gas
4.3. Impacts of Carbon Capture and Storage (CCS) on Gas Share of Global Primary Energy
4.4. Region-Specific Results
4.5. Impact on Development of Other Low-Carbon Technologies
4.6. Impact of a “Dash for Shale Gas”
4.7. Rates of Decarbonisation
4.8. Methane Emissions
5. Discussion and Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- The Royal Society. Shale Gas Extraction in the UK: A Review of Hydraulic Fracturing; The Royal Society: London, UK, 2012. [Google Scholar]
- Hirst, N.; Khor, C.S.; Buckle, S. Shale gas and climate change. In Grantham Institute Briefing Papers; Grantham Institute: London, UK, 2013. [Google Scholar]
- US Energy Information Administration Shale Gas Glossary. Avilable online: http://energy.gov/sites/prod/files/2013/04/f0/shale_gas_glossary.pdf (accessed on 3 March 2016).
- U.S. Energy Information Administration (EIA) Lower 48 States Shale Plays 2015. Available online: http://www.eia.gov/oil_gas/rpd/shale_gas.pdf (accessed on 23 January 2017).
- U.S. Energy Information Administration (EIA) EIA to Release New Drilling Productivity Report. Available online: http://www.eia.gov/todayinenergy/detail.cfm?id=13451 (accessed on 23 January 2017).
- International Energy Agency. Golden Rules for a Golden Age of Gas; International Energy Agency: Paris, France, 2012. [Google Scholar]
- Mcglade, C.; Speirs, J.; Sorrell, S. Unconventional gas—A review of regional and global resource estimates. Energy 2013, 55, 571–584. [Google Scholar] [CrossRef]
- U.S. Energy Information Administration (EIA) Natural Gas Data. Avilable online: https://www.eia.gov/naturalgas/data.cfm (accessed on 3 March 2016).
- U.S. Energy Information Administration (EIA). U. S. Energy-Related Carbon Dioxide Emissions, 2013; U.S. Energy Information Administration: Washington, DC, USA, 2014.
- Feng, K.; Davis, S.J.; Sun, L.; Hubacek, K. Drivers of the US CO2 emissions 1997–2013. Nat. Commun. 2015, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- International Energy Agency. Energy Technology Perspectives; International Energy Agency: Paris, France, 2014. [Google Scholar]
- Obama, B. State of the Union Address. Available online: https://obamawhitehouse.archives.gov/the-press-office/2014/01/28/president-barack-obamas-state-union-address (accessed on 23 January 2017).
- Richter, P.M. From Boom to Bust? A Critical Look at US Shale Projections; DIW Berlin Discussion Paper; DIW Berlin: Berlin, German, 2013. [Google Scholar]
- IPCC. Anthropogenic and Natural Radiative Forcing. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; pp. 659–740. [Google Scholar]
- Alvarez, R.A.; Pacala, S.W.; Winebrake, J.J.; Chameides, W.L.; Hamburg, S.P. Greater focus needed on methane leakage from natural gas infrastructure. Proc. Natl. Acad. Sci. USA 2012, 109, 6435–6440. [Google Scholar] [CrossRef] [PubMed]
- United States Government Accountability Office (GAO). Unconventional Oil and Gas Development: Key Environmental and Public Health Requirements; United States Government Accountability Office: Washington, DC, USA, 2012.
- Whitmarsh, L.; Nash, N.; Upham, P.; Lloyd, A.; Verdon, J.P.; Kendall, J.M. UK public perceptions of shale gas hydraulic fracturing: The role of audience, message and contextual factors on risk perceptions and policy support. Appl. Energy 2015, 160, 419–430. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency. Assessment of the Potential Impacts of Hydraulic Fracturing for Oil and Gas on Drinking Water Resources Executive Summary; United States Environmental Protection Agency: Washington, DC, USA, 2015.
- Gamper-Rabindran, S. Information collection, access, and dissemination to support evidence-based shale gas policies. Energy Technol. 2014, 2, 977–987. [Google Scholar] [CrossRef]
- Pfenninger, S.; Hawkes, A.; Keirstead, J. Energy systems modeling for twenty-first century energy challenges. Renew. Sustain. Energy Rev. 2014, 33, 74–86. [Google Scholar] [CrossRef]
- Loulou, R.; Labriet, M. ETSAP-TIAM: The TIMES integrated assessment model Part I: Model structure. Comput. Manag. Sci. 2007, 5, 7–40. [Google Scholar] [CrossRef]
- Rogner, H. An assessment of world hydrocarbon resources. Annu. Rev. Environ. Resour. 1997, 22, 217–262. [Google Scholar] [CrossRef]
- Advanced Resources International. World Shale Gas Resources: An Initial Assessment of 14 Regions Outside the United States; Advanced Resources International: Arlington, VA, USA, 2011. [Google Scholar]
- Medlock, K.B. Shale gas, emerging fundamentals, and geopolitics. In James A Baker III Institute for Public Policy; Rice University: Houston, TX, USA, 2012. [Google Scholar]
- Advanced Resources International. EIA/ARI World Shale Gas and Shale Oil Resource Assessment; Advanced Resources International: Arlington, VA, USA, 2013. [Google Scholar]
- Federal Institute for Geosciences and Natural Resources (BGR). Energy Study—Reserves, Resources and Availability; Federal Institute for Geosciences and Natural Resources: Berlin, Germany, 2015. [Google Scholar]
- Polish Geographical Survey. Assessment of Shale Gas and Shale Oil Resources of the Lower Paleozoic Baltic-Podlasie-Lublin Basin in Poland; Polish Geological Institute: Warsaw, Poland, 2012. [Google Scholar]
- Efstathiou, J., Jr.; Klimasinska, K. U.S. to Slash Marcellus Shale Gas Estimate 80% on Geology Update; Bloomberg: New York, NY, USA, 2011. [Google Scholar]
- McGlade, C.; Speirs, J.; Sorrell, S. Methods of estimating shale gas resources—Comparison, evaluation and implications. Energy 2013, 59, 116–125. [Google Scholar] [CrossRef]
- Urbina, I. Insiders Sound an Alarm Amid a Natural Gas Rush. New York Times, 25 June 2011. [Google Scholar]
- Hughes, J.D. A reality check on the shale revolution. Nature 2013, 494, 307–308. [Google Scholar] [CrossRef] [PubMed]
- Inman, M. The fracking fallacy. Nature 2014, 516, 28–30. [Google Scholar] [CrossRef] [PubMed]
- US Energy Information Administration Response to “Fracking Fallacy” Article 2014. Available online: http://www.eia.gov/naturalgas/article/Nature_news_feature.pdf (accessed on 23 January 2017).
- Hughes, J.D. Shale Gas Reality Check; Post Carbon Institude: Santa Rosa, CA, USA, 2015. [Google Scholar]
- Featherston, W.; Jiang, B.; Drum, D.; O’Connor, M. NYT Shale Gas Allegations Seem Exaggerated. Available online: http://s3.amazonaws.com/zanran_storage/www.anga.us/ContentPages/2520050971.pdf (accessed on 23 January 2017).
- Stevens, P. Shale Gas in the United Kingdom; Chatham House: London, UK, 2013. [Google Scholar]
- Miller, S.M.; Wofsy, S.C.; Michalak, A.M.; Kort, E.A.; Andrews, A.E.; Biraud, S.C.; Dlugokencky, E.J.; Eluszkiewicz, J.; Fischer, M.L.; Janssens-maenhout, G.; et al. Anthropogenic emissions of methane in the United States. Proc. Natl. Acad. Sci. USA 2013, 110, 20018–20022. [Google Scholar] [CrossRef] [PubMed]
- U.S. Energy Information Administration (EIA). Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990–2013; Energy Information Administration: Washington, DC, USA, 2015.
- Howard, T.; Ferrara, T.W.; Townsend-Small, A. Sensor transition failure in the high flow sampler: Implications for methane emission inventories of natural gas infrastructure. J. Air Waste Manag. Assoc. 2015, 7, 856–862. [Google Scholar] [CrossRef] [PubMed]
- Howard, T. University of Texas study underestimates national methane emissions at natural gas production sites due to instrument sensor failure. Energy Sci. Eng. 2015, 3, 443–455. [Google Scholar] [CrossRef]
- Allen, D.T.; Torres, V.M.; Thomas, J.; Sullivan, D.W.; Harrison, M.; Hendler, A.; Herndon, S.C.; Kolb, C.E.; Fraser, M.P.; Hill, A.D.; et al. Measurements of methane emissions at natural gas production sites in the United States. Proc. Natl. Acad. Sci. USA 2013, 110, 17768–17773. [Google Scholar] [CrossRef] [PubMed]
- Allen, D.T.; Sullivan, D.W.; Harrison, M. Response to comment on “Methane emissions from process equipment at natural gas production sites in the United States: Pneumatic controllers”. Environ. Sci. Technol. 2015, 49, 3983–3984. [Google Scholar] [CrossRef] [PubMed]
- Balcombe, P.; Anderson, K.; Speirs, J.; Brandon, N.; Hawkes, A. Methane and CO2 Emissions from the Natural Gas Supply Chain: An Evidence Assessment; Sustainable Gas Institute: London, UK, 2015. [Google Scholar]
- Howarth, R.W.; Santoro, R.; Ingraffea, A. Methane and the greenhouse-gas footprint of natural gas from shale formations A letter. Clim. Chang. 2011, 106, 679–690. [Google Scholar] [CrossRef]
- Stephenson, T.; Valle, J.E.; Riera-palou, X.; Global, S.; International, S.; Park, K.; Gs, R. Modeling the relative GHG emissions of conventional and shale gas production. Environ. Sci. Technol. 2011, 45, 10757–10764. [Google Scholar] [CrossRef] [PubMed]
- O’Sullivan, F.; Paltsev, S. Shale gas production: Potential versus actual greenhouse gas emissions. Environ. Res. Lett. 2012, 7, 1–6. [Google Scholar] [CrossRef]
- Zavala-Araiza, D.; Lyon, D.R.; Alvarez, R.A.; Davis, K.J.; Harriss, R.; Herndon, S.C.; Karion, A.; Adam, E.; Lamb, B.K.; Lan, X.; et al. Reconciling divergent estimates of oil and gas methane emissions. Proc. Natl. Acad. Sci. USA 2015, 112, 15597–15602. [Google Scholar] [CrossRef] [PubMed]
- Karion, A.; Sweeney, C.; Pétron, G.; Frost, G.; Hardesty, R.M.; Ko, J.; Miller, B.R.; Newberger, T.; Wolter, S.; Banta, R.; et al. Methane emissions estimate from airborne measurements over a western United States natural gas field. Geophys. Res. Lett. 2013, 40, 4393–4397. [Google Scholar] [CrossRef]
- Caulton, D.R.; Shepson, P.B.; Santoro, R.L.; Sparks, J.P.; Howarth, R.W.; Ingraffea, A.R.; Cambaliza, M.O.L.; Sweeney, C.; Karion, A.; Davis, K.J.; et al. Toward a better understanding and quantification of methane emissions from shale gas development. Proc. Natl. Acad. Sci. USA 2014, 111, 6237–6242. [Google Scholar] [CrossRef] [PubMed]
- Peischl, J.; Ryerson, T.B.; Aikin, K.C.; Gouw, J.A.; Gilman, J.B.; Holloway, J.S.; Lerner, B.M.; Nadkarni, R.; Neuman, J.A.; Nowak, J.B.; et al. Quantifying atmospheric methane emissions from the Haynesville, Fayetteville, and northeastern Marcellus shale gas production regions. J. Geophys. Res. Atmos. 2015, 120, 2119–2139. [Google Scholar] [CrossRef]
- Lavoie, T.N.; Shepson, P.B.; Cambaliza, M.O.L.; Stirm, B.H.; Karion, A.; Sweeney, C.; Yacovitch, T.I.; Herndon, S.C.; Lan, X.; Lyon, D. Aircraft-Based measurements of point source methane emissions in the barnett shale basin. Environ. Sci. Technol. 2015, 49, 7904–7913. [Google Scholar] [CrossRef] [PubMed]
- Schneising, O.; Burrows, J.P.; Dickerson, R.R.; Buchwitz, M.; Bovensmann, H. Remote sensing of fugitive methane emissions from oil and gas production in North American tight geologic formations. Earth’s Future 2014, 2, 548–558. [Google Scholar] [CrossRef]
- ICF International for the US Environmental Defense Fund. Economic Analysis of Methane Emission Reduction Opportunities in the U.S. Onshore Oil and Natural Gas Industries; ICF International: Fairfax, VA, USA, 2014. [Google Scholar]
- International Energy Agency. Energy and Climate Change; International Energy Agency: Paris, France, 2015. [Google Scholar]
- Omara, M.; Sullivan, M.R.; Li, X.; Subramanian, R.; Robinson, A.L.; Presto, A.A. Methane emissions from conventional and unconventional natural gas production sites in the Marcellus shale basin. Environ. Sci. Technol. 2016, 50, 2099–2107. [Google Scholar] [CrossRef] [PubMed]
- Mcjeon, H.; Edmonds, J.; Bauer, N.; Clarke, L.; Fisher, B.; Flannery, B.P.; Hilaire, J.; Krey, V.; Marangoni, G.; Mi, R.; et al. Limited impact on decadal-scale climate change from increased use of natural gas. Nature 2014, 514, 482–485. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rogner, H.-H.; Aguilera, R.F.; Archer, C.; Bertani, R.; Bhattacharya, S.C.; Dusseault, M.B.; Gagnon, L.; Haberl, H.; Hoogwijk, M.; Johnson, A.; et al. Energy resources and potentials. In Global Energy Assessment—Toward a Sustainable Future; Cambridge University Press: Cambridge, UK; New York, NY, USA; International Institute for Applied Systems Analysis: Laxenburg, Austria, 2012; pp. 423–512. [Google Scholar]
- Mcglade, C.E. Uncertainties in the Outlook for Oil and Gas. Ph.D. Thesis, University College London, London, UK, 2013. [Google Scholar]
- Gracceva, F.; Zeniewski, P. Exploring the uncertainty around potential shale gas development—A global energy system analysis based on TIAM (TIMES Integrated Assessment Model). Energy 2013, 57, 443–457. [Google Scholar] [CrossRef]
- International Energy Agency. Energy Technology Systems Analysis Programme Review of Resources and Trade of Fossil Energy Resources in the TIAM Model; International Energy Agency: Paris, France, 2006. [Google Scholar]
- Mcglade, C.; Ekins, P. The geographical distribution of fossil fuels unused when limiting global warming to 2 °C. Nature 2014, 517, 187–190. [Google Scholar] [CrossRef] [PubMed]
- International Energy Agency. World Energy Outlook 2011: Are We Entering a Golden Age of Gas; International Energy Agency: Paris, France, 2011. [Google Scholar]
- Thonhauser, G. Shale and tight gas development for Europe. In Unconventional Gas: Potential Energy Market Impacts in the European Union; European Commision—Joint Research Centre: Ispra, Italy, 2012; pp. 56–99. [Google Scholar]
- Hilaire, J.; Bauer, N.; Brecha, R.J. Boom or bust? Mapping out the known unknowns of global shale gas production potential. Energy Econ. 2015, 49, 581–587. [Google Scholar]
- Jacoby, H.D.; Sullivan, F.M.O.; Paltsev, S. The influence of shale gas on U.S. energy and environmental policy. Econ. Energy Environ. Policy 2012, 1, 37–52. [Google Scholar] [CrossRef]
- Petak, K.R. Impact of natural gas supply on CHP deployment. In Proceedings of the U.S. Clean Heat & Power Association’s Spring CHP Forum, Washington, DC, USA, 5–6 May 2011.
- Gülen, G.; Browning, J.; Ikonnikova, S.; Tinker, S.W. Well economics across ten tiers in low and high Btu (British thermal unit) areas, Barnett Shale, Texas. Energy 2013, 60, 302–315. [Google Scholar] [CrossRef]
- Loulou, R.; Labriet, M.; Kanudia, A. Deterministic and stochastic analysis of alternative climate targets under differentiated cooperation regimes. Energy Econ. 2009, 31, S131–S143. [Google Scholar] [CrossRef]
- Gambhir, A.; Napp, T.; Hawkes, A.; Mccollum, D.; Fricko, O.; Havlik, P.; Riahi, K.; Drouet, L.; Bosetti, V.; Bernie, D. Assessing the Challenges of Global Long-Term Mitigation Scenarios; International Institute for Applied Systems Analysis (IIASA): Laxenburg, Austria, 2015; pp. 1–37. [Google Scholar]
- United Nations Framework Convention for Climate Change. Synthesis Report on the Aggregate Effect of the Intended Nationally Determined Contributions; UNFCCC: Bonn, Germany, 2015; pp. 1–66. [Google Scholar]
- O’Neill, B.C.; Kriegler, E.; Riahi, K.; Ebi, K.L. A new scenario framework for climate change research: The concept of shared socioeconomic pathways. Clim. Chang. 2014, 122, 387–400. [Google Scholar] [CrossRef]
- Kriegler, E.; Weyant, J.P.; Blanford, G.J.; Krey, V.; Clarke, L.; Edmonds, J.; Fawcett, A.; Luderer, G.; Riahi, K.; Richels, R.; et al. The role of technology for achieving climate policy objectives: Overview of the EMF 27 study on global technology and climate policy strategies. Clim. Chang. 2014, 123, 353–367. [Google Scholar] [CrossRef] [Green Version]
- Clarke, L.; Edmonds, J.; Krey, V.; Richels, R.; Rose, S.; Tavoni, M. International climate policy architectures: Overview of the EMF 22 international scenarios. Energy Econ. 2009, 31, S64–S81. [Google Scholar] [CrossRef] [Green Version]
- U.S. Energy Information Administration (EIA). International Energy Statistics; Energy Information Administration: Washington, DC, USA, 2014.
- United Nations Framework on Climate Change. Adoption of the Paris Agreement; UNFCCC: Bonn, Germany, 2015. [Google Scholar]
- Fawcett, A.A.; Iyer, G.C.; Clarke, L.E.; Edmonds, J.A.; Hultman, N.E.; McJeon, H.C.; Rogelj, J.; Schuler, R.; Alsalam, J.; Asrar, G.R.; et al. Can Paris pledges avert severe climate change? Science 2015, 350, 1168–1169. [Google Scholar] [CrossRef] [PubMed]
- Gambhir, A.A.; Napp, T.; Hawkes, A.; Winiwarter, W.; Purohit, P.; Wagner, F.; Bernie, D.; Lowe, J. The Contribution of non-CO2 Greenhouse gas Mitigation to Achieving Long-Term Temperature Goals; IIASA: Laxenburg, Austria, 2015; pp. 1–27. [Google Scholar]
Name | Short Description |
---|---|
Original gas in place (OGIP) | Total volume present |
Ultimately recoverable resources (URR) | Total volume recoverable over all time |
Technically recoverable resources (TRR) | Recoverable with current technology |
Economically recoverable resources (ERR) | Economically recoverable with current technology |
Cost Scenario | Description |
---|---|
Low Cost Conventional (LC) | Conventional, tight gas, and coal bed methane cost curves from ETSAP-TIAM 2006 [60] (green lines in Figure 3a). |
Mid Cost Conventional (MC) | Conventional, tight gas, and coal bed methane cost curves from JRC [59] (blue lines in Figure 3a). |
High Cost Conventional (HC) | Conventional, tight gas, and coal bed methane cost curves from JRC [59] scaled such that conventional costs are in line with McGlade [58] (orange line in Figure 3a). |
Low Cost Shale (LS) | Shale cost curves from ETSAP-TIAM 2012 model version, based upon McGlade [58]. Costs are similar to McGlade’s thesis up to 2015, with costs in all regions falling to that of lowest cost region in McGlade [58] by 2020 (green lines in Figure 3b). |
Mid Cost Shale (MS) | Shale cost curves from ETSAP-TIAM 2012 model version based upon McGlade [58], adapted such that there is no fall in costs in any region during the model run (light green line in Figure 3b). |
High Cost Shale (HS) | Shale cost curves from JRC [59] mid case (blue lines in Figure 3b). |
No Shale (NS) | No shale gas extraction. |
No Unconventional Gas (NU) | No shale gas, tight gas, or coal bed methane extraction. |
Conventional Gas Cost Scenario | Unconventional Gas Cost Scenario | Abbreviation | Present Value Energy System Cost over the Period 2012–2100 * | |||
---|---|---|---|---|---|---|
2 °C Scenario/Trillion 2005 US$ | Reference Scenario/Trillion 2005 US$ | Mitigation Cost/Trillion 2005 US$ (%GDP) | ||||
With shale | Low Cost | High Cost Shale | LC_HS | 635.2 | 601.0 | 34.1 (1.09) |
Mid Cost | Mid Cost Shale | MC_MS | 641.8 | 607.1 | 34.7 (1.11) | |
High Cost | Low Cost Shale | HC_LS | 643.2 | 609.1 | 34.1 (1.09) | |
No shale | Low Cost | No Shale | LC_NS | 634.4 ‡ | 601.3 | 33.1 (1.05) |
Mid Cost | No Shale | MC_NS | 642.9 | 609.0 | 33.9 (1.08) | |
High Cost | No Shale | HC_NS | 645.7 | 612.7 | 33.0 (1.05) |
Conventional Gas Cost Scenario | Unconventional Gas Cost Scenario | Capital Financing Rates for Low Carbon Electricity Technologies | Present Value Energy System Cost over the Period 2012–2100 * | ||
---|---|---|---|---|---|
2 °C Scenario/Trillion 2005 US$ | Reference Scenario/Trillion 2005 US$ | Mitigation Cost/Trillion 2005 US$ (%GDP) | |||
Low Cost | High Cost Shale | 10% | 635.2 | 601.0 | 34.1 (1.09) |
Mid Cost | Mid Cost Shale | 10% | 641.8 | 607.1 | 34.7 (1.11) |
High Cost | Low Cost Shale | 10% | 643.2 | 609.1 | 34.1 (1.09) |
Low Cost | High Cost Shale | 11% | 636.7 | 601.0 | 35.6 (1.13) |
Mid Cost | Mid Cost Shale | 11% | 643.0 | 607.1 | 35.9 (1.14) |
High Cost | Low Cost Shale | 11% | 644.2 | 609.1 | 35.1 (1.12) |
Low Cost | High Cost Shale | 20% | 652.8 | 601.0 | 51.7 (1.65) |
Mid Cost | Mid Cost Shale | 20% | 659.5 | 607.1 | 52.5 (1.67) |
High Cost | Low Cost Shale | 20% | 660.9 | 609.1 | 51.8 (1.65) |
Conventional Gas Cost Scenario | Unconventional Gas Cost Scenario | Shale Gas Extraction Rate | Capital Financing Rates for Low Carbon Electricity Technologies | Present Value Energy System Cost over the Period 2012–2100 * | ||
---|---|---|---|---|---|---|
2 °C Scenario/$Trillion | Reference Scenario/$Trillion | Mitigation Cost/$Trillion (%GDP) | ||||
Low Cost | High Cost | Dash | 10% | 646.9 | 601.0 | 45.9 (1.46) |
Mid Cost | Mid Cost | Dash | 10% | 649.0 | 607.1 | 41.9 (1.33) |
High Cost | Low Cost | Dash | 10% | 650.6 | 609.1 | 41.6 (1.32) |
Low Cost | High Cost | Dash | 11% | 648.8 | 601.0 | 47.8 (1.52) |
Mid Cost | Mid Cost | Dash | 11% | 651.0 | 607.1 | 43.9 (1.40) |
High Cost | Low Cost | Dash | 11% | 652.7 | 609.1 | 43.6 (1.39) |
Low Cost | High Cost | Dash | 20% | 664.9 | 601.0 | 63.9 (2.03) |
Mid Cost | Mid Cost | Dash | 20% | 667.5 | 607.1 | 60.5 (1.92) |
High Cost | Low Cost | Dash | 20% | 669.4 | 609.1 | 60.3 (1.92) |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Few, S.; Gambhir, A.; Napp, T.; Hawkes, A.; Mangeon, S.; Bernie, D.; Lowe, J. The Impact of Shale Gas on the Cost and Feasibility of Meeting Climate Targets—A Global Energy System Model Analysis and an Exploration of Uncertainties. Energies 2017, 10, 158. https://doi.org/10.3390/en10020158
Few S, Gambhir A, Napp T, Hawkes A, Mangeon S, Bernie D, Lowe J. The Impact of Shale Gas on the Cost and Feasibility of Meeting Climate Targets—A Global Energy System Model Analysis and an Exploration of Uncertainties. Energies. 2017; 10(2):158. https://doi.org/10.3390/en10020158
Chicago/Turabian StyleFew, Sheridan, Ajay Gambhir, Tamaryn Napp, Adam Hawkes, Stephane Mangeon, Dan Bernie, and Jason Lowe. 2017. "The Impact of Shale Gas on the Cost and Feasibility of Meeting Climate Targets—A Global Energy System Model Analysis and an Exploration of Uncertainties" Energies 10, no. 2: 158. https://doi.org/10.3390/en10020158
APA StyleFew, S., Gambhir, A., Napp, T., Hawkes, A., Mangeon, S., Bernie, D., & Lowe, J. (2017). The Impact of Shale Gas on the Cost and Feasibility of Meeting Climate Targets—A Global Energy System Model Analysis and an Exploration of Uncertainties. Energies, 10(2), 158. https://doi.org/10.3390/en10020158