Energy Contribution of OFMSW (Organic Fraction of Municipal Solid Waste) to Energy-Environmental Sustainability in Urban Areas at Small Scale
Abstract
:1. Introduction
2. Key Issues
3. Materials and Methodology
- Mass flow rate of the substrate, expressed as m (t/y);
- Biogas production of the substrate as function of its chemical composition and its collection typology, expressed as q (Nm3/t);
- Auxiliaries consumption in terms of electricity and heating demand, expressed in s (kWh/t).
- Enet is the useful energy output from the cycle on annual base;
- Egross is the gross energy content of the produced biogas volume.
4. Urban Fabric and Biogas Potential
Four Samples of Urban Substrates
5. Results and Discussion
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- European Parliament. Decision No. 1386/2013/EU of the European Parliament and of the Council on a General Union Environment Action Programme to 2020 ‘Living well, within the limits of our planet’. Off. J. Eur. Union 2013, L354, 171–200. [Google Scholar]
- Chaliki, P.; Psomopoulos, C.S.; Themelis, N.J. WTE plants installed in European cities: A review of success stories. Manag. Environ. Qual. Inte. J. 2015, 27, 606–620. [Google Scholar] [CrossRef]
- Wang, N.-Y.; Shih, C.-H.; Chiueh, P.-T.; Huang, Y.F. Environmental Effects of Sewage Sludge Carbonization and Other Treatment Alternatives. Energies 2013, 6, 871–883. [Google Scholar] [CrossRef]
- Salata, F.; Golasi, I.; Domestico, U.; Banditelli, M.; Lo Basso, G.; Nastasi, B.; de Lieto Vollaro, A. Heading towards the nZEB through CHP + HP systems. A comparison between retrofit solutions able to increase the energy performance for the heating and domestic hot water production in residential buildings. Energy Convers. Manag. 2017, in press. [Google Scholar] [CrossRef]
- Rovense, F.; Amelio, M.; Ferraro, V.; Scornaienchi, V. Analysis of a Concentrating Solar Power Tower Operating with a Closed Joule Brayton Cycle and Thermal Storage. Int. J. Heat Technol. 2016, 34, 485–490. [Google Scholar] [CrossRef]
- Rossi, F.; Castellani, B.; Presciutti, A.; Morini, E.; Anderini, E.; Filipponi, M.; Nicolini, A. Experimental evaluation of urban heat island mitigation potential of retro-reflective pavement in urban canyons. Energy Build. 2016, 12, 340–352. [Google Scholar] [CrossRef]
- Nastasi, B.; Di Matteo, U. Solar energy technologies in Sustainable Energy Action Plans of Italian big cities. Energy Procedia 2016, 101, 1064–1071. [Google Scholar] [CrossRef]
- Cicatiello, C.; Franco, S.; Pancino, B.; Blasi, E. The value of food waste: An exploratory study on retailing. J. Retail. Consum. Serv. 2016, 30, 96–104. [Google Scholar] [CrossRef]
- European Parliament Resolution of 21 May 2013 Current Challenges and Opportunities for Renewable Energy in the European Internal Energy Market (2012/2259(INI)). Available online: http://www.europarl.europa.eu/sides/getDoc.do?pubRef=-//EP//NONSGML+TA+P7-TA-2013-0201+0+DOC+PDF+V0//EN (accessed on 22 September 2016).
- Antizar-Ladislao, B.; Turrion-Gomez, J.L. Decentralized Energy from Waste Systems. Energies 2010, 3, 194–205. [Google Scholar] [CrossRef]
- De Santoli, L.; Mancini, F.; Nastasi, B.; Piergrossi, V. Building integrated bioenergy production (BIBP): Economic sustainability analysis of Bari airport CHP (combined heat and power) upgrade fueled with bioenergy from short chain. Renew. Energy 2015, 81, 499–508. [Google Scholar] [CrossRef]
- Arafat, H.A.; Jijakli, K.; Ahsan, A. Environmental performance and energy recovery potential of five processes for municipal solid waste treatment. J. Clean. Prod. 2015, 105, 233–240. [Google Scholar] [CrossRef]
- Passeri, N.; Blasi, E.; Franco, S.; Martella, A.; Pancino, B.; Cicatiello, C. The environmental sustainability of national cropping systems: From assessment to policy impact evaluation. Land Use Policy 2016, 57, 305–312. [Google Scholar] [CrossRef]
- Mata-Alvarez, J.; Macé, S.; Llabrés, P. Anaerobic digestion of organic solid wastes. An overview of research achievements and perspectives. Bioresour. Technol. 2000, 74, 3–16. [Google Scholar] [CrossRef]
- Divya, D.; Gopinath, P.; Christy, M. A review on current aspects and diverse prospects for enhancing biogas production in sustainable means. Renew. Sustain. Energy Rev. 2015, 42, 690–699. [Google Scholar] [CrossRef]
- RIS International Feasibility of Generating Green Power through Anaerobic Digestion of Garden Refuse from the Sacramento Area. Feasibility Study Sacramento Municipal Utility District, Sacramento, CA, USA. 2005. Available online: https://nerc.org/documents/sacramento_feasibility_study.pdf (accessed on 22 September 2016).
- Andreottola, G.; Ragazzi, M.; Foladori, P.; Villa, R.; Langone, M.; Rada, E.C. The unit intregrated approch for OFMSW treatment. UPB Sci. Bull. 2012, 74, 19–26. [Google Scholar]
- Symons, G.E.; Buswell, A.M. The methane fermentation of carbohydrates. J. Am. Chem. Soc. 1933, 55, 2028–2036. [Google Scholar] [CrossRef]
- Buswell, A.M.; Mueller, H.F. Mechanism of methane fermentation. Ind. Eng. Chem. 1955, 44, 550–552. [Google Scholar] [CrossRef]
- Chen, Y.; Cheng, J.J.; Creamer, K.S. Inhibition of anaerobic digestion process: A review. Bioresour. Technol. 2008, 99, 4044–4064. [Google Scholar] [CrossRef] [PubMed]
- Nallathambi Gunaseelan, V. Anaerobic digestion of biomass for methane production: A review. Biomass Bioenergy 1997, 13, 83–114. [Google Scholar] [CrossRef]
- Mao, C.; Feng, Y.; Wang, X.; Ren, G. Review on research achievements of biogas from anaerobic digestion. Renew. Sustain. Energy Rev. 2015, 45, 540–555. [Google Scholar] [CrossRef]
- Ryu, C.; Shin, D. Combined Heat and Power from Municipal Solid Waste: Current Status and Issues in South Korea. Energies 2013, 6, 45–57. [Google Scholar] [CrossRef]
- Murphy, J.D.; McCarthy, K. The optimal production of biogas for use as a transport fuel in Ireland. Renew. Energy 2005, 30, 2111–2127. [Google Scholar] [CrossRef]
- Watkins, P.; McKendry, P. Assessment of waste derived gases as a renewable energy source—Part 1. Sustain. Energy Technol. Assess. 2015, 10, 102–113. [Google Scholar] [CrossRef]
- Reichhalter, H.; Bozzo, A.; Dal Savio, S.; Guerra, T. Analisi Energetica, Ambientale ed Economica di Impianti a Biogas in Provincia di Bolzano. 2011. Available online: http://www.provincia.bz.it/agricoltura/download/Bilancio_ecologico_di_impianti_a_biogas.pdf (accessed on 22 September 2016).
- Berglund, M.; Börjesson, P. Assessment of energy performance in the life-cycle of biogas production. Biomass Bioenergy 2006, 30, 254–266. [Google Scholar] [CrossRef]
- Banks, C.J.; Chesshire, M.; Heaven, S.; Arnold, R. Anaerobic digestion of source-segregated domestic food waste: Performance assessment by mass and energy balance. Bioresour. Technol. 2011, 102, 612–620. [Google Scholar] [CrossRef] [PubMed]
- De Baere, L.; Verstraete, W. High-rate anaerobic composting with biogas recovery. BioCycle 1984, 25, 30–31. [Google Scholar]
- Mata-Alvarez, J.; Cecchi, F.; Pavan, P.; Llabres, P. The performances of digesters treating the organic fraction of municipal solid wastes differently sorted. Biol. Wastes 1990, 33, 181–199. [Google Scholar] [CrossRef]
- Owens, J.M.; Chynoweth, D.P. Biochemical methane potential of Municipality Solid Waste (MSW) components. Water Sci. Technol. 1993, 27, 1–14. [Google Scholar]
- Valorga. Waste recovery as a source of methane and fertilizer. The Valorga process. In Proceedings of the 2nd Annual International Symposium on Industrial Resource Management, Philadelphia, PA, USA, 17–20 February 1985.
- Viturtia, A.M.; Mata-Alvarez, J.; Cecchi, F.; Fazzini, G. Two-phase anaerobic digestion of a mixture of fruit and vegetable wastes. Biol. Wastes 1989, 29, 189–199. [Google Scholar] [CrossRef]
- Castellani, B.; Morini, E.; Filipponi, M.; Nicolini, A.; Palombo, M.; Cotana, F.; Rossi, F. Comparative analysis of monitoring devices for particulate content in exhaust gases. Sustainability 2014, 6, 4287–4307. [Google Scholar] [CrossRef]
- Lo Basso, G.; Nastasi, B.; Astiaso Garcia, D.; Cumo, F. How to handle the Hydrogen enriched Natural Gas blends in combustion efficiency measurement procedure of conventional and condensing boilers. Energy 2017, in press. [Google Scholar] [CrossRef]
- Finnveden, G.; Ekvall, T.; Arushanyan, Y.; Bisaillon, M.; Henriksson, G.; Gunnarsson Östling, U.; Söderman, M.L.; Sahlin, J.; Stenmarck, Å.; Sundberg, J.; et al. Policy Instruments towards a Sustainable Waste Management. Sustainability 2013, 5, 841–881. [Google Scholar] [CrossRef]
- Lo Zupone, G.; Amelio, M.; Barbarelli, S.; Florio, G.; Scornaienchi, N.M.; Cutrupi, A. Lcoe evaluation for a tidal kinetic self balancing turbine: Case study and comparison. Appl. Energy 2017, 185, 1292–1302. [Google Scholar] [CrossRef]
- Rovense, F. A Case of Study of a Concentrating Solar Power Plant with Unfired Joule-Brayton Cycle. Energy Proc. 2015, 82, 978–985. [Google Scholar] [CrossRef]
- De Santoli, L.; Mancini, F.; Rossetti, S.; Nastasi, B. Energy and system renovation plan for Galleria Borghese, Rome. Energy Build. 2016, 129, 549–562. [Google Scholar] [CrossRef]
- Rossi, F.; Anderini, E.; Castellani, B.; Nicolini, A.; Morini, E. Integrated improvement of occupants’ comfort in urban areas during outdoor events. Build. Environ. 2015, 93, 285–292. [Google Scholar] [CrossRef]
- Nastasi, B. Planning of rural-urban continuum towards a sustainable relationship between agricultural and energy production. In Agricultural Development within the Rural-Urban Continuum; Print & Mail (PRIMA): Hamburg, Germany, 2013. [Google Scholar]
- Nastasi, B.; Di Matteo, U. Innovative use of Hydrogen in energy retrofitting of listed buildings. Energy Procedia 2016, in press. [Google Scholar]
- Pöschl, M.; Ward, S.; Owende, P. Evaluation of energy efficiency of various biogas production and utilization pathways. Appl. Energy 2010, 87, 3305–3321. [Google Scholar] [CrossRef]
- Astiaso Garcia, D.; Barbanera, F.; Cumo, F.; Di Matteo, U.; Nastasi, B. Expert Opinion Analysis on Renewable Hydrogen Storage Systems Potential in Europe. Energies 2016, 9, 963. [Google Scholar] [CrossRef]
Substrate from Waste | Oxidation State | % Methane | % Carbon Dioxide |
---|---|---|---|
Paper | −0.049 | 51.0 | 49.0 |
Yard | −0.089 | 51.5 | 48.5 |
Wood | −0.138 | 52.1 | 47.9 |
Food | −0.548 | 57.1 | 42.9 |
Household Waste | C/N Ratio |
---|---|
Kitchen waste | 25–29 |
Fruits and vegetable waste | 7–35 |
Food waste | 3–17 |
Substrate from Waste | % vol. CH4 (m3/kmol) | % vol. CO2 (m3/kmol) | % Mass CH4 (kg/kmol) | % Mass CO2 (kg/kmol) |
---|---|---|---|---|
Paper | 34.78 | 59.22 | 22.02 | 103.10 |
Yard | 30.45 | 56.55 | 19.28 | 98.45 |
Wood | 34.79 | 64.61 | 22.02 | 112.48 |
Food | 46.2 | 37.8 | 29.25 | 65.81 |
Substrate | Collection Mode | q (m3/t) | References |
---|---|---|---|
M1 | Mechanically Sorted | 119.0 | [29] |
M2 | Mechanically Sorted | 123.0 | [25] |
M3 | Mechanically Sorted | 126.7 | [30] |
M4 | Mechanically Sorted | 128.0 | [24] |
M5 | Mechanically Sorted | 140.0 | [26] |
M6 | Hand Sorted | 239.2 | [31] |
M7 | Mechanically Sorted | 242.6 | [32] |
M8 | Separated Sorted | 396.8 | [30] |
M9 | Source Sorted | 474.8 | [30] |
M10 | Source Sorted | 556.4 | [33] |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Matteo, U.; Nastasi, B.; Albo, A.; Astiaso Garcia, D. Energy Contribution of OFMSW (Organic Fraction of Municipal Solid Waste) to Energy-Environmental Sustainability in Urban Areas at Small Scale. Energies 2017, 10, 229. https://doi.org/10.3390/en10020229
Di Matteo U, Nastasi B, Albo A, Astiaso Garcia D. Energy Contribution of OFMSW (Organic Fraction of Municipal Solid Waste) to Energy-Environmental Sustainability in Urban Areas at Small Scale. Energies. 2017; 10(2):229. https://doi.org/10.3390/en10020229
Chicago/Turabian StyleDi Matteo, Umberto, Benedetto Nastasi, Angelo Albo, and Davide Astiaso Garcia. 2017. "Energy Contribution of OFMSW (Organic Fraction of Municipal Solid Waste) to Energy-Environmental Sustainability in Urban Areas at Small Scale" Energies 10, no. 2: 229. https://doi.org/10.3390/en10020229
APA StyleDi Matteo, U., Nastasi, B., Albo, A., & Astiaso Garcia, D. (2017). Energy Contribution of OFMSW (Organic Fraction of Municipal Solid Waste) to Energy-Environmental Sustainability in Urban Areas at Small Scale. Energies, 10(2), 229. https://doi.org/10.3390/en10020229