Doping-Induced Isotopic Mg11B2 Bulk Superconductor for Fusion Application
Abstract
:1. Introduction
2. Experimental Details
3. Results and Discussion
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Disclaimer
References
- Mitchell, N.; Bessette, D.; Gallix, R.; Jong, C.; Knaster, J.; Libeyre, P.; Sborchia, C.; Simon, F. The ITER Magnet System. IEEE Trans. Appl. Supercond. 2008, 18, 435–440. [Google Scholar] [CrossRef]
- Salpietro, E. Status of the ITER magnets. Supercond. Sci. Technol. 2006, 19, S84. [Google Scholar] [CrossRef]
- Devred, A.; Backbier, I.; Bessette, D.; Bevillard, G.; Gardner, M.; Jong, C.; Lillaz, F.; Mitchell, N.; Romano, G.; Vostner, A. Challenges and status of ITER conductor production. Supercond. Sci. Technol. 2014, 27, 044001. [Google Scholar] [CrossRef]
- Noda, T.; Takeuchi, T.; Fujita, M. Induced activity of several candidate superconductor materials in a tokamak-type fusion reactor. J. Nucl. Mater. 2004, 329–333, 1590–1593. [Google Scholar] [CrossRef]
- Noda, T.; Maki, K.; Takeuchi, T.; Suzuki, H.; Araki, H.; Yang, W. Induced activity and damage of superconducting materials for a fusion reactor. Fusion Eng. Des. 2006, 81, 1033–1037. [Google Scholar] [CrossRef]
- Nagamatsu, J.; Nakagawa, N.; Muranak, T.; Zenitani, Y.; Akimitsu, J. Superconductivity at 39K in magnesium diboride. Nature 2001, 410, 63–64. [Google Scholar] [CrossRef] [PubMed]
- Finnemore, D.K.; Ostenson, J.E.; Bud’ko, S.L.; Lapertot, G.; Canfield, P.C. Thermodynamic and transport properties of superconducting (MgB2)-B-10. Phys. Rev. Lett. 2001, 86, 2420. [Google Scholar] [CrossRef] [PubMed]
- Hossain, M.S.A.; Senatore, C.; Flukiger, R.; Rindfleisch, M.A.; Tomsic, M.J.; Kim, J.H.; Dou, S.X. The enhancement of Jc and Birr of in-situ MgB2 wires and tapes alloyed with C4H6O5 (malic acid) after cold high pressure densification. Supercond. Sci. Technol. 2009, 22, 095004. [Google Scholar] [CrossRef]
- De Silva, K.S.B.; Xu, X.; Gambir, S.; Wong, D.C.; Li, W.; Hu, Q.Y. Effect of sintering temperature on the superconducting properties of graphene doped MgB2. IEEE Trans. Appl. Supercond. 2013, 23, 7100604. [Google Scholar] [CrossRef]
- Ye, S.J.; Matsumoto, A.; Zhang, Y.C.; Kumakura, H. Strong enhancement of high-field critical current properties and irreversibility field of MgB2 superconducting wires by coronene active carbon source addition via the new B powder carbon-coating method. Supercond. Sci. Technol. 2014, 27, 085012. [Google Scholar] [CrossRef]
- Hossain, M.S.A.; Kim, J.H.; Wang, X.L.; Xu, X.; Peleckis, G.; Dou, S.X. Enhancement of flux pinning in a MgB2 superconductor doped with tartaric acid. Supercond. Sci. Technol. 2007, 20, 112. [Google Scholar]
- Cai, Q.; Ma, Z.; Liu, Y.; Yu, L. Enhancement of critical current density in glycine-doped MgB2 bulks. Mater. Chem. Phys. 2012, 136, 778. [Google Scholar] [CrossRef]
- Cai, Q.; Liu, Y.; Ma, Z.; Yu, L. Significant enhancement of critical current density in Gly-doped MgB2 bulk by tailoring the formation of MgO. Scr. Mater. 2012, 67, 92. [Google Scholar] [CrossRef]
- Vignolo, M.; Bovone, G.; Matera, D.; Nardelli, D.; Bernini, C.; Siri, A.S. Nano-sized boron synthesis process towards the large scale production. Chem. Eng. J. 2014, 256, 32. [Google Scholar] [CrossRef]
- Bovone, G.; Matera, D.; Bernini, C.; Magi, E.; Vignolo, M. Manufacturing process influence on superconducting properties of MgB2 wires prepared using laboratory made boron. Supercond. Sci. Technol. 2015, 28, 065006. [Google Scholar] [CrossRef]
- Barua, S.; Hossain, A.; Shahriar, M.; Ma, Z. Superior critical current density obtained in MgB2 bulks through low-cost carbon-encapsulated boron powder. Scr. Mater. 2015, 104, 37. [Google Scholar] [CrossRef]
- Liu, Y.; Lan, F.; Ma, Z.; Chen, N.; Li, H.; Barua, S.; Patel, D.; Shahriar, M.; Hossain, A.; Acar, S. Significantly enhanced critical current density in nano- MgB2 grains rapidly formed at low temperature with homogeneous carbon doping. Supercond. Sci. Technol. 2015, 28, 55005. [Google Scholar] [CrossRef]
- Bud’ko, S.L.; Lapertot, G.; Petrovic, C.; Cunningham, C.E.; Anderson, N.; Canfield, P.C. Boron isotope effect in superconducting MgB2. Phys. Rev. Lett. 2001, 86, 1877. [Google Scholar] [CrossRef] [PubMed]
- Hinks, D.; Claus, H.; Jorgensen, J. The complex nature of superconductivity in MgB2 as revealed by the reduced total isotope effect. Nature 2001, 411, 457. [Google Scholar] [CrossRef] [PubMed]
- Simonelli, L.; Palmisano, V.; Fratini, M.; Filippi, M.; Parisiad es, P.; Lampakis, D.; Liarokapis, E.; Bianconi, A. Isotope effect on the E-2g phonon and mesoscopic phase seperation near the electronic topological transition in Mg1−xAlxB2. Phys. Rev. B 2009, 80, 014520. [Google Scholar] [CrossRef]
- Alarco, J.A.; Talbot, P.C.; Mackinnon, I.D. Coherent phonon decay and the boron isotope effect for MgB2. Phys. Chem. Chem. Phys. 2014, 16, 25386. [Google Scholar] [CrossRef] [PubMed]
- Hishinuma, Y.; Kikuchi, A.; Shimada, Y.; Kashiwai, T.; Hata, S.; Yamada, S.; Muroga, T.; Sagara, A. Development of MgB2 superconducting wires for the low activation superconducting magnet system operated around core D-T plasma. Fusion Eng. Des. 2015, 98–99, 1076. [Google Scholar] [CrossRef]
- Mooring, F.P.; Monahan, J.E.; Huddleston, C.M. Neutron cross sections of boron isotopes for energies between 10 and 100 KeV. Nucl. Phys. 1966, 82, 16–32. [Google Scholar] [CrossRef]
- Bean, C.P. Magnetization of hard superconductors. Phys. Rev. Lett. 1962, 8, 250. [Google Scholar] [CrossRef]
- Kortus, J.; Dolgov, O.V.; Kremer, R.K.; Golubov, A.A. Band filling and interband scattering effects in MgB2: Carbon versus aluminium doping. Phys. Rev. Lett. 2005, 94, 027002. [Google Scholar] [CrossRef] [PubMed]
- Knigavko, A.; Marsiglio, F. Constraints from Tc and the isotope effect in MgB2. Phys. Rev. B 2001, 64, 172513. [Google Scholar] [CrossRef]
- Ma, Z.Q.; Liu, Y.C.; Gao, Z.M. The synthesis and grain connectivity of lamellar MgB2 grains by Cu-activated sintering at low temperature. Scr. Mater. 2010, 63, 399–402. [Google Scholar] [CrossRef]
- Cheng, F.; Liu, Y.; Ma, Z.; Li, H.; Hossain, M.S.A. Superior Critical current density obtained in Mg11B2 low activation superconductor by using reactive amorphous 11B and optimizing sintering temperature. J. Alloys Compd. 2015, 650, 508. [Google Scholar] [CrossRef]
- Wu, F.; Cai, Q. Comparison of critical current density in undoped, glycine doped and Cu-and-glycine- co-doped MgB2 synthesized from nm-Boron and µm-Boron. J. Supercond. Nov. Magn. 2014, 27, 2023–2027. [Google Scholar] [CrossRef]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cai, Q.; Guo, Q.; Liu, Y.; Ma, Z.; Li, H.; Qiu, W.; Patel, D.; Jie, H.; Kim, J.H.; Somer, M.; et al. Doping-Induced Isotopic Mg11B2 Bulk Superconductor for Fusion Application. Energies 2017, 10, 409. https://doi.org/10.3390/en10030409
Cai Q, Guo Q, Liu Y, Ma Z, Li H, Qiu W, Patel D, Jie H, Kim JH, Somer M, et al. Doping-Induced Isotopic Mg11B2 Bulk Superconductor for Fusion Application. Energies. 2017; 10(3):409. https://doi.org/10.3390/en10030409
Chicago/Turabian StyleCai, Qi, Qianying Guo, Yongchang Liu, Zongqing Ma, Huijun Li, Wenbin Qiu, Dipak Patel, Hyunseock Jie, Jung Ho Kim, Mehmet Somer, and et al. 2017. "Doping-Induced Isotopic Mg11B2 Bulk Superconductor for Fusion Application" Energies 10, no. 3: 409. https://doi.org/10.3390/en10030409
APA StyleCai, Q., Guo, Q., Liu, Y., Ma, Z., Li, H., Qiu, W., Patel, D., Jie, H., Kim, J. H., Somer, M., Yanmaz, E., Devred, A., Luzin, V., Fatehmulla, A., Farooq, W. A., Gajda, D., Bando, Y., Yamauchi, Y., Pradhan, S., & Hossain, M. S. A. (2017). Doping-Induced Isotopic Mg11B2 Bulk Superconductor for Fusion Application. Energies, 10(3), 409. https://doi.org/10.3390/en10030409