Exergoeconomic Performance Comparison and Optimization of Single-Stage Absorption Heat Transformers
Abstract
:1. Introduction
2. Descriptions of Systems
- The following assumptions are made for simplification: The refrigerant (water) is saturated at the exits of the condenser and evaporator.
- The lithium bromide solutions in the generator and absorber are in equilibrium at their respective pressures and temperatures.
- The strong and weak solutions leaving the generator and the absorber, respectively, are saturated.
- Pressure losses in the pipelines and all the system components, except the expansion valves, are neglected.
- The temperature difference between the absorber and produced hot water is 5 °C.
- The enthalpy through the throttling valve is kept constant.
- The pressure and temperature of the reference environment for the analyses is 1 atm and 25 °C, respectively.
3. Thermodynamic Analysis
- Conservation of mass:
- Conservation of energy:
4. Thermoeconomic Analysis
5. Multi-Objective Optimization
6. Validation
6.1. Thermodynamic Validation
6.2. Thermoeconomic Validation
7. Results and Discussion
7.1. Thermodynamic Evaluation
7.2. Thermoeconomic Evaluation
7.3. Optimization Results
8. Conclusions
- In general, an increase in the absorber and/or the condenser temperature results in a decrease in the COP for all the studied configurations.
- An increase in evaporator temperature enhances the COP for all studied configurations.
- The highest values of ECOP and COP are achieved for configuration 3 and the second highest are obtained for configuration 2.
- From an economic viewpoint, the product unit cost for configuration 2 is lower than the corresponding values for the other configurations.
- For a condenser temperature of 30 °C, the lowest product unit cost is obtained with configuration 2 at an evaporator temperature of around 82 °C and an absorber temperature of 110 °C.
- As the absorber temperature increases, the exergoeconomic factor for configuration 1 remains constant up to TAbs = 123 °C and then decreases slightly. In addition, the exergoeconomic factor and the capital cost for configurations 2 and 3 increase as the absorber temperature rises. These parameters are maximum for configuration 3 and minimum for configuration 1.
- An increase in condenser temperature leads to a rise in the product unit cost for all the configurations.The optimal design point for configuration 2 has higher ECOP and lower cp values compared to the corresponding values for configuration 1 while the optimal design point for configuration 3 has higher ECOP and cp values compared to the corresponding values for the other configurations.
Nomenclature
A | heat transfer surface area (m2) |
a | activity coefficient |
AHT | absorption heat transformer |
AHP | absorption heat pump |
c | cost per unit exergy ($/GJ and $/kg) |
cost rate ($/hr) | |
CRF | capital recovery factor |
e | specific exergy (kJ/kg) |
Eco | economizer |
x | exergy flow rate (kW) |
f | thermoeconomic factor |
GA | generator assembly |
h | specific enthalpy (kJ/kg) |
HX | heat exchanger |
i | interest rate (%) |
mass flow rate (kg/s) | |
M | molecular weight (kg/kmol) |
N | system life (year) |
PEC | purchased-equipment cost ($) |
heat transfer rate (kW) | |
r | relative cost difference(%) |
universal gas constant (kJ/kmol·K) | |
RD | relative difference (%) |
RHX | refrigerant heat exchanger |
RP | refrigerant pump |
s | specific entropy (kJ/kg·K) |
SSHT | single stage heat transformer |
SP | solution pump |
T | temperature (K) |
TCI | total capital investment ($) |
work rate (kW) | |
X | concentration |
Y | exergy destruction (or loss) ratio |
investment cost rate of system components ($/h) | |
Greek Letters | |
β | coefficient for the fixed operating and maintenance costs |
γ | maintenance factor |
ε | exergy efficiency (%) |
η | isentropic efficiency |
τ | number of system operating hours (h) |
Superscripts | |
Ch | chemical |
CI | capital investment |
Ph | physical |
OM | operation and maintenance |
Subscripts | |
Abs | absorber |
Con | condenser |
D | exergy destruction |
dis | dissolution |
e | outlet |
Eva | evaporator |
F | fuel |
Gen | generator |
i | inlet |
k | kth component of the system |
L | exergy loss |
m | motor |
o | environment |
OPT | optimum |
p | product |
P | pump |
Q | related to heat transfer |
R | reference |
W | related to work |
0 | standard state |
Appendix A
Heat Exchanger Sizing
References
- Horuz, I.; Kurt, B. Absorption heat transformers and an industrial application. Renew. Energy 2010, 35, 2175–2181. [Google Scholar] [CrossRef]
- Sozen, A.; Yucesu, H.S. Performance improvement of absorption heat transformer. Renew. Energy 2007, 32, 267–284. [Google Scholar] [CrossRef]
- Rivera, W.; Cerezo, J. Experimental study of the use of additives in the performance of a single-stage heat transformer operating with water-lithium bromide. Int. J. Energy Res. 2005, 29, 121–130. [Google Scholar] [CrossRef]
- Soltani, S.; Mahmoudi, S.M.S.; Yari, M.; Rosen, M.A. Thermodynamic analyses of a biomass integrated fired combined cycle. Appl. Therm. Eng. 2013, 59, 60–68. [Google Scholar] [CrossRef]
- Soroureddin, A.; Mehr, A.S.; Mahmoudi, S.M.S.; Yari, M. Thermodynamic analysis of employing ejector and organic Rankine cycles for GT-MHR waste heat utilization: A comparative study. Energy Convers. Manag. 2013, 67, 125–137. [Google Scholar] [CrossRef]
- Mehr, A.S.; Yari, M.; Mahmoudi, S.M.S.; Soroureddin, A. A comparative study on the GAX based absorption refrigeration systems: SGAX, GAXH and GAX-E. Appl. Therm. Eng. 2012, 44, 29–38. [Google Scholar] [CrossRef]
- Koroneos, C.; Roumbas, G. Geothermal waters heat integration for the desalination of sea water. Desalination Water Treat. 2012, 37, 69–76. [Google Scholar] [CrossRef]
- Joo, H.J.; Kwak, H.Y. Performance evaluation of multi-effect distiller for optimized solar thermal desalination. Appl. Therm. Eng. 2013, 61, 491–499. [Google Scholar] [CrossRef]
- Garcia-Rodriguez, L.; Gomez-Camacho, C. Preliminary design and cost analysis of a solar distillation system. Desalination 1999, 126, 109–114. [Google Scholar] [CrossRef]
- Siqueiros, J.; Romero, R.J. Increase of COP for heat transformer in water purification systems. Part I Increasing heat source temperature. Appl. Therm. Eng. 2007, 27, 1043–1053. [Google Scholar] [CrossRef]
- Romero, R.J.; Siqueiros, J.; Huicochea, A. Increase of COP for heat transformer in water purification systems. Part II without increasing heat source temperature. Appl. Therm. Eng. 2007, 27, 1054–1061. [Google Scholar] [CrossRef]
- Bourouis, A.; Coronas, A.; Romero, R.J.; Siqueiros, J. Purification of seawater using absorption heat transformers with water-(LiBr + LiI + LNO3 + LiCl) and low temperature heat sources. Desalination 2004, 166, 209–214. [Google Scholar] [CrossRef]
- Demesa, D.; Hernandez, J.A.; Siqueiros, J.; Garcia, J.C.; Huicochea, A. Improvement of the performance of an absorption heat transformer through a single effect process to obtain freshwater. Appl. Therm. Eng. 2015, 78, 162–171. [Google Scholar] [CrossRef]
- Romero, R.J.; Rodríguez-Martínez, A. Optimal water purification using low-grade waste heat in an absorption heat transformer. Desalination 2008, 220, 506–513. [Google Scholar] [CrossRef]
- Horuz, I.; Kurem, E. A comparison between ammonia-water and water-lithium bromide solutions in absorption heat transformers. Int. Commun. Heat Mass Transf. 2001, 28, 427–438. [Google Scholar]
- Ibarra-Bahena, J.; Romero, R.; Velazquez-Avelar, L.; Valdez-Morales, C.; Galindo-Luna, Y. Evaluation of the thermodynamic effectiveness of a plate heat exchanger integrated into an experimental single stage heat transformer operating with water/Carrol mixture. Exp. Therm. Fluid Sci. 2013, 51, 257–263. [Google Scholar]
- Sözen, A. Effect of irreversibilities on performance of an absorption heat transformer used to increase solar pond’s temperature. Renew. Energy 2004, 29, 501–515. [Google Scholar] [CrossRef]
- Rivera, W.; Siqueiros, J.; Martínez, H.; Huicochea, A. Exergy analysis of a heat transformer for water purification increasing heat source temperature. Appl. Therm. Eng. 2010, 30, 2088–2095. [Google Scholar] [CrossRef]
- Ishida, M.; Ji, J. Graphical exergy study on single stage absorption heat transformer. Appl. Therm. Eng. 1999, 19, 1191–1206. [Google Scholar] [CrossRef]
- Rivera, W.; Huicochea, A.; Martínez, H.; Siqueiros, J.; Juárez, D.; Cadenas, E. Exergy analysis of an experimental heat transformer for water purification. Energy 2011, 36, 320–327. [Google Scholar] [CrossRef]
- Gomri, R. Energy and exergy analyses of seawater desalination system integrated in a solar heat transformer. Desalination 2009, 249, 188–196. [Google Scholar] [CrossRef]
- Gomri, R. Thermal seawater desalination: Possibilities of using single effect and double effect absorption heat transformer systems. Desalination 2010, 253, 112–118. [Google Scholar] [CrossRef]
- Misra, R.D.; Sahoo, P.K.; Sahoo, S.; Gupta, A. Thermoeconomic optimization of a single effect water/LiBr vapour absorption refrigeration system. Int. J. Refrig. 2003, 26, 158–169. [Google Scholar] [CrossRef]
- Bejan, A.; Tsatsaronis, G.; Moran, M. Thermal Design and Optimization; John Wiley and Sons: New York, NY, USA, 1996. [Google Scholar]
- Szargut, J.; Morris, D.R.; Steward, F.R. Exergy Analysis of Thermal, Chemical and Metallurgical Processes; Hemisphere Publishing Corporation: New York, NY, USA, 1988. [Google Scholar]
- Palacios-Bereche, R.; Gonzales, R.; Nebra, S.A. Exergy calculation of lithium bromide-water solution and its application in the exergetic evaluation of absorption refrigeration systems LiBr-H2O. Int. J. Energy Res. 2012, 36, 166–181. [Google Scholar] [CrossRef]
- Sadeghi, M.; Chitsaz, A.; Mahmoudi, S.M.S.; Rosen, M.A. Thermoeconomic optimization using an evolutionary algorithm of a trigeneration system driven by a solid oxide fuel cell. Energy 2015, 89, 191–204. [Google Scholar] [CrossRef]
- Lazzaretto, A.; Tsatsaronis, G. SPECO: A systematic and general methodology for calculating efficiencies and costs in thermal systems. Energy 2006, 31, 1257–1289. [Google Scholar] [CrossRef]
- Zare, V.; Mahmoudi, S.M.S.; Yari, M.; Amidpour, M. Thermoeconomic analysis and optimization of an ammonia–water power/cooling cogeneration cycle. Energy 2012, 47, 271–283. [Google Scholar] [CrossRef]
- Vieira, L.S.; Donatelli, J.L.; Cruz, M.E. Mathematical exergoeconomic optimization of a complex cogeneration plant aided by a professional process simulator. Appl. Therm. Eng. 2006, 26, 654–662. [Google Scholar] [CrossRef]
- Holland, J.H. Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence; University of Michigan Press: Ann Arbor, MI, USA, 1975. [Google Scholar]
- Konak, A.; Coit, D.W.; Smith, A.E. Multi-objective optimization using genetic algorithms: A tutorial. Reliab. Eng. Syst. Saf. 2006, 91, 992–1007. [Google Scholar] [CrossRef]
- Zhang, X.D.; Hu, D.P. Performance analysis of the single-stage absorption heat transformer using a new working pair composed of ionic liquid and water. Appl. Therm. Eng. 2012, 37, 129–135. [Google Scholar] [CrossRef]
- Eisa, M.A.R.; Best, R.; Holland, F.A. Thermodynamic design data for absorption heat transformers—Part I. Operating on water–lithium bromide. Heat Recov. Syst. 1986, 6, 421–432. [Google Scholar] [CrossRef]
- Mostofizadeh, C.; Kulick, C. Use of a new type of heat transformer in process industry. Appl. Therm. Eng. 1998, 18, 857–874. [Google Scholar] [CrossRef]
- Parham, K.; Yari, M.; Atikol, U. Alternative absorption heat transformer configurations integrated with water desalination system. Desalination 2013, 328, 74–82. [Google Scholar] [CrossRef]
- Zhao, Z.; Zhang, X.; Ma, X. Thermodynamic performance of a double-effect absorption heat-transformer using TFE/E181 as the working fluid. Appl. Energy 2005, 82, 107–116. [Google Scholar] [CrossRef]
- Rivera, W.; Cardoso, M.J.; Romero, R.J. Single-stage and advanced absorption heat transformers operating with lithium bromide mixtures used to increase solar pond’s temperature. Sol. Energy Mater. Sol. Cells 2001, 70, 321–333. [Google Scholar] [CrossRef]
- Rivera, W.; Cerezo, J.; Rivero, R.; Cervantes, J.; Best, R. Single stage and double absorption heat transformers used to recover energy in a distillation column of butane and pentane. Int. J. Energy Res. 2003, 27, 1279–1292. [Google Scholar] [CrossRef]
- Ahmadi, P.; Rosen, M.A.; Dincer, I. Multi-objective exergy-based optimization of a polygeneration energy system using an evolutionary algorithm. Energy 2012, 46, 21–31. [Google Scholar] [CrossRef]
- Lavine, A.S.; Incropera, F.P.; DeWitt, D.P. Fundamentals of Heat and Mass Transfer, 7th ed.; John Wiley & Sons: New York, NY, USA, 2011. [Google Scholar]
- Patnaik, V.; Perez-Blanco, H.; Ryan, W.A. A simple analytical model for the design of vertical tube absorbers. ASHRAE Trans. 1993, 99, 69–80. [Google Scholar]
Component | Configuration | Fuel Exergy Rate | Configuration | Product Exergy Rate | Configuration | Exergy Loss Rate |
---|---|---|---|---|---|---|
Absorber | 1 | 1 | 1 | - | ||
2 | 2 | 2 | - | |||
3 | 3 | 3 | - | |||
Generator Assembly | 1 | 1 | 1 | |||
2 | 2 | 2 | ||||
3 | 3 | 3 | ||||
Evaporator | 1 | 1 | 1 | - | ||
2 | 2 | 2 | - | |||
3 | 3 | 3 | - | |||
Economizer | 1 | - | 1 | - | 1 | - |
2 | 2 | 2 | - | |||
3 | 3 | 3 | - | |||
RHX | 1 | - | 1 | - | 1 | - |
2 | - | 2 | - | 2 | - | |
3 | 3 | 3 | - | |||
Refrigerant Pump | 1 | 1 | 1 | - | ||
2 | 2 | 2 | - | |||
3 | 3 | 3 | - | |||
Solution Pump | 1 | 1 | 1 | - | ||
2 | 2 | 2 | - | |||
3 | 3 | 3 | - | |||
Overall System | 1 | 1 | 1 | |||
2 | 2 | 2 | ||||
3 | 3 | 3 |
Component | Original Cost ($) |
---|---|
Absorber (AR = 100 m2) | 16,500 |
Condenser (AR = 100 m2) | 8000 |
Economizer (AR = 100 m2) | 12,000 |
Evaporator (AR = 100 m2) | 16,000 |
Generator (AR = 100 m2) | 17,500 |
RHX (AR = 100 m2) | 12,000 |
Pump ( = 10 kW) | 2100 |
Motor ( = 10 kW) | 500 |
Expansion Valve | 300 |
Component | Main Cost Balances | Auxiliary Relation |
---|---|---|
Absorber | ||
Generator | ||
Condenser | ||
Evaporator | ||
Economizer | ||
Refrigerant Pump | - | |
Refrigerant Heat Exchanger | ||
Solution Pump | - | |
Expansion Valve | - |
Parameters | Value |
---|---|
Condenser Temperature | 26–40 °C [33,34,35] |
Evaporator Temperature | 75–88 °C [33,34,35,36,37,38] |
Absorber Temperature | 105–135 °C [34,35,36,37] |
Heat Source Temperature | 90 0.5 °C [1] |
Refrigerant Mass Flow Rate | 0.005 kg/s [13] |
ε | 80% [21,22] |
TGen = TEva | All configurations [1,21] |
Population Size | 500 |
Maximum Number of Generations | 600 |
Probability of Crossover | 85% |
Probability of Mutation | 1% |
Selection Process | Tournament |
Tournament Size | 2 |
State Point | Temperature (°C) | Pressure (kPa) | Total Exergy Rate (kW) | Cost Rate, C ($/h) | Cost Per Unit Exergy, c ($/GJ) | |||
---|---|---|---|---|---|---|---|---|
Misra et al. [23] | Validation Result | Misra et al. [23] | Validation Result | Misra et al. [23] | Validation Result | |||
1 | 80 | 5.95 | 4.29 | 4.29 | 0.39 | 0.38 | 25.44 | 24.62 |
2 | 36 | 5.95 | 0.15 | 0.14 | 0.01 | 0.013 | 25.44 | 24.62 |
3 | 5 | 0.87 | −0.17 | −0.17 | −0.02 | −0.02 | 25.44 | 24.62 |
4 | 5 | 0.87 | −7.35 | −7.33 | −0.67 | −0.65 | 25.44 | 24.62 |
5 | 34 | 0.87 | 20.04 | 20.03 | 1.90 | 1.84 | 26.31 | 25.52 |
6 | 34 | 5.95 | 20.05 | 20.02 | 1.90 | 1.85 | 26.43 | 25.72 |
7 | 58.35 | 5.95 | 22.72 | 22.68 | 2.29 | 2.24 | 28.00 | 27.44 |
8 | 80 | 5.95 | 38.64 | 38.63 | 3.64 | 3.55 | 26.13 | 25.51 |
9 | 52.09 | 5.95 | 35.14 | 35.12 | 3.31 | 3.23 | 26.13 | 25.51 |
10 | 53.60 | 0.87 | 35.14 | 35.12 | 3.31 | 3.23 | 26.13 | 25.51 |
Component | Configuration | YL (%) | YD (%) | ε (%) | ||||
---|---|---|---|---|---|---|---|---|
Absorber | 1 | 2.88 | 1.82 | 0.00 | 1.06 | 0.00 | 25.36 | 63.19 |
2 | 3.03 | 1.96 | 0.00 | 1.07 | 0.00 | 24.73 | 64.69 | |
3 | 3.03 | 1.96 | 0.00 | 1.07 | 0.00 | 25.23 | 64.69 | |
Evaporator | 1 | 2.23 | 1.89 | 0.00 | 0.34 | 0.00 | 8.14 | 84.75 |
2 | 2.23 | 1.89 | 0.00 | 0.34 | 0.00 | 7.87 | 84.75 | |
3 | 2.15 | 1.87 | 0.00 | 0.28 | 0.00 | 6.33 | 86.98 | |
Economizer | 1 | - | - | - | - | - | - | - |
2 | 0.18 | 0.14 | 0.00 | 0.04 | 0.00 | 0.93 | 77.77 | |
3 | 0.18 | 0.14 | 0.00 | 0.04 | 0.00 | 0.90 | 77.77 | |
Generator Assembly | 1 | 1.95 | 0.99 | 0.01 | 0.70 | 0.95 | 22.73 | 50.77 |
2 | 2.09 | 1.17 | 0.01 | 0.91 | 0.23 | 21.06 | 55.98 | |
3 | 2.09 | 1.22 | 0.01 | 0.87 | 0.24 | 20.52 | 58.37 | |
RHX | 1 | - | - | - | - | - | - | - |
2 | - | - | - | - | - | - | - | |
3 | 0.04 | 0.02 | 0.00 | 0.02 | 0.00 | 0.45 | 50.00 | |
Overall System | 1 | 4.18 | 1.82 | 0.01 | 2.35 | 0.24 | 56.16 | 43.54 |
2 | 4.32 | 1.96 | 0.01 | 2.36 | 0.23 | 54.63 | 45.37 | |
3 | 4.24 | 1.96 | 0.01 | 2.27 | 0.24 | 51.36 | 46.23 |
Component | Configuration | YL (%) | YD (%) | ε (%) | ||||
---|---|---|---|---|---|---|---|---|
Absorber | 1 | 1.95 | 1.04 | 0.00 | 0.91 | 0.00 | 28.00 | 53.33 |
2 | 2.90 | 1.92 | 0.00 | 0.98 | 0.00 | 23.84 | 66.21 | |
3 | 2.90 | 1.92 | 0.00 | 0.98 | 0.00 | 22.58 | 66.21 | |
Evaporator | 1 | 2.23 | 1.89 | 0.00 | 0.34 | 0.00 | 10.46 | 84.75 |
2 | 2.23 | 1.89 | 0.00 | 0.34 | 0.00 | 8.27 | 84.75 | |
3 | 2.15 | 1.87 | 0.00 | 0.28 | 0.00 | 6.95 | 86.98 | |
Economizer | 1 | - | - | - | - | - | - | - |
2 | 1.14 | 0.94 | 0.00 | 0.20 | 0.00 | 4.87 | 82.46 | |
3 | 1.14 | 0.94 | 0.00 | 0.20 | 0.00 | 4.96 | 82.46 | |
Generator Assembly | 1 | 1.02 | 0.06 | 0.01 | 0.95 | 0.31 | 29.23 | 5.88 |
2 | 1.88 | 1.20 | 0.01 | 0.67 | 0.24 | 16.30 | 63.83 | |
3 | 1.88 | 1.24 | 0.01 | 0.63 | 0.25 | 15.63 | 65.96 | |
RHX | 1 | - | - | - | - | - | - | - |
2 | - | - | - | - | - | - | - | |
3 | 0.04 | 0.02 | 0.00 | 0.02 | 0.00 | 0.50 | 50.00 | |
Overall System | 1 | 3.25 | 1.04 | 0.01 | 2.20 | 0.31 | 67.69 | 32.00 |
2 | 4.11 | 1.92 | 0.01 | 2.18 | 0.24 | 53.04 | 46.72 | |
3 | 4.03 | 1.92 | 0.01 | 2.10 | 0.25 | 52.11 | 47.64 |
Stream | Temperature (°C) | Pressure (kPa) | Mass Flow Rate (kg/s) | LiBr Concentration (%) | Total Exergy (kW) | Exergoeconomic | |
---|---|---|---|---|---|---|---|
Cost Rate, C ($/h) | Cost Per Unit Exergy, c ($/GJ) | ||||||
1 | 75 | 4.25 | 0.005 | - | 0.2485 | 0.2696 | 301.3 |
2 | 30 | 4.25 | 0.005 | - | 0.0129 | 0.0140 | 301.3 |
3 | 30 | 38.56 | 0.005 | - | 0.0131 | 0.0215 | 457.9 |
4 | 75 | 38.56 | 0.005 | - | 1.758 | 1.625 | 256.8 |
5 | 120 | 38.56 | 0.0947 | 57.46 | 6.249 | 6.736 | 299.4 |
5′ | 91.26 | 38.56 | 0.0947 | 57.46 | 5.029 | 5.421 | 299.4 |
6 | 70.10 | 4.25 | 0.0947 | 57.46 | 5.009 | 5.399 | 299.4 |
7 | 75 | 4.25 | 0.0897 | 60.66 | 6.12 | 6.452 | 292.9 |
8′ | 75 | 38.56 | 0.0897 | 60.66 | 6.123 | 6.466 | 293.5 |
8 | 107.30 | 38.56 | 0.0897 | 60.66 | 7.147 | 7.973 | 309.9 |
9 | 90 | 101.3 | 0.4981 | - | 12.93 | 8.965 | 192.5 |
10 | 85 | 101.3 | 0.4981 | - | 11.12 | 7.708 | 192.5 |
11 | 90 | 101.3 | 0.5971 | - | 15.51 | 10.75 | 192.5 |
12 | 85 | 101.3 | 0.5971 | - | 13.33 | 9.242 | 192.5 |
13 | 25 | 101.3 | 1.002 | - | 0 | 0 | 0 |
14 | 28 | 101.3 | 1.002 | - | 0.0628 | 0.3282 | 1451 |
15 | 90 | 169.0 | 0.0989 | - | 2.574 | 1.7838 | 192.5 |
16 | 115 | 169.0 | 0.0989 | - | 4.724 | 4.741 | 382 |
Component | Configuration | Cost Per Unit Exergy | Cost Rate | Capital Cost Rate, ($/h) | Exergy Destruction Cost Rate + Exergy Loss Cost Rate + Capital Cost Rate, | f (%) | r (%) | ||
---|---|---|---|---|---|---|---|---|---|
Fuel, cF ($/GJ) | Product cP ($/GJ) | Exergy Destruction, ($/h) | Exergy Loss, ($/h) | ||||||
Absorber | 1 | 258.90 | 423.80 | 0.99 | 0.00 | 0.09 | 1.08 | 8.33 | 63.69 |
2 | 266.30 | 422.30 | 1.03 | 0.00 | 0.07 | 1.10 | 6.36 | 58.58 | |
3 | 269.90 | 428.00 | 1.04 | 0.00 | 0.07 | 1.11 | 6.67 | 58.58 | |
Evaporator | 1 | 192.50 | 242.20 | 0.24 | 0.00 | 0.09 | 0.33 | 27.27 | 25.82 |
2 | 192.50 | 242.30 | 0.24 | 0.00 | 0.09 | 0.33 | 27.27 | 25.87 | |
3 | 192.50 | 248.60 | 0.19 | 0.00 | 0.09 | 0.28 | 32.14 | 29.14 | |
Economizer | 1 | - | - | - | - | - | - | - | - |
2 | 266.30 | 286.00 | 0.04 | 0.00 | 0.05 | 0.09 | 55.55 | 7.40 | |
3 | 269.90 | 287.50 | 0.04 | 0.00 | 0.05 | 0.09 | 55.56 | 6.52 | |
Generator Assembly | 1 | 192.50 | 288.10 | 0.66 | 0.01 | 0.17 | 0.84 | 20.24 | 49.66 |
2 | 192.50 | 282.20 | 0.63 | 0.01 | 0.17 | 0.81 | 20.99 | 46.60 | |
3 | 192.50 | 281.20 | 0.60 | 0.01 | 0.17 | 0.78 | 21.79 | 46.08 | |
RHX | 1 | - | - | - | - | - | - | - | - |
2 | - | - | - | - | - | - | - | - | |
3 | 273.8 | 918.7 | 0.02 | 0.00 | 0.06 | 0.08 | 75.00 | 235.54 | |
Solution Pump | 1 | 10 | 273.50 | ~0.00 | 0.00 | 0.01 | ~0.01 | ~100 | 2635 |
2 | 10 | 276.20 | ~0.00 | 0.00 | 0.01 | ~0.01 | ~100 | 2662 | |
3 | 10 | 277.50 | ~0.00 | 0.00 | 0.01 | ~0.01 | ~100 | 2675 | |
Refrigerant pump | 1 | 10 | 431.70 | ~0.00 | 0.00 | 0.01 | ~0.01 | ~100 | 4217 |
2 | 10 | 437.00 | ~0.00 | 0.00 | 0.01 | ~0.01 | ~100 | 4270 | |
3 | 10 | 439.10 | ~0.00 | 0.00 | 0.01 | ~0.01 | ~100 | 4291 | |
Overall System | 1 | 192.50 | 423.80 | 1.63 | 0.01 | 0.37 | 2.01 | 18.41 | 120.56 |
2 | 192.50 | 422.30 | 1.63 | 0.01 | 0.40 | 2.03 | 19.70 | 119.38 | |
3 | 192.50 | 428.00 | 1.58 | 0.01 | 0.46 | 2.05 | 22.44 | 122.34 |
Component | Configuration | Cost Per Unit Exergy | Cost Rate | Capital Cost Rate, ($/h) | Exergy Destruction Cost Rate + Exergy Loss Cost Rate + Capital Cost Rate, | f (%) | r (%) | ||
---|---|---|---|---|---|---|---|---|---|
Fuel, cF ($/GJ) | Product, cp ($/GJ) | Exergy Destruction, ($/h) | Exergy Loss, ($/h) | ||||||
Absorber | 1 | 267.90 | 522.00 | 0.88 | 0.00 | 0.07 | 0.95 | 7.37 | 94.85 |
2 | 279.40 | 429.70 | 0.98 | 0.00 | 0.06 | 1.04 | 5.77 | 53.79 | |
3 | 285.30 | 438.30 | 0.98 | 0.00 | 0.06 | 1.04 | 5.77 | 53.63 | |
Evaporator | 1 | 192.50 | 242.00 | 0.24 | 0.00 | 0.09 | 0.33 | 27.27 | 25.71 |
2 | 192.50 | 242.40 | 0.24 | 0.00 | 0.09 | 0.33 | 27.27 | 25.92 | |
3 | 192.50 | 249.10 | 0.19 | 0.00 | 0.09 | 0.28 | 32.14 | 29.40 | |
Economizer | 1 | - | - | - | - | - | - | - | - |
2 | 279.40 | 288.80 | 0.20 | 0.00 | 0.16 | 0.36 | 44.44 | 3.36 | |
3 | 285.30 | 293.90 | 0.20 | 0.00 | 0.16 | 0.36 | 44.44 | 3.01 | |
Generator Assembly | 1 | 192.50 | 989.80 | 0.65 | 0.01 | 0.14 | 0.80 | 17.50 | 414.18 |
2 | 192.50 | 253.40 | 0.46 | 0.01 | 0.17 | 0.64 | 26.56 | 31.64 | |
3 | 192.50 | 253.00 | 0.43 | 0.01 | 0.16 | 0.60 | 26.67 | 31.43 | |
RHX | 1 | - | - | - | - | - | - | - | - |
2 | - | - | - | - | - | - | - | - | |
3 | 293.40 | 947.70 | 0.02 | 0.00 | 0.06 | 0.08 | 75.00 | 223.01 | |
Solution Pump | 1 | 10 | 275.50 | ~0.00 | 0.00 | 0.01 | ~0.01 | ~100 | 2655 |
2 | 10 | 275.20 | ~0.00 | 0.00 | 0.01 | ~0.01 | ~100 | 2652 | |
3 | 10 | 280.10 | ~0.00 | 0.00 | 0.01 | ~0.01 | ~100 | 2710 | |
Refrigerant pump | 1 | 10 | 405.00 | ~0.00 | 0.00 | 0.01 | ~0.01 | ~100 | 3950 |
2 | 10 | 450.30 | ~0.00 | 0.00 | 0.01 | ~0.01 | ~100 | 4430 | |
3 | 10 | 458.40 | ~0.00 | 0.00 | 0.01 | ~0.01 | ~100 | 4484 | |
Overall System | 1 | 192.50 | 522.00 | 1.52 | 0.01 | 0.32 | 1.85 | 17.30 | 171.17 |
2 | 192.50 | 429.70 | 1.51 | 0.01 | 0.50 | 2.02 | 24.75 | 123.22 | |
3 | 192.50 | 438.30 | 1.45 | 0.01 | 0.55 | 2.01 | 27.36 | 127.69 |
Configuration | TCon (°C) | TEva (°C) | TAbs (°C) | COP | ECOP | Exergy Destruction Rate (kW) | cp ($/kg) | ($/h) | f (%) | r (%) |
---|---|---|---|---|---|---|---|---|---|---|
1 | 28.53 | 86.10 | 119.50 | 0.4791 | 0.4629 | 2.31 | 0.0203 | 0.55 | 25.44 | 122.38 |
2 | 39.03 | 86.51 | 123.10 | 0.4808 | 0.4753 | 2.23 | 0.0200 | 0.59 | 27.65 | 104.67 |
3 | 39.63 | 86.51 | 124.70 | 0.4876 | 0.4868 | 2.13 | 0.0209 | 0.66 | 30.82 | 107.12 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
S. Mahmoudi, S.M.; Salehi, S.; Yari, M.; Rosen, M.A. Exergoeconomic Performance Comparison and Optimization of Single-Stage Absorption Heat Transformers. Energies 2017, 10, 532. https://doi.org/10.3390/en10040532
S. Mahmoudi SM, Salehi S, Yari M, Rosen MA. Exergoeconomic Performance Comparison and Optimization of Single-Stage Absorption Heat Transformers. Energies. 2017; 10(4):532. https://doi.org/10.3390/en10040532
Chicago/Turabian StyleS. Mahmoudi, S. Mohammad, Sina Salehi, Mortaza Yari, and Marc A. Rosen. 2017. "Exergoeconomic Performance Comparison and Optimization of Single-Stage Absorption Heat Transformers" Energies 10, no. 4: 532. https://doi.org/10.3390/en10040532
APA StyleS. Mahmoudi, S. M., Salehi, S., Yari, M., & Rosen, M. A. (2017). Exergoeconomic Performance Comparison and Optimization of Single-Stage Absorption Heat Transformers. Energies, 10(4), 532. https://doi.org/10.3390/en10040532