An Open-Access Web-Based Tool to Access Global, Hourly Wind and Solar PV Generation Time-Series Derived from the MERRA Reanalysis Dataset
Abstract
:1. Introduction
2. Wind and Solar Resource Datasets
3. Methodology for Calculating Solar PV Generation
3.1. Calculating the Direct and Diffuse Fractions from GHI
The BRL Model
3.2. Calculating Irradiance on a Tilted Plane
The Perez Model
3.3. Solar PV Generation Calculation
4. Calculating Wind Generation Potential
4.1. Calculation of Wind Speed at Hub Height
4.2. Wind Generation Calculation
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Global Statistics. Available online: http://www.gwec.net/global-figures/wind-energy-global-status/ (access on 13 July 2017).
- Photovoltaics Report; Fraunhofer Institute for Solar Energy Systems: Freiburg, Germany, 2015.
- Irradiation Data for every place on Earth. Available online: http://www.meteonorm.com/ (access on 13 July 2017).
- Reliable Efficient Assessment of Solar Energy Systems. Available online: http://geomodelsolar.eu/ (access on 13 July 2017).
- Solar Time Series. Available online: http://www.vaisala.com/en/energy/Renewable-Energy-Consulting-Services/Solar-Energy-Assessment-Services/Pages/Solar-Time-Series.aspx (access on 13 July 2017).
- Ames, D.P.; Horsburgh, J.S.; Cao, Y.; Kadlec, J.; Whiteaker, T.; Valentine, D. HydroDesktop: Web services-based software for hydrologic data discovery, download, visualization, and analysis. Environ. Model. Softw. 2012, 37, 146–156. [Google Scholar] [CrossRef]
- Goodall, J.L.; Horsburgh, J.S.; Whiteaker, T.L.; Maidment, D.R.; Zaslavsky, I. A first approach to web services for the National Water Information System. Environ. Model. Softw. 2008, 23, 404–411. [Google Scholar] [CrossRef]
- Frehner, M.; Brändli, M. Virtual database: Spatial analysis in a web-based data management system for distributed ecological data. Environ. Model. Softw. 2006, 21, 1544–1554. [Google Scholar] [CrossRef]
- Gschwind, B.; Ménard, L.; Albuisson, M.; Wald, L. Converting a successful research project into a sustainable service: The case of the SoDa Web service. Environ. Model. Softw. 2006, 21, 1555–1561. [Google Scholar] [CrossRef]
- Smith, J.P.; Hunter, T.S.; Clites, A.H.; Stow, C.A.; Slawecki, T.; Muhr, G.C.; Gronewold, A.D. An expandable web-based platform for visually analyzing basin-scale hydro-climate time series data. Environ. Model. Softw. 2016, 78, 97–105. [Google Scholar] [CrossRef]
- Nativi, S.; Mazzetti, P.; Geller, G.N. Environmental model access and interoperability: The GEO Model Web initiative. Environ. Model. Softw. 2013, 39, 214–228. [Google Scholar] [CrossRef]
- Zhu, X.; Dale, A.P. JavaAHP: A web-based decision analysis tool for natural resource and environmental management. Environ. Model. Softw. Environ. Data News 2001, 16, 251–262. [Google Scholar] [CrossRef]
- Mannschatz, T.; Wolf, T.; Hülsmann, S. Nexus tools platform: Web-based comparison of modelling tools for analysis of water-soil-waste nexus. Environ. Model. Softw. 2016, 76, 137–153. [Google Scholar] [CrossRef]
- Simonovic, S.P.; Schardong, A.; Sandink, D.; Srivastav, R. A web-based tool for the development of intensity duration frequency curves under changing climate. Environ. Model. Softw. 2016, 81, 136–153. [Google Scholar] [CrossRef]
- Orange Button—Solar Bankability Data to Advance Transactions and Access. Available online: https://energy.gov/eere/sunshot/orange-button-solar-bankability-data-advance-transactions-and-access-sb-data (access on 4 July 2017).
- Sha, A.; Aiello, M. A novel strategy for optimising decentralised energy exchange for prosumers. Energies 2016, 9, 554. [Google Scholar] [CrossRef]
- Carreño-Ortega, A.; Galdeano-Gómez, E.; Pérez-Mesa, C.J.; Galera-Quiles, D.M. Policy and environmental implications of photovoltaic systems in farming in Southeast Spain: Can greenhouses reduce the greenhouse effect? Energies 2017, 10, 761. [Google Scholar] [CrossRef]
- Cucchiella, F.; D’Adamo, I.; Gastaldi, M. Economic analysis of a photovoltaic system: A Resource for residential households. Energies 2017, 10, 814. [Google Scholar] [CrossRef]
- Mastny, P.; Moravek, J.; Vojtek, M.; Drapela, J. Hybrid photovoltaic systems with accumulation—Support for electric vehicle charging. Energies 2017, 10, 834. [Google Scholar] [CrossRef]
- Hesse, C.H.; Martins, R.; Musilek, P.; Naumann, M.; Truong, N.C.; Jossen, A. Economic optimization of component sizing for residential battery storage systems. Energies 2017, 10, 835. [Google Scholar] [CrossRef]
- DeCarolis, J.F.; Babaee, S.; Li, B.; Kanungo, S. Modelling to generate alternatives with an energy system optimization model. Environ. Model. Softw. 2016, 79, 300–310. [Google Scholar] [CrossRef]
- Lund, H.; Arler, F.; Østergaard, A.P.; Hvelplund, F.; Connolly, D.; Mathiesen, V.B.; Karnøe, P. Simulation versus optimisation: Theoretical positions in energy system modelling. Energies 2017, 10, 840. [Google Scholar] [CrossRef]
- Oncioiu, I.; Petrescu, G.A.; Grecu, E.; Petrescu, M. Optimizing the renewable energy potential: Myth or future trend in Romania. Energies 2017, 10, 759. [Google Scholar] [CrossRef]
- Kunz, H.; Hagens, J.N.; Balogh, B.S. The influence of output variability from renewable electricity generation on net energy calculations. Energies 2014, 7, 150–172. [Google Scholar] [CrossRef]
- Graabak, I.; Korpås, M. Variability characteristics of european wind and solar power resources—A review. Energies 2016, 9, 449. [Google Scholar] [CrossRef]
- Marneris, G.I.; Biskas, N.P.; Bakirtzis, G.A. Stochastic and deterministic unit commitment considering uncertainty and variability reserves for high renewable integration. Energies 2017, 10, 140. [Google Scholar] [CrossRef]
- François, B.; Martino, S.; Tøfte, S.L.; Hingray, B.; Mo, B.; Creutin, J.-D. Effects of increased wind power generation on mid-norway’s energy balance under climate change: A market based approach. Energies 2017, 10, 227. [Google Scholar] [CrossRef]
- Sinden, G. Characteristics of the UK wind resource: Long-term patterns and relationship to electricity demand. Energy Policy 2007, 35, 112–127. [Google Scholar] [CrossRef]
- Cox, J. Impact of Intermittency: How Wind Variability Could Change the Shape of the British and Irish Electricity Markets; Poyry Energy (Oxford) Ltd: Oxford, UK, 2009. [Google Scholar]
- Merz, S.K.; Britain, G. Growth Scenarios for UK Renewables Generation and Implications for Future Developments and Operation of Electricity Networks. Available online: https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/42969/1_20090501131535_e____SKMRESBERRFinalReport.pdf (access on 13 July 2017).
- De Boer, H.S.; Grond, L.; Moll, H.; Benders, R. The application of power-to-gas, pumped hydro storage and compressed air energy storage in an electricity system at different wind power penetration levels. Energy 2014, 72, 360–370. [Google Scholar] [CrossRef]
- Li, Z.; Qiu, F.; Wang, J. Data-driven real-time power dispatch for maximizing variable renewable generation. Appl. Energy 2016, 170, 304–313. [Google Scholar] [CrossRef]
- Hewston, R.; Dorling, S.R. An analysis of observed daily maximum wind gusts in the UK. J. Wind Eng. Ind. Aerodyn. 2011, 99, 845–856. [Google Scholar] [CrossRef]
- Zhou, W.; Lou, C.; Li, Z.; Lu, L.; Yang, H. Current status of research on optimum sizing of stand-alone hybrid solar–wind power generation systems. Appl. Energy 2010, 87, 380–389. [Google Scholar] [CrossRef]
- Kubik, M.L.; Brayshaw, D.J.; Coker, P.J.; Barlow, J.F. Exploring the role of reanalysis data in simulating regional wind generation variability over Northern Ireland. Renew. Energy 2013, 57, 558–561. [Google Scholar] [CrossRef]
- Brower, M.C.; Barton, M.S.; Lledó, L.; Dubois, J. A Study of Wind Speed Variability using Global Reanalysis Data; AWS Truepower: Karnataka, India, 2013. [Google Scholar]
- Lew, D.; Alonge, C.; Brower, M.; Frank, J.; Freeman, L.; Orwig, K.; Wan, Y.H. Wind data inputs for regional wind integration studies. In Proceedings of the 2011 IEEE Power and Energy Society General Meeting, Detroit, MI, USA, 24–29 July 2011. [Google Scholar]
- Boccard, N. Capacity factor of wind power realized values vs. estimates. Energy Policy 2009, 37, 2679–2688. [Google Scholar] [CrossRef]
- Gunturu, U.B.; Schlosser, C.A. Characterization of wind power resource in the United States. Atmos. Chem. Phys. 2012, 12, 9687–9702. [Google Scholar] [CrossRef]
- Rienecker, M.M.; Suarez, M.J.; Gelaro, R.; Todling, R.; Bacmeister, J.; Liu, E.; Bosilovich, M.G.; Schubert, S.D.; Takacs, L.; Kim, G.K.; et al. MERRA: NASA’s modern-era retrospective analysis for research and applications. J. Clim. 2011, 24, 3624–3648. [Google Scholar] [CrossRef]
- Lucchesi, R. File Specification for MERRA Products. GMAO Office Note No. 1 (Version 2.3). Available online: http://gmao.gsfc.nasa.gov/pubs/office_notes (access on 13 July 2017).
- Henson, W.; McGowan, J.; Manwell, J. Utilizing reanalysis and synthesis datasets in wind resource characterization for large-scale wind integration. Wind Eng. 2012, 36, 97–110. [Google Scholar] [CrossRef]
- Olauson, J.; Bergkvist, M. Modelling the Swedish wind power production using MERRA reanalysis data. Renew. Energy 2015, 76, 717–725. [Google Scholar] [CrossRef]
- Cradden, L.C.; McDermott, F.; Zubiate, L.; Sweeney, C.; O’Malley, M. A 34-year simulation of wind generation potential for Ireland and the impact of large-scale atmospheric pressure patterns. Renew. Energy 2017, 106, 165–176. [Google Scholar] [CrossRef]
- Staffell, I.; Pfenninger, S. Using bias-corrected reanalysis to simulate current and future wind power output. Energy 2016, 114, 1224–1239. [Google Scholar] [CrossRef]
- Richardson, D.B.; Andrews, R.W. Validation of the MERRA dataset for solar PV applications. In Proceedings of the IEEE 40th Photovoltaic Specialist Conference (PVSC), Denver, CO, USA, 8–13 June 2014; pp. 809–814. [Google Scholar]
- Juruš, P.; Eben, K.; Resler, J.; Krč, P.; Kasanický, I.; Pelikán, E.; Brabec, M.; Hošek, J. Estimating climatological variability of solar energy production. Sol. Energy 2013, 98, 255–264. [Google Scholar] [CrossRef]
- Boilley, A.; Wald, L. Comparison between meteorological re-analyses from ERA-Interim and MERRA and measurements of daily solar irradiation at surface. Renew. Energy 2015, 75, 135–143. [Google Scholar] [CrossRef]
- Pfenninger, S.; Staffell, I. Long-term patterns of European PV output using 30 years of validated hourly reanalysis and satellite data. Energy 2016, 114, 1251–1265. [Google Scholar] [CrossRef]
- Archer, C.L.; Jacobson, M.Z. Geographical and seasonal variability of the global “practical” wind resources. Appl. Geogr. 2013, 45, 119–130. [Google Scholar] [CrossRef]
- Bosch, J.; Staffell, I.; Hawkes, A.D. Temporally-explicit and spatially-resolved global onshore wind energy potentials. Energy 2017, 131, 207–217. [Google Scholar] [CrossRef]
- Cosseron, A.; Gunturu, U.B.; Schlosser, C.A. Characterization of the wind power resource in Europe and its intermittency. Energy Proced. 2013, 40, 58–66. [Google Scholar] [CrossRef]
- Fant, C.; Gunturu, U.B. Characterizing Wind Power Resource Reliability in Southern Africa. Available online: https://www.econstor.eu/bitstream/10419/80951/1/751160814.pdf (access on 13 July 2017).
- Hallgren, W.; Gunturu, U.B.; Schlosser, C.A. The Potential Wind Power Resource in Australia: A New Perspective; MIT Joint Program on the Science and Policy of Global Change: Cambridge, MA, USA, 2014. [Google Scholar]
- Ummel, K. Planning for Large-Scale Wind and Solar Power in South Africa: Identifying Cost-Effective Deployment Strategies using Spatiotemporal Modeling; Centre for Global Development: Washington, DC, USA, 2013. [Google Scholar]
- Prasad, A.A.; Taylor, R.A.; Kay, M. Assessment of solar and wind resource synergy in Australia. Appl. Energy 2017, 190, 354–367. [Google Scholar] [CrossRef]
- Huber, M.; Dimkova, D.; Hamacher, T. Integration of wind and solar power in Europe: Assessment of flexibility requirements. Energy 2014, 69, 236–246. [Google Scholar] [CrossRef]
- Laslett, D.; Creagh, C.; Jennings, P. A simple hourly wind power simulation for the South-West region of Western Australia using MERRA data. Renew. Energy 2016, 96, 1003–1014. [Google Scholar] [CrossRef]
- Boland, J.; Ridley, B.; Brown, B. Models of diffuse solar radiation. Renew. Energy 2008, 33, 575–584. [Google Scholar] [CrossRef]
- Torres, J.L.; De Blas, M.; García, A.; De Francisco, A. Comparative study of various models in estimating hourly diffuse solar irradiance. Renew. Energy 2010, 35, 1325–1332. [Google Scholar] [CrossRef]
- Orgill, J.F.; Hollands, K.G.T. Correlation equation for hourly diffuse radiation on a horizontal surface. Sol. Energy 1977, 19, 357–359. [Google Scholar] [CrossRef]
- Reindl, D.; Beckman, W.; Duffie, J. Diffuse fraction correlations. Sol. Energy 1990, 45, 1–7. [Google Scholar] [CrossRef]
- Hawlader, M.N.A. Diffuse, global and extra-terrestrial solar radiation for Singapore. Int. J. Ambient Energy 1984, 5, 31–38. [Google Scholar] [CrossRef]
- De Miguel, A.; Bilbao, J.; Aguiar, R.; Kambezidis, H.; Negro, E. Diffuse solar irradiation model evaluation in the north Mediterranean belt area. Sol. Energy 2001, 70, 143–153. [Google Scholar] [CrossRef]
- Karatasou, S.; Santamouris, M.; Geros, V. Analysis of experimental data on diffuse solar radiation in Athens, Greece, for building applications. Int. J. Sustain. Energy 2003, 23, 1–11. [Google Scholar] [CrossRef]
- Jacovides, C.P.; Tymvios, F.S.; Assimakopoulos, V.D.; Kaltsounides, N.A. Comparative study of various correlations in estimating hourly diffuse fraction of global solar radiation. Renew. Energy 2006, 31, 2492–2504. [Google Scholar] [CrossRef]
- Erbs, D.G.; Klein, S.A.; Duffie, J.A. Estimation of the diffuse radiation fraction for hourly, daily and monthly- average global radiation. Sol. Energy 1982, 28, 293–302. [Google Scholar] [CrossRef]
- Oliveira, A.P.; Escobedo, J.F.; Machado, A.J.; Soares, J. Correlation models of diffuse solar-radiation applied to the city of Sao Paulo, Brazil. Appl. Energy 2002, 71, 59–73. [Google Scholar] [CrossRef]
- Maxwell, E.L. A Quasi-Physical Model for Converting Hourly Global Horizontal to Direct Normal Insolation; Sol. Energy Research Institute: Golden, CO, USA, 1987. [Google Scholar]
- Boland, J.; Scott, L.; Luther, M. Modelling the diffuse fraction of global solar radiation on a horizontal surface. Environmetrics 2001, 12, 103–116. [Google Scholar] [CrossRef]
- Skartveit, A.; Olseth, J.A. A model for the diffuse fraction of hourly global radiation. Sol. Energy 1987, 38, 271–274. [Google Scholar] [CrossRef]
- Skartveit, A.; Olseth, J.A.; Tuft, M.E. An hourly diffuse fraction model with correction for variability and surface albedo. Sol. Energy 1998, 63, 173–183. [Google Scholar] [CrossRef]
- Ineichen, P.; Perez, R.R.; Seal, R.D.; Maxwell, E.L.; Zalenka, A. Dynamic global-to-direct irradiance conversion models. ASHRAE Trans. 1992, 98, 354–369. [Google Scholar]
- Muneer, T.; Munawwar, S. Improved accuracy models for hourly diffuse solar radiation. Trans. Am. Soc. Mechan. Eng. J. Sol. Energy Eng. 2006, 128, 104. [Google Scholar] [CrossRef]
- Ridley, B.; Boland, J.; Lauret, P. Modelling of diffuse solar fraction with multiple predictors. Renew. Energy 2010, 35, 478–483. [Google Scholar] [CrossRef]
- Spencer, J.W. A comparison of methods for estimating hourly diffuse solar radiation from global solar radiation. Sol. Energy 1982, 29, 19–32. [Google Scholar] [CrossRef]
- Balling, R.C.J.; Idso, S.B. Sulfate aerosols of the stratosphere and troposphere: Combined effects on surface air temperature. Theor. Appl. Climatol. 1991, 44, 239–241. [Google Scholar] [CrossRef]
- Gueymard, C. Importance of atmospheric turbidity and associated uncertainties in solar radiation and luminous efficacy modelling. Energy 2005, 30, 1603–1621. [Google Scholar] [CrossRef]
- Duffie, J.A.; Beckman, W.A. Solar Engineering of Thermal Processes; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2013. [Google Scholar]
- Muneer, T. Solar Radiation and Daylight Models; Routledge: Abingdon, UK, 2004. [Google Scholar]
- Liu, B.; Jordan, R. Daily insolation on surfaces tilted towards equator. ASHRAE J. U.S. 1961, 10. [Google Scholar]
- Temps, R.C.; Coulson, K.L. Solar radiation incident upon slopes of different orientations. Sol. Energy 1977, 19, 179–184. [Google Scholar] [CrossRef]
- Klucher, T. Evaluation of models to predict insolation on tilted surfaces. Sol. Energy 1979, 23, 111–114. [Google Scholar] [CrossRef]
- Hay, J.E.; Davies, J.A. Calculation of the solar radiation incident on an inclined surface. In Proceedings of the First Canadian Solar Radiation Data Workshop, Toronto, ON, Canada, 17–19 April 1978; pp. 59–72. [Google Scholar]
- Reindl, D.; Beckman, W.; Duffie, J. Evaluation of hourly tilted surface radiation models. Sol. Energy 1990, 45, 9–17. [Google Scholar] [CrossRef]
- Gueymard, C. An anisotropic solar irradiance model for tilted surfaces and its comparison with selected engineering algorithms. Sol. Energy 1987, 38, 367–386. [Google Scholar] [CrossRef]
- Muneer, T. Solar radiation model for Europe. Build. Serv. Eng. Res. Technol. 1990, 11, 153–163. [Google Scholar] [CrossRef]
- Saluja, G.S.; Muneer, T. An anisotropic model for inclined surface solar irradiation. Proc. Inst. Mechan. Eng. Part C J. Mechan. Eng. Sci. 1987, 201, 11–20. [Google Scholar] [CrossRef]
- Perez, R.; Ineichen, P.; Seals, R.; Michalsky, J.; Stewart, R. Modeling daylight availability and irradiance components from direct and global irradiance. Sol. Energy 1990, 44, 271–289. [Google Scholar] [CrossRef]
- Bilbao, J.; De Miguel, A.; Ayuso, A.; Franco, J.A. Iso-radiation maps for tilted surfaces in the Castile and Leon region, Spain. Energy Conv. Manag. 2003, 44, 1575–1588. [Google Scholar] [CrossRef]
- Padovan, A.; Del Col, D. Measurement and modeling of solar irradiance components on horizontal and tilted planes. Sol. Energy 2010, 84, 2068–2084. [Google Scholar] [CrossRef]
- Loutzenhiser, P.G.; Manz, H.; Felsmann, C.; Strachan, P.A.; Frank, T.; Maxwell, G.M. Empirical validation of models to compute solar irradiance on inclined surfaces for building energy simulation. Sol. Energy 2007, 81, 254–267. [Google Scholar] [CrossRef]
- Noorian, A.M.; Moradi, I.; Kamali, G.A. Evaluation of 12 models to estimate hourly diffuse irradiation on inclined surfaces. Renew. Energy 2008, 33, 1406–1412. [Google Scholar] [CrossRef]
- Hay, J.E.; McKay, D.C. Calculation of Solar Irradiances for Inclined Surfaces: Verification of Models Which use Hourly and Daily Data; International Energy Agency: Paris, France, 1988. [Google Scholar]
- Kambezidis, H.D.; Psiloglou, B.E.; Gueymard, C. Measurements and models for total solar irradiance on inclined surface in Athens, Greece. Sol. Energy 1994, 53, 177–185. [Google Scholar] [CrossRef]
- Diez-Mediavilla, M.; De Miguel, A.; Bilbao, J. Measurement and comparison of diffuse solar irradiance models on inclined surfaces in Valladolid (Spain). Energy Conv. Manag. 2005, 46, 2075–2092. [Google Scholar] [CrossRef]
- Li, D.H.W.; Lam, J.C. Evaluation of Perez slope irradiance and illuminance models against measured Hong Kong data. Int. J. Ambient Energy 1999, 20, 193–204. [Google Scholar] [CrossRef]
- Perez, R.R.; Scott, J.T.; Stewart, R. An anisotropic model for diffuse radiation incident on slopes of different orientations and possible applications to CPC’s. In Proceedings of the Annual Meeting American Section of the International Solar Energy Society, Minneapolis, MN, USA, 1–3 June 1983; 6, pp. 883–888. [Google Scholar]
- Perez, R.; Seals, R.; Ineichen, P.; Stewart, R.; Menicucci, D. New simplified version of the Perez diffuse irradiance model for tilted surfaces. Sol. Energy 1987, 39, 221–231. [Google Scholar] [CrossRef]
- Perez, R.; Stewart, R.; Seals, R.; Guertin, T. The Development and Verification of the Perez Diffuse Radiation Model; Atmospheric Sciences Research Center: Albany, NY, USA, 1988. [Google Scholar]
- Sandia Module Temperature Model. Available online: http://pvpmc.org/modeling-steps/cell-temperature-2/module-temperature/sandia-module-temperature-model/ (access on 13 July 2017).
- Archer, C.L.; Jacobson, M.Z. Spatial and temporal distributions of U.S. winds and wind power at 80 m derived from measurements. J. Geophys. Res. Atmos. 2003, 108, 4289. [Google Scholar] [CrossRef]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
McPherson, M.; Sotiropoulos-Michalakakos, T.; Harvey, L.D.; Karney, B. An Open-Access Web-Based Tool to Access Global, Hourly Wind and Solar PV Generation Time-Series Derived from the MERRA Reanalysis Dataset. Energies 2017, 10, 1007. https://doi.org/10.3390/en10071007
McPherson M, Sotiropoulos-Michalakakos T, Harvey LD, Karney B. An Open-Access Web-Based Tool to Access Global, Hourly Wind and Solar PV Generation Time-Series Derived from the MERRA Reanalysis Dataset. Energies. 2017; 10(7):1007. https://doi.org/10.3390/en10071007
Chicago/Turabian StyleMcPherson, Madeleine, Theofilos Sotiropoulos-Michalakakos, LD Danny Harvey, and Bryan Karney. 2017. "An Open-Access Web-Based Tool to Access Global, Hourly Wind and Solar PV Generation Time-Series Derived from the MERRA Reanalysis Dataset" Energies 10, no. 7: 1007. https://doi.org/10.3390/en10071007
APA StyleMcPherson, M., Sotiropoulos-Michalakakos, T., Harvey, L. D., & Karney, B. (2017). An Open-Access Web-Based Tool to Access Global, Hourly Wind and Solar PV Generation Time-Series Derived from the MERRA Reanalysis Dataset. Energies, 10(7), 1007. https://doi.org/10.3390/en10071007