Optimal Power Allocation for a Relaying-Based Cognitive Radio Network in a Smart Grid
Abstract
:1. Introduction
- This paper converts the sensing errors into the channel available confidence and introduce the average interference constraint to the cognitive wireless networks in a smart grid.
- We establish a cost model based on the statistical analysis with the regulation errors of a direct load control method for cognitive wireless networks in a smart grid. Specifically, the power allocation problem based on the sensing error information was formulated as a nonlinear optimization problem. Then we use the PSO algorithm to search for the optimum.
- We demonstrate that the sensing information in power allocation can reduce the costs to the utility company for cognitive wireless networks in a smart grid.
2. Cognitive Wireless Network Model in a Smart Grid
2.1. Cognitive Wireless Network
2.2. Packets Loss Model
2.3. Transmission Formulation of The Network
2.4. Costs to Utility Company
3. Problem Formulation and Solutions
3.1. PSO Algorithm
Algorithm 1 PSO Algorithm |
|
3.2. The Solution with One Relay
4. Simulation Results
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Nomenclature
Binary variable. | |
The existing probability of the primary user in each carrier. | |
The false alarm probability. | |
The correct detection probability. | |
The transmission power of the DAU transmitter or relays. | |
The channel gain from the DAU transmitter or relays to the PR. | |
The interference temperature threshold of the primary user. | |
The transmission power of the primary user. | |
The channel gain from the PT to the DAU receiver or relay. | |
T | The arriving rates of the DAU. |
R | The receiving rate of the gateway. |
The correct transmission ratio from the gateways to the consumers. | |
The channel confidence level. | |
The information generated from the DAU transmitter. | |
The information generated from the PT. | |
The received signal at the relay. | |
The transmission power of the DAU transmitter. | |
The transmission power of the PT. | |
The channel-to-noise ratio from the DAU transmitter. | |
The channel-to-noise ratio from the PT to the relay. | |
The zero-mean circular symmetric complex Gaussian noise at the DAU transmitter and the relay. | |
The beamforming weight. | |
S | The received signals. |
N | The background noise. |
The packets loss rate. | |
The expectation. | |
The standard variance. | |
The price per unit fraction of AGC service. | |
Z | The costs to utility company with multiple relays. |
The costs to utility company with a relay. | |
The dth dimension of the velocity for the ith particle. | |
The dth dimension of the position for the ith particle. | |
The whole group’s optimum value. | |
The ith particle’s historical optimum value. | |
Uniform random number over [0,1]. | |
Uniform random number over [0,1]. | |
The two worst particles for each sub-swarm. | |
The better particle for each sub-swarm. | |
The learning factors. | |
Inertia weight. |
References
- Gungor, V.C.; Sahin, D.; Kocak, T.; Ergut, S. Smart grid technologies: Communication technologies and standards. IEEE Trans. Ind. Inform. 2011, 7, 529–539. [Google Scholar] [CrossRef]
- Kirby, B. Ancillary services: Technical and commercial insights. Retrieved Oct. 2007, 1, 5–12. [Google Scholar]
- Callaway, D.S. Tapping the energy storage potential in electric loads to deliver load following and regulation, with application to wind energy. Energy Convers. Manag. 2009, 50, 1389–1400. [Google Scholar] [CrossRef]
- Lu, N.; Zhang, Y. Design considerations of a centralized load controller using thermostatically controlled appliances for continuous regulation reserves. IEEE Trans. Smart Grid 2013, 4, 914–921. [Google Scholar] [CrossRef]
- Liu, X.; Na, Z.; Jia, M.; Gu, X.; Li, X. Multislot simultaneous spectrum sensing and energy harvesting in cognitive radio. Energies 2016, 9, 568. [Google Scholar] [CrossRef]
- Haykin, S. Cognitive radio: Brain-empowered wireless communications. IEEE J. Sel. Areas Commun. 2006, 23, 201–220. [Google Scholar] [CrossRef]
- Zhang, Z.; Long, K.; Wang, J. Self-organization paradigms and optimization approaches for cognitive radio technologies: A survey. IEEE Wirel. Commun. 2013, 20, 36–42. [Google Scholar] [CrossRef]
- Shuaib, K.; Barka, E.; Hussien, N.A.; Abdel-Hafez, M.; Alahmad, M. Cognitive radio for smart grid with security considerations. Computers 2016, 5, 7. [Google Scholar] [CrossRef]
- Gungor, V.C.; Sahin, D. Cognitive radio networks for smart grid applications: A promising technology to overcome spectrum inefficiency. IEEE Veh. Technol. Mag. 2012, 7, 41–46. [Google Scholar] [CrossRef]
- Rahman, M.S.; Basu, A.; Kiyomoto, S.; Bhuiyan, M.Z.A. Privacy-friendly secure bidding for smart grid demand-response. Inf. Sci. 2016, 379, 229–240. [Google Scholar] [CrossRef]
- Yu, R.; Zhang, Y.; Gjessing, S.; Yuen, C.; Xie, S.; Guizani, M. Cognitive radio based hierarchical communications infrastructure for smart grid. IEEE Netw. 2011, 25, 6–14. [Google Scholar] [CrossRef]
- Ghassemi, A.; Bavarian, S.; Lampe, L. Cognitive Radio for Smart Grid Communications. In Proceedings of the First IEEE International Conference on Smart Grid Communications, Gaithersburg, MD, USA, 4–6 October 2010; pp. 297–302. [Google Scholar]
- Deng, R.; Chen, J.; Cao, X.; Zhang, Y. Sensing-performance tradeoff in cognitive radio enabled smart grid. IEEE Trans. Smart Grid 2013, 4, 302–310. [Google Scholar] [CrossRef]
- Ahmed, M.H.U.; Alam, M.G.R.; Kamal, R.; Hong, C.S. Smart grid cooperative communication with smart relay. J. Commun. Netw. 2012, 14, 640–652. [Google Scholar] [CrossRef]
- Sun, H.; Nallanathan, A.; Tan, B.; Thompson, J.S. Relaying technologies for smart grid communications. IEEE Wirel. Commun. 2012, 19, 52–59. [Google Scholar] [CrossRef]
- Niyato, D.; Wang, P. Cooperative transmission for meter data collection in smart grid. IEEE Commun. Mag. 2012, 50, 90–97. [Google Scholar] [CrossRef]
- Wong, W.S.V.; Schober, R.N.D.W.K.; Wang, L.C. Key Technologies for 5G Wireless Systems; Cambridge University Press: Cambridge, UK, 2017. [Google Scholar]
- Lu, W.; Gong, Y.; Wang, J.; Hua, J.; Meng, L. Optimal time and bandwidth allocation based on Nash bargaining solution for cooperative cognitive systems. China Commun. 2013, 10, 149–157. [Google Scholar]
- Deepika, A.G.; Sudha, T. A Power Allocation Technique for MIMO-OFDM Based Cognitive Radio with Improved Energy Efficiency. In Proceedings of the 2014 National Conference on Communication, Signal Processing and Networking (NCCSN), Palakkad, India, 10–12 October 2014; pp. 1–4. [Google Scholar]
- Jendeya, A.; Shaat, M.; Hudrouss, A.A.; Bader, F. Joint Resource Allocation in Multicarrier Based Cognitive Networks with Two-Way Relaying. In Proceedings of the 1st International Workshop on Cognitive Cellular Systems, Rhine River, Germany, 2–4 September 2014; pp. 1–5. [Google Scholar]
- Ng, D.W.K.; Lo, E.S.; Schober, R. Multiobjective resource allocation for secure communication in cognitive radio networks with wireless information and power transfer. IEEE Trans. Veh. Technol. 2016, 65, 3166–3184. [Google Scholar] [CrossRef]
- Rehman, Y.; Ullah, H.; Tariq, T.B.; Sidhu, G.A.S. User Assignment and Power Allocation Optimization in Cognitive Radio Networks. In Proceedings of the International Conference on Frontiers of Information Technology, Islamabad, Pakistan, 17–19 December 2014; pp. 41–45. [Google Scholar]
- Lee, H.W.; Kwak, J.; Le, L.B. Robust power allocation in cognitive radio networks with uncertain knowledge of interference. IEEE Wirel. Commun. Lett. 2016, 5, 468–471. [Google Scholar] [CrossRef]
- Zhou, M.; Zhao, X. Energy-efficient power allocation algorithm in cognitive radio networks. IET Commun. 2016, 10, 2445–2451. [Google Scholar] [CrossRef]
- Eberhart, R.; Kennedy, J. A New Optimizer Using Particle Swarm Theory. In Proceedings of the International Symposium on MICRO Machine and Human Science, Nagoya, Japan, 4–6 October 1995; pp. 39–43. [Google Scholar]
- Kennedy, J.; Eberhart, R. Particle Swarm Optimization. In Proceedings of the IEEE International Conference on Neural Networks, Perth, Australia, 27 November–1 December 1995; pp. 1942–1948. [Google Scholar]
- Shi, Y.; Eberhart, R. Empirical Study of Particle Swarm Optimization. In Proceedings of the 1999 Congress on Evolutionary Computation, Washington, DC, USA, 6–9 July 1999; pp. 1945–1950. [Google Scholar]
- Kennedy, J.; Eberhart, R. Swarm Intelligence; Morgan Kaufmann Publishers: San Francisco, CA, USA, 2001. [Google Scholar]
- Mendes, R.; Cortez, P.; Rocha, M.; Neves, J. Particle Swarms for Feedforward Neural Network Training. In Proceedings of the International Joint Conference on Neural Networks, Honolulu, HI, USA, 12–17 May 2002; pp. 1895–1899. [Google Scholar]
- Valdez, F.; Melin, P.; Licea, G. Modular neural networks architecture optimization with a new evolutionary method using a fuzzy combination particle swarm optimization and genetic algorithms. Inf. Sci. 2014, 270, 143–153. [Google Scholar] [CrossRef]
- Parsopoulos, K.E.; Papageorgiou, E.I.; Groumpos, P.P.; Vrahatis, M.N. A first study of fuzzy cognitive maps learning using particle swarm optimization. In Proceedings of the 2003 Congress on Evolutionary Computation, Canberra, Australia, 8–12 December 2003; Volume 2, pp. 1440–1447. [Google Scholar]
- Maldonado, Y.; Castillo, O.; Melin, P. Particle swarm optimization of interval type-2 fuzzy systems for FPGA applications. Appl. Soft Comput. 2013, 13, 496–508. [Google Scholar] [CrossRef]
- Melin, P.; Olivas, F.; Castillo, O.; Valdez, F.; Soria, J.; Valdez, M. Optimal design of fuzzy classification systems using PSO with dynamic parameter adaptation through fuzzy logics. Exp. Syst. Appl. 2013, 40, 3196–3206. [Google Scholar] [CrossRef]
- Fierro, R.; Castillo, O.; Valdez, F.; Cervantes, L. Design of Optimal Membership Functions for Fuzzy Controllers of the Water Tank and Inverted Pendulum with PSO Variants. In Proceedings of the Ifsa World Congress and Nafips Meeting, Edmonton, AB, Canada, 24–28 June 2013; pp. 1068–1073. [Google Scholar]
- Das, T.K.; Venayagamoorthy, G.K. Bio-inspired Algorithms for the Design of Multiple Optimal Power System Stabilizers: SPPSO and BFA. In Proceedings of the 2006 Industry Applications Conference, Tampa, FL, USA, 8–12 October 2006; pp. 635–641. [Google Scholar]
- Valle, Y.D.; Venayagamoorthy, G.K.; Mohagheghi, S.; Hernandez, J.C.; Harley, R.G. Particle swarm optimization: Basic concepts, variants and applications in power systems. IEEE Trans. Evol. Comput. 2008, 12, 171–195. [Google Scholar] [CrossRef]
- Wachowiak, M.P.; Smolikova, R.; Zheng, Y.; Zurada, J.M.; Elmaghraby, A.S. An approach to multimodal biomedical image registration utilizing particle swarm optimization. IEEE Trans. Evol. Comput. 2004, 8, 289–301. [Google Scholar] [CrossRef]
- Blackwell, T. A study of collapse in bare bones particle swarm optimization. IEEE Trans. Evol. Comput. 2012, 16, 354–372. [Google Scholar] [CrossRef]
- Srinivasa, S.; Jafar, S.A. Soft Sensing and Optimal Power Control for Cognitive Radio. In Proceedings of the 2007 IEEE Global Telecommunications Conference, Washington, DC, USA, 26–30 November 2007; pp. 1380–1384. [Google Scholar]
- Zhang, X.L.; Hong, J.I.; Xi, L.I.; Dai, L.Y. Optimal distributed power allocation for a new spectrum sharing paradigm in cognitive radio networks. J. China Univ. Posts Telecommun. 2012, 19, 37–43. [Google Scholar] [CrossRef]
- Wei, X. Study On Resources Allocation in Cognitive Radio Networks Based On Sensing Information; Yanshan University: Qinhuangdao, China, 2012. [Google Scholar]
- Nosratinia, A.; Hunter, T.E.; Hedayat, A. Cooperative communication in wireless networks. IEEE Commun. Mag. 2004, 42, 68–73. [Google Scholar] [CrossRef]
- Sendonaris, A.; Erkip, E.; Aazhang, B. User cooperation diversity. Part I: System description. IEEE Trans. Commun. 2003, 51, 1927–1938. [Google Scholar] [CrossRef]
- Sendonaris, A.; Erkip, E.; Aazhang, B. User cooperation diversity. Part II: Implementation aspects and performance analysis. IEEE Trans. Commun. 2003, 51, 1939–1948. [Google Scholar] [CrossRef]
- Cai, C.; Qiu, R. Energy-efficient cooperative two-hop amplify-and-forward relay protocol in cognitive radio networks. IET Commun. 2016, 10, 2135–2142. [Google Scholar] [CrossRef]
- Chen, T.; Yuan, H.Q.; Zhao, T.Z.; Zhang, Z.S. Joint beamforming and power allocation for secure communication in cognitive radio networks. IET Commun. 2016, 10, 1156–1162. [Google Scholar] [CrossRef]
- Hafeez, A.; Ramesh, R.; Hui, D. Maximum SNR Prefiltering for MIMO Systems. In Proceedings of the 2005 IEEE Workshop on Signal Processing Advances in Wireless Communications, New York, NY, USA, 5–8 June 2005; pp. 186–190. [Google Scholar]
- Laneman, J.N.; Tse, D.N.C.; Wornell, G.W. Cooperative diversity in wireless networks: Efficient protocols and outage behavior. IEEE Trans. Inf. Theory 2004, 50, 3062–3080. [Google Scholar] [CrossRef]
- He, H.; Sanandaji, B.M.; Poolla, K.; Vincent, T.L. Aggregate flexibility of thermostatically controlled loads. IEEE Trans. Power Syst. 2014, 30, 189–198. [Google Scholar]
- EasyFit Software. Available online: http://www.mathwave.com/ (accessed on 20 November 2015).
- Xu, X.; Tang, Y.; Li, J.; Hua, C.; Guan, X. Dynamic multi-swarm particle swarm optimizer with cooperative learning strategy. Appl. Soft Comput. 2015, 29, 169–183. [Google Scholar] [CrossRef]
Indexes | Throughput | Power Allocation | Cooperation | Signal-to-Noise Ratio (SNR) | Packet Loss |
---|---|---|---|---|---|
[18] | √ | × | √ | × | × |
[19] | × | √ | × | × | × |
[20] | √ | √ | √ | √ | × |
[21] | √ | × | × | × | × |
This work | √ | √ | √ | √ | √ |
Indexes | |||
---|---|---|---|
SI (Direct transmission) | 0.8808 | ||
SI (m = 1) | 0.8031 | ||
SI (m = 6) | 0.2177 | ||
SI (m = 10) | 0.0985 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, K.; Liu, X.; Yang, J.; Liu, Z.; Yuan, Y. Optimal Power Allocation for a Relaying-Based Cognitive Radio Network in a Smart Grid. Energies 2017, 10, 909. https://doi.org/10.3390/en10070909
Ma K, Liu X, Yang J, Liu Z, Yuan Y. Optimal Power Allocation for a Relaying-Based Cognitive Radio Network in a Smart Grid. Energies. 2017; 10(7):909. https://doi.org/10.3390/en10070909
Chicago/Turabian StyleMa, Kai, Xuemei Liu, Jie Yang, Zhixin Liu, and Yazhou Yuan. 2017. "Optimal Power Allocation for a Relaying-Based Cognitive Radio Network in a Smart Grid" Energies 10, no. 7: 909. https://doi.org/10.3390/en10070909
APA StyleMa, K., Liu, X., Yang, J., Liu, Z., & Yuan, Y. (2017). Optimal Power Allocation for a Relaying-Based Cognitive Radio Network in a Smart Grid. Energies, 10(7), 909. https://doi.org/10.3390/en10070909