A New Hybrid Wind Power Forecaster Using the Beveridge-Nelson Decomposition Method and a Relevance Vector Machine Optimized by the Ant Lion Optimizer
Abstract
:1. Introduction
- (1)
- A new hybrid BND-ALO-RVM method for wind power forecasting is proposed, which combines Beveridge-Nelson decomposition (BND), relevance vector machine (RVM) and ant lion optimizer (ALO). Empirical results indicate that the proposed method can improve wind power forecasting accuracy and shows superiority over other compared methods. The proposed method in this paper can be a promising alternative forecasting technique for wind power, which enriches the current wind power forecasting method toolbox.
- (2)
- The Beveridge-Nelson decomposition (BND) method, which has been frequently and widely used for economic issues, is employed in energy issues for the first time. In this paper, the wind power time series are decomposed into three components, namely the deterministic, cyclical and stochastic component. Empirical results show the wind power forecasting accuracy can be improved after decomposing wind power time series by using BND, which indicates BND is an effective method for wind power time series decomposition. It can be said that this paper expands the application domains of the BND method, and enriches the data decomposition library for wind power time series.
- (3)
- Relevance vector machine (RVM) technique is employed to forecast the different decomposed components of wind power time series. To improve the forecasting performance of RVM, a new Nature-inspired meta-heuristic algorithm, namely the ant lion optimizer (ALO), is used to optimally determine the kernel width parameter of RVM model. Forecasting results reveal the ALO is effective, which can determine the optimal kernel width parameter of RVM and improve the RVM-based wind power forecasting accuracy. In our previous study [43], has was verified that the ALO can improve GM (1,1)-based power load forecasting accuracy. Therefore, ALO, as a new intelligent optimization algorithm, can be promising with a good development foreground. This paper makes a new attempt to use ALO for parameter optimization of RVM, which also enlarges the application scope of the ALO algorithm.
2. Brief Introduction of the Beveridge-Nelson Decomposition Method, Relevance Vector Machine and Ant Lion Optimizer
2.1. Beveridge-Nelson Decomposition Method (BND)
2.2. Relevance Vector Machine (RVM)
2.3. Ant Lion Optimizer (ALO)
3. The Proposed Hybrid BND-ALO-RVM Forecaster for Wind Power
4. Empirical Analysis
4.1. Wind Power Time Series Decomposition Using BND Method
4.2. Forecasting Results
4.3. Forecasting Performance Evaluation
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Zhao, H.-R.; Guo, S.; Fu, L.-W. Review on the costs and benefits of renewable energy power subsidy in China. Renew. Sustain. Energy Rev. 2014, 37, 538–549. [Google Scholar] [CrossRef]
- Kang, J.; Yuan, J.; Hu, Z.; Xu, Y. Review on wind power development and relevant policies in China during the 11th Five-Year-Plan period. Renew. Sustain. Energy Rev. 2012, 16, 1907–1915. [Google Scholar] [CrossRef]
- Hitaj, C. Wind power development in the United States. J. Environ. Econ. Manag. 2013, 65, 394–410. [Google Scholar] [CrossRef]
- Wang, J.; Botterud, A.; Bessa, R.; Keko, H.; Carvalho, L.; Issicaba, D.; Sumaili, J.; Miranda, V. Wind power forecasting uncertainty and unit commitment. Appl. Energy 2011, 88, 4014–4023. [Google Scholar] [CrossRef]
- Aigner, T.; Jaehnert, S.; Doorman, G.L.; Gjengedal, T. The effect of large-scale wind power on system balancing in Northern Europe. IEEE Trans. Sustain. Energy 2012, 3, 751–759. [Google Scholar] [CrossRef]
- Ortega-Vazquez, M.A.; Kirschen, D.S. Assessing the impact of wind power generation on operating costs. IEEE Trans. Smart Grid 2010, 1, 295–301. [Google Scholar] [CrossRef]
- Ummels, B.C.; Gibescu, M.; Pelgrum, E.; Kling, W.L.; Brand, A.J. Impacts of wind power on thermal generation unit commitment and dispatch. IEEE Trans. Energy Convers. 2007, 22, 44–51. [Google Scholar] [CrossRef]
- Soman, S.S.; Zareipour, H.; Malik, O.; Mandal, P. A Review of Wind Power and Wind Speed Forecasting Methods with Different Time Horizons. In Proceedings of the North American Power Symposium (NAPS 2010), Arlington, TX, USA, 26–28 September 2010; Institute of Electrical and Electronics Engineers: New York, NY, USA, 2010; pp. 1–8. [Google Scholar]
- Costa, A.; Crespo, A.; Navarro, J.; Lizcano, G.; Madsen, H.; Feitosa, E. A review on the young history of the wind power short-term prediction. Renew. Sustain. Energy Rev. 2008, 12, 1725–1744. [Google Scholar] [CrossRef]
- Lange, M.; Focken, U. Physical Approach to Short-Term Wind Power Prediction; Springer: New York, NY, USA, 2006. [Google Scholar]
- Landberg, L.; Watson, S.J. Short-term prediction of local wind conditions. Bound. Layer Meteorol. 1994, 70, 171–195. [Google Scholar] [CrossRef]
- Focken, U.; Lange, M.; Waldl, H.-P. Previento-A wind power prediction system with an innovative upscaling algorithm. In Proceedings of the European Wind Energy Conference, Copenhagen, Denmark, 2–6 July 2001. [Google Scholar]
- McGowin, C. California Wind Energy Forecasting System Development and Testing. Phase 1: Initial Testing; EPRI Final Report; Electric Power Reserach Institute: Palo Alto, CA, USA, 2003. [Google Scholar]
- Erdem, E.; Shi, J. ARMA based approaches for forecasting the tuple of wind speed and direction. Appl. Energy 2011, 88, 1405–1414. [Google Scholar] [CrossRef]
- Torres, J.L.; Garcia, A.; de Blas, M.; de Francisco, A. Forecast of hourly average wind speed with ARMA models in Navarre (Spain). Sol. Energy 2005, 79, 65–77. [Google Scholar] [CrossRef]
- Kavasseri, R.G.; Seetharaman, K. Day-ahead wind speed forecasting using f-ARIMA models. Renew. Energy 2009, 34, 1388–1393. [Google Scholar] [CrossRef]
- Li, G.; Shi, J. On comparing three artificial neural networks for wind speed forecasting. Appl. Energy 2010, 87, 2313–2320. [Google Scholar] [CrossRef]
- Barbounis, T.G.; Theocharis, J.B.; Alexiadis, M.C.; Dokopoulos, P.S. Long-term wind speed and power forecasting using local recurrent neural network models. IEEE Trans. Energy Convers. 2006, 21, 273–284. [Google Scholar] [CrossRef]
- Liu, Y.; Shi, J.; Yang, Y.; Lee, W.-J. Short-term wind-power prediction based on wavelet transform–support vector machine and statistic-characteristics analysis. IEEE Trans. Ind. Appl. 2012, 48, 1136–1141. [Google Scholar] [CrossRef]
- Wan, C.; Xu, Z.; Pinson, P.; Dong, Z.Y.; Wong, K.P. Probabilistic forecasting of wind power generation using extreme learning machine. IEEE Trans. Power Syst. 2014, 29, 1033–1044. [Google Scholar] [CrossRef]
- Mohammadi, K.; Shamshirband, S.; Yee, L.; Petković, D.; Zamani, M.; Ch, S. Predicting the wind power density based upon extreme learning machine. Energy 2015, 86, 232–239. [Google Scholar] [CrossRef]
- Ren, C.; An, N.; Wang, J.; Li, L.; Hu, B.; Shang, D. Optimal parameters selection for BP neural network based on particle swarm optimization: A case study of wind speed forecasting. Knowl. Based Syst. 2014, 56, 226–239. [Google Scholar] [CrossRef]
- Amjady, N.; Keynia, F.; Zareipour, H. Wind power prediction by a new forecast engine composed of modified hybrid neural network and enhanced particle swarm optimization. IEEE Trans. Sustain. Energy 2011, 2, 265–276. [Google Scholar] [CrossRef]
- Jursa, R.; Rohrig, K. Short-term wind power forecasting using evolutionary algorithms for the automated specification of artificial intelligence models. Int. J. Forecast. 2008, 24, 694–709. [Google Scholar] [CrossRef]
- Liu, D.; Niu, D.; Wang, H.; Fan, L. Short-term wind speed forecasting using wavelet transform and support vector machines optimized by genetic algorithm. Renew. Energy 2014, 62, 592–597. [Google Scholar] [CrossRef]
- Salcedo-Sanz, S.; Pastor-Sánchez, A.; Prieto, L.; Blanco-Aguilera, A.; García-Herrera, R. Feature selection in wind speed prediction systems based on a hybrid coral reefs optimization–Extreme learning machine approach. Energy Convers. Manag. 2014, 87, 10–18. [Google Scholar] [CrossRef]
- Foley, A.M.; Leahy, P.G.; Marvuglia, A.; McKeogh, E.J. Current methods and advances in forecasting of wind power generation. Renew. Energy 2012, 37, 1–8. [Google Scholar] [CrossRef]
- Osório, G.; Matias, J.; Catalão, J. Short-term wind power forecasting using adaptive neuro-fuzzy inference system combined with evolutionary particle swarm optimization, wavelet transform and mutual information. Renew. Energy 2015, 75, 301–307. [Google Scholar] [CrossRef]
- Haque, A.U.; Mandal, P.; Meng, J.; Srivastava, A.K.; Tseng, T.-L.; Senjyu, T. A novel hybrid approach based on wavelet transform and fuzzy ARTMAP networks for predicting wind farm power production. IEEE Trans. Ind. Appl. 2013, 49, 2253–2261. [Google Scholar] [CrossRef]
- Ren, Y.; Suganthan, P.; Srikanth, N. A comparative study of empirical mode decomposition-based short-term wind speed forecasting methods. IEEE Trans. Sustain. Energy 2015, 6, 236–244. [Google Scholar] [CrossRef]
- Liu, H.; Tian, H.; Liang, X.; Li, Y. New wind speed forecasting approaches using fast ensemble empirical model decomposition, genetic algorithm, Mind Evolutionary Algorithm and Artificial Neural Networks. Renew. Energy 2015, 83, 1066–1075. [Google Scholar] [CrossRef]
- Beveridge, S.; Nelson, C.R. A new approach to decomposition of economic time series into permanent and transitory components with particular attention to measurement of the ‘business cycle’. J. Monet. Econ. 1981, 7, 151–174. [Google Scholar] [CrossRef]
- Zarnowitz, V.; Ozyildirim, A. Time series decomposition and measurement of business cycles, trends and growth cycles. J. Monet. Econ. 2006, 53, 1717–1739. [Google Scholar] [CrossRef]
- Cochrane, J.H. Permanent and transitory components of GNP and stock prices. Q. J. Econ. 1994, 109, 241–265. [Google Scholar] [CrossRef]
- Carlino, G.; Sill, K. Regional income fluctuations: Common trends and common cycles. Rev. Econ. Stat. 2001, 83, 446–456. [Google Scholar] [CrossRef]
- Yan, J.; Liu, Y.; Han, S.; Qiu, M. Wind power grouping forecasts and its uncertainty analysis using optimized relevance vector machine. Renew. Sustain Energy Rev. 2013, 27, 613–621. [Google Scholar] [CrossRef]
- Matsumoto, M.; Hori, J. Classification of silent speech using support vector machine and relevance vector machine. Appl. Soft Comput. 2014, 20, 95–102. [Google Scholar] [CrossRef]
- Li, H.; Pan, D.; Chen, C.P. Intelligent prognostics for battery health monitoring using the mean entropy and relevance vector machine. IEEE Trans. Syst. Man Cybern. Syst. 2014, 44, 851–862. [Google Scholar] [CrossRef]
- Flake, J.; Moon, T.K.; McKee, M.; Gunther, J.H. Application of the relevance vector machine to canal flow prediction in the Sevier River Basin. Agric. Water Manag. 2010, 97, 208–214. [Google Scholar] [CrossRef]
- Torres, A.F.; Walker, W.R.; McKee, M. Forecasting daily potential evapotranspiration using machine learning and limited climatic data. Agric. Water Manag. 2011, 98, 553–562. [Google Scholar] [CrossRef]
- Wang, T.; Xu, H.; Han, J.; Elbouchikhi, E.; Benbouzid, M.E.H. Cascaded H-bridge multilevel inverter system fault diagnosis using a PCA and multiclass relevance vector machine approach. IEEE Trans. Power Electron. 2015, 30, 7006–7018. [Google Scholar] [CrossRef]
- Mirjalili, S. The ant lion optimizer. Adv. Eng. Softw. 2015, 83, 80–98. [Google Scholar] [CrossRef]
- Zhao, H.; Guo, S. An optimized grey model for annual power load forecasting. Energy 2016, 107, 272–286. [Google Scholar] [CrossRef]
- Morley, J.C. A state-space approach to calculating the Beveridge-Nelson decomposition. Econ. Lett. 2002, 75, 123–127. [Google Scholar] [CrossRef]
- Newbold, P. Precise and efficient computation of the Beveridge-Nelson decomposition of economic time series. J. Monét. Econ. 1990, 26, 453–457. [Google Scholar] [CrossRef]
- Tipping, M.E. Sparse Bayesian learning and the relevance vector machine. J. Mach. Learn. Res. 2001, 1, 211–244. [Google Scholar]
- Mallat, S.G. A theory for multiresolution signal decomposition: The wavelet representation. IEEE Trans. Pattern Anal. Mach. Inell. 1989, 11, 674–693. [Google Scholar] [CrossRef]
Sequence | Test Form (C,T,K) | ADF Test Value | P Value | Conclusion |
---|---|---|---|---|
(N,N,1) | −2.5705 | 0.1098 | Unstable | |
(N,N,0) | −11.5359 | 0.0000 | stable |
Methods/Criteria | BND-ALO-RVM | RVM | BND-RVM | ALO-RVM | WT-GRNN | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MAPE (%) | RMSE (MW) | MAE (MW) | MAPE (%) | RMSE (MW) | MAE (MW) | MAPE (%) | RMSE (MW) | MAE (MW) | MAPE (%) | RMSE (MW) | MAE (MW) | MAPE (%) | RMSE (MW) | MAE (MW) | |
24 June | 5.47 | 6.25 | 4.71 | 23.66 | 26.67 | 21.41 | 8.29 | 9.73 | 6.71 | 9.09 | 10.34 | 7.46 | 8.44 | 9.73 | 6.65 |
25 June | 7.23 | 8.56 | 6.78 | 35.21 | 38.18 | 34.02 | 7.83 | 8.97 | 7.22 | 8.44 | 9.86 | 7.81 | 7.97 | 9.26 | 7.36 |
26 June | 6.87 | 7.32 | 5.94 | 30.84 | 27.87 | 26.67 | 6.76 | 7.08 | 5.82 | 6.94 | 7.18 | 5.94 | 6.92 | 7.36 | 5.97 |
27 June | 10.12 | 6.60 | 5.46 | 12.98 | 9.85 | 7.89 | 12.37 | 8.23 | 6.60 | 10.76 | 7.52 | 5.77 | 12.43 | 8.24 | 6.64 |
28 June | 12.32 | 9.49 | 7.60 | 33.34 | 42.69 | 30.09 | 19.11 | 12.26 | 10.66 | 17.01 | 13.99 | 11.00 | 18.85 | 12.30 | 10.55 |
29 June | 10.69 | 9.44 | 8.13 | 34.50 | 39.83 | 33.87 | 12.01 | 10.98 | 9.42 | 10.73 | 11.26 | 9.25 | 12.07 | 11.05 | 9.43 |
30 June | 9.94 | 12.33 | 9.40 | 33.87 | 38.38 | 33.54 | 10.71 | 13.29 | 10.12 | 12.18 | 15.07 | 11.37 | 10.84 | 13.79 | 10.35 |
26–30 June | 8.95 | 8.79 | 6.86 | 29.20 | 33.64 | 26.79 | 11.01 | 10.29 | 8.08 | 10.74 | 11.10 | 8.37 | 11.07 | 10.46 | 8.13 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, S.; Zhao, H.; Zhao, H. A New Hybrid Wind Power Forecaster Using the Beveridge-Nelson Decomposition Method and a Relevance Vector Machine Optimized by the Ant Lion Optimizer. Energies 2017, 10, 922. https://doi.org/10.3390/en10070922
Guo S, Zhao H, Zhao H. A New Hybrid Wind Power Forecaster Using the Beveridge-Nelson Decomposition Method and a Relevance Vector Machine Optimized by the Ant Lion Optimizer. Energies. 2017; 10(7):922. https://doi.org/10.3390/en10070922
Chicago/Turabian StyleGuo, Sen, Haoran Zhao, and Huiru Zhao. 2017. "A New Hybrid Wind Power Forecaster Using the Beveridge-Nelson Decomposition Method and a Relevance Vector Machine Optimized by the Ant Lion Optimizer" Energies 10, no. 7: 922. https://doi.org/10.3390/en10070922
APA StyleGuo, S., Zhao, H., & Zhao, H. (2017). A New Hybrid Wind Power Forecaster Using the Beveridge-Nelson Decomposition Method and a Relevance Vector Machine Optimized by the Ant Lion Optimizer. Energies, 10(7), 922. https://doi.org/10.3390/en10070922