Effects of Combined Sorbitan Monolaurate Anti-Agglomerants on Viscosity of Water-in-Oil Emulsion and Natural Gas Hydrate Slurry
Abstract
:1. Introduction
2. Results and Discussion
2.1. Viscosities of Water-in-Oil Emulsions with Different AAs
2.2. A Typical Trend of System Viscosity during Hydrate Formation
2.3. Viscosity of Annealed Hydrate Slurry with AA-2
2.4. Equilibrium Viscosity of Hydrate Slurry with Different AAs
3. Materials and Methods
3.1. Materials
3.2. Apparatus
3.3. Procedures
3.4. Data Analysis
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Sloan, E.D. Fundamental principles and applications of natural gas hydrates. Nature 2003, 426, 353–363. [Google Scholar] [CrossRef] [PubMed]
- Sum, A.K.; Koh, C.A.; Sloan, E.D. Developing a comprehensive understanding and model of hydrate in multiphase flow: From laboratory measurements to field applications. Energy Fuels 2012, 26, 4046–4052. [Google Scholar] [CrossRef]
- Chen, J.; Sun, C.Y.; Peng, B.Z.; Liu, B.; Si, S.; Jia, M.L.; Mu, L.; Yan, K.L.; Chen, G.J. Screening and compounding of gas hydrate anti-agglomerants from commercial additives through morphology observation. Energy Fuels 2013, 27, 2488–2496. [Google Scholar] [CrossRef]
- Gao, S. Hydrate risk management at high watercuts with anti-agglomerant hydrate inhibitors. Energy Fuels 2009, 23, 2118–2121. [Google Scholar] [CrossRef]
- Huo, Z.; Freer, E.; Lamar, M.; Sannigrahi, B.; Knauss, D.; Sloan, E. Hydrate plug prevention by anti-agglomeration. Chem. Eng. Sci. 2001, 56, 4979–4991. [Google Scholar] [CrossRef]
- Kelland, M.A.; Svartås, T.M.; Andersen, L.D. Gas hydrate anti-agglomerant properties of polypropoxylates and some other demulsifiers. J. Petrol. Sci. Eng. 2009, 64, 1–10. [Google Scholar] [CrossRef]
- Shi, B.H.; Gong, J.; Sun, C.Y.; Zhao, J.K.; Ding, Y.; Chen, G.J. An inward and outward natural gas hydrates growth shell model considering intrinsic kinetics, mass and heat transfer. Chem. Eng. J. 2011, 171, 1308–1316. [Google Scholar] [CrossRef]
- Lv, X.; Shi, B.; Wang, Y.; Gong, J. Study on gas hydrate formation and hydrate slurry flow in a multiphase transportation system. Energy Fuels 2013, 27, 7294–7302. [Google Scholar] [CrossRef]
- Camargo, R.; Palermo, T.; Sinquin, A.; Glenat, P. Rheological characterization of hydrate suspensions in oil dominated systems. Ann. N. Y. Acad. Sci. 2000, 912, 906–916. [Google Scholar] [CrossRef]
- Peng, B.Z.; Chen, J.; Sun, C.Y.; Dandekar, A.; Guo, S.H.; Liu, B.; Mu, L.; Yang, L.Y.; Li, W.Z.; Chen, G.J. Flow characteristics and morphology of hydrate slurry formed from (natural gas + diesel oil/condensate oil + water) system containing anti-agglomerant. Chem. Eng. Sci. 2012, 84, 333–344. [Google Scholar] [CrossRef]
- Yan, K.L.; Sun, C.Y.; Chen, J.; Chen, L.T.; Shen, D.J.; Liu, B.; Jia, M.L.; Niu, M.; Lv, Y.N.; Li, N. Flow characteristics and rheological properties of natural gas hydrate slurry in the presence of anti-agglomerant in a flow loop apparatus. Chem. Eng. Sci. 2014, 106, 99–108. [Google Scholar] [CrossRef]
- Moradpour, H.; Chapoy, A.; Tohidi, B. Bimodal model for predicting the emulsion-hydrate mixture viscosity in high water cut systems. Fuel 2011, 90, 3343–3351. [Google Scholar] [CrossRef]
- Webb, E.B.; Koh, C.A.; Liberatore, M.W. High pressure rheology of hydrate slurries formed from water-in-mineral oil emulsions. Ind. Eng. Chem. Res. 2014, 53, 6998–7007. [Google Scholar] [CrossRef]
- Webb, E.B.; Koh, C.A.; Liberatore, M.W. Rheological properties of methane hydrate slurries formed from aot + water + oil microemulsions. Langmuir 2013, 29, 10997–11004. [Google Scholar] [CrossRef] [PubMed]
- Webb, E.B.; Rensing, P.J.; Koh, C.A.; Sloan, E.D.; Sum, A.K.; Liberatore, M.W. High-pressure rheology of hydrate slurries formed from water-in-oil emulsions. Energy Fuels 2012, 26, 3504–3509. [Google Scholar] [CrossRef]
- Yan, K.L.; Guo, K.; Sun, C.Y.; Niu, S.S.; Liu, B.; Shen, D.J.; Chen, J.; Zhong, R.Q.; Chen, G.J.; Li, Q.P. Experimental and modeling studies on the viscosity of (diesel oil + water + anti-agglomerant) system at high pressures. Fluid Phase Equilib. 2014, 377, 9–15. [Google Scholar] [CrossRef]
- Farah, M.A.; Oliveira, R.C.; Caldas, J.N.; Rajagopal, K. Viscosity of water-in-oil emulsions: Variation with temperature and water volume fraction. J. Petrol. Sci. Eng. 2005, 48, 169–184. [Google Scholar] [CrossRef]
- Pal, R.; Rhodes, E. Viscosity/concentration relationships for emulsions. J. Rheol. 1989, 33, 1021–1045. [Google Scholar] [CrossRef]
- Richardson, E.G. Über die viskosität von emulsionen. Colloid Polym. Sci. 1933, 65, 32–37. [Google Scholar] [CrossRef]
- Broughton, G.; Squires, L. The viscosity of oil-water emulsions1. J. Phys. Chem. 1937, 42, 253–263. [Google Scholar] [CrossRef]
- Lv, Y.N.; Sun, C.Y.; Liu, B.; Chen, G.J.; Gong, J. A water droplet size distribution dependent modeling of hydrate formation in water/oil emulsion. AIChE J. 2017, 63, 1010–1023. [Google Scholar] [CrossRef]
- Aman, Z.M.; Joshi, S.E.; Sloan, E.D.; Sum, A.K.; Koh, C.A. Micromechanical cohesion force measurements to determine cyclopentane hydrate interfacial properties. J. Colloid Interface Sci. 2012, 376, 283–288. [Google Scholar] [CrossRef] [PubMed]
- Aman, Z.M.; Brown, E.P.; Sloan, E.D.; Sum, A.K.; Koh, C.A. Interfacial mechanisms governing cyclopentane clathrate hydrate adhesion/cohesion. Phys. Chem. Chem. Phys. 2011, 13, 19796–19806. [Google Scholar] [CrossRef] [PubMed]
- Balakin, B.V.; Alyaev, S.; Hoffmann, A.C.; Kosinski, P. Micromechanics of agglomeration forced by the capillary bridge: The restitution of momentum. AIChE J. 2013, 59, 4045–4057. [Google Scholar] [CrossRef]
- Camargo, R.; Palermo, T. Rheological properties of hydrate suspensions in an asphaltenic crude oil. In Proceedings of the 4th International Conference on Gas Hydrates, Yokohama, Japan, 19–23 May 2002. [Google Scholar]
- Nicholas, J.W.; Dieker, L.E.; Sloan, E.D.; Koh, C.A. Assessing the feasibility of hydrate deposition on pipeline walls—Adhesion force measurements of clathrate hydrate particles on carbon steel. J. Colloid Interface Sci. 2009, 331, 322–328. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.Q.; Qin, H.B.; Ma, Q.L.; Sun, Z.F.; Yan, K.L.; Song, Z.Y.; Guo, K.; Liu, D.M.; Chen, G.J.; Sun, C.Y. Hydrate antiagglomeration performance for the active components extracted from a terrestrial plant fruit. Energy Fuels 2017, 31, 287–298. [Google Scholar] [CrossRef]
- Hoiland, S.; Askvik, K.M.; Fotland, P.; Alagic, E.; Barth, T.; Fadnes, F. Wettability of Freon hydrates in crude oil/brine emulsions. J. Colloid Interface Sci. 2005, 287, 217–225. [Google Scholar] [CrossRef] [PubMed]
- Aman, Z.M.; Koh, C.A. Interfacial phenomena in gas hydrate systems. Chem. Soc. Rev. 2016, 45, 1678–1690. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.J.; Li, W.Z.; Li, Q.P.; Sun, C.Y.; Mu, L.; Chen, J.; Peng, B.Z.; Yang, Y.T.; Meng, H. A Saponin Plant-Extract Hydrate Anti-Agglomerant. China Patent ZL201110096579.2, 16 July 2014. [Google Scholar]
- Chen, J.; Wang, Y.F.; Sun, C.Y.; Li, F.G.; Ren, N.; Jia, M.L.; Yan, K.L.; Lv, Y.N.; Liu, B.; Chen, G.J. Evaluation of gas hydrate anti-agglomerant based on laser measurement. Energy Fuels 2015, 29, 122–129. [Google Scholar] [CrossRef]
- Turner, D.J.; Miller, K.T.; Dendy Sloan, E. Methane hydrate formation and an inward growing shell model in water-in-oil dispersions. Chem. Eng. Sci. 2009, 64, 3996–4004. [Google Scholar] [CrossRef]
- Patel, N.C.; Teja, A.S. A new cubic equation of state for fluids and fluid mixtures. Chem. Eng. Sci. 1982, 37, 463–473. [Google Scholar] [CrossRef]
AA | Equation | Parameters | |
---|---|---|---|
A | k | ||
AA-1 | 4 | 1.00601 | 4.07919 |
AA-2 | 4 | 0.97219 | 1.68698 |
AA-3 | 4 | 1.07927 | 3.69215 |
AA-4 | 4 | 1.16246 | 1.69291 |
AA-5 | 4 | 1.1215 | 2.41917 |
Water Cut | Temperature/K | Conversion/% | Hydrate/Vol % | Water/Vol % | Hydrate + Water/Vol % | Oil/Vol % |
---|---|---|---|---|---|---|
5.0% | 278.2 | 71.1 | 4.5 | 1.4 | 5.9 | 94.1 |
277.2 | 74.6 | 4.7 | 1.3 | 6.0 | 94.1 | |
276.2 | 75.3 | 4.7 | 1.2 | 5.9 | 94 | |
275.2 | 78.3 | 4.9 | 1.1 | 6.0 | 94 | |
274.2 | 79.3 | 5.0 | 1 | 6.0 | 94 | |
10.0% | 278.2 | 61.3 | 7.7 | 3.8 | 11.5 | 88.5 |
277.2 | 69.5 | 8.7 | 3 | 11.7 | 88.3 | |
276.2 | 74.4 | 9.3 | 2.5 | 11.8 | 88.2 | |
275.2 | 78.4 | 9.8 | 2.1 | 11.9 | 88.1 | |
274.2 | 80.3 | 10.0 | 1.9 | 11.9 | 88.1 | |
15.0% | 278.2 | 46 | 8.6 | 7.9 | 16.5 | 83.4 |
277.2 | 52.7 | 9.8 | 6.9 | 16.7 | 83.2 | |
276.2 | 58 | 10.8 | 6.2 | 17.0 | 83 | |
275.2 | 62.9 | 11.7 | 5.4 | 17.1 | 82.9 | |
274.2 | 67.5 | 12.5 | 4.8 | 17.3 | 82.7 | |
20.0% | 278.2 | 24.6 | 6.2 | 14.9 | 21.1 | 78.9 |
277.2 | 27.7 | 6.9 | 14.2 | 21.1 | 78.8 | |
276.2 | 31.3 | 7.8 | 13.5 | 21.3 | 78.7 | |
275.2 | 33.7 | 8.4 | 13 | 21.4 | 78.6 | |
274.2 | 39.3 | 9.8 | 11.9 | 21.7 | 78.3 | |
25.0% | 278.2 | 18.8 | 5.9 | 20 | 25.9 | 74.1 |
277.2 | 22.4 | 7.0 | 19.1 | 26.1 | 73.9 | |
276.2 | 26.6 | 8.3 | 18 | 26.3 | 73.7 | |
275.2 | 33 | 10.2 | 16.4 | 26.6 | 73.4 | |
274.2 | 40.6 | 12.5 | 14.5 | 27.0 | 73 |
System | Water Cut | Conversion Ratio | Hydrate/Vol % | Water/Vol % | Hydrate + Water/% | Oil/Vol % |
---|---|---|---|---|---|---|
AA-1 at 276.2 K | 10.0 | 35.6 | 4.5 | 6.4 | 10.9 | 89.1 |
20.0 | 24.1 | 6.0 | 15.0 | 21.0 | 79.0 | |
30.0 | 14.6 | 5.5 | 25.3 | 30.8 | 69.2 | |
AA-2 at 276.2 K | 10.0 | 61.2 | 7.6 | 3.8 | 11.4 | 88.5 |
20.0 | 39.7 | 9.9 | 11.8 | 21.7 | 78.3 | |
30.0 | 23.0 | 8.6 | 22.7 | 31.3 | 68.7 | |
AA-2 at 278.2 K | 5.0 | 71.1 | 4.5 | 1.4 | 5.9 | 94.1 |
10.0 | 61.3 | 7.7 | 3.8 | 11.5 | 88.5 | |
15.0 | 46.0 | 8.6 | 8.0 | 16.6 | 83.4 | |
20.0 | 24.6 | 6.2 | 14.9 | 21.1 | 79.0 | |
25.0 | 18.8 | 5.9 | 20.0 | 25.9 | 74.1 | |
30.0 | 21.0 | 7.9 | 23.3 | 31.2 | 68.8 | |
AA-3 at 278.2 K | 5.0 | 80.6 | 5.1 | 1.0 | 6.1 | 94.0 |
10.0 | 73.5 | 9.2 | 2.6 | 11.8 | 88.2 | |
15.0 | 53.1 | 9.9 | 6.9 | 16.8 | 83.2 | |
20.0 | 53.7 | 13.3 | 9.0 | 22.3 | 77.7 | |
25.0 | 49.1 | 15.1 | 12.3 | 27.4 | 72.6 | |
30.0 | 37.7 | 13.9 | 18.1 | 32.0 | 67.9 |
Component | Mol % | Wt % | |
---|---|---|---|
C7 | Heptanes | 0.219 | 0.100 |
C8 | Octanes | 1.345 | 0.698 |
C9 | Nonanes | 3.595 | 2.094 |
C10 | Decanes | 3.703 | 2.393 |
C11 | Undecanes | 5.899 | 4.187 |
C12 | Dodecanes | 5.156 | 3.988 |
C13 | Tridecanes | 8.336 | 6.979 |
C14 | Tetradecanes | 13.612 | 12.263 |
C15 | Pentadecanes | 11.370 | 10.967 |
C16 | Hexadecanes | 10.084 | 10.369 |
C17 | Heptadecanes | 9.587 | 10.469 |
C18 | Octadecanes | 8.713 | 10.070 |
C20 | Eicosanes | 11.422 | 14.656 |
C24 | Tetracosanes | 6.807 | 10.469 |
C28+ | Octacosanes plus | 0.152 | 0.298 |
Total | 100.000 | 100.000 |
AA No. | Composition (wt %) | ||||
---|---|---|---|---|---|
Span 20 | Esters Polymer | Tetra-n-Butyl Ammonium Bromide (TBAB) | Benzimidazole | FJ-1 | |
AA-1 | 80 | 20 | |||
AA-2 | 33.3 | 66.6 | |||
AA-3 | 100 | ||||
AA-4 | 16.6 | 83.3 | |||
AA-5 | 13.3 | 86.7 |
Component | Mol % |
---|---|
N2 | 2.92 |
CO2 | 1.47 |
CH4 | 92.46 |
C2H6 | 0.49 |
C3H8 | 2.15 |
i-C4H10 | 0.33 |
n-C4H10 | 0.12 |
i-C5H12 | 0.03 |
n-C5H12 | 0.02 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lv, Y.; Guan, Y.; Guo, S.; Ma, Q.; Gong, J.; Chen, G.; Sun, C.; Guo, K.; Yang, L.; Shi, B.; et al. Effects of Combined Sorbitan Monolaurate Anti-Agglomerants on Viscosity of Water-in-Oil Emulsion and Natural Gas Hydrate Slurry. Energies 2017, 10, 1105. https://doi.org/10.3390/en10081105
Lv Y, Guan Y, Guo S, Ma Q, Gong J, Chen G, Sun C, Guo K, Yang L, Shi B, et al. Effects of Combined Sorbitan Monolaurate Anti-Agglomerants on Viscosity of Water-in-Oil Emulsion and Natural Gas Hydrate Slurry. Energies. 2017; 10(8):1105. https://doi.org/10.3390/en10081105
Chicago/Turabian StyleLv, Yining, Yintang Guan, Shudi Guo, Qinglan Ma, Jing Gong, Guangjin Chen, Changyu Sun, Kai Guo, Lanying Yang, Bohui Shi, and et al. 2017. "Effects of Combined Sorbitan Monolaurate Anti-Agglomerants on Viscosity of Water-in-Oil Emulsion and Natural Gas Hydrate Slurry" Energies 10, no. 8: 1105. https://doi.org/10.3390/en10081105
APA StyleLv, Y., Guan, Y., Guo, S., Ma, Q., Gong, J., Chen, G., Sun, C., Guo, K., Yang, L., Shi, B., Qin, W., & Qiao, Y. (2017). Effects of Combined Sorbitan Monolaurate Anti-Agglomerants on Viscosity of Water-in-Oil Emulsion and Natural Gas Hydrate Slurry. Energies, 10(8), 1105. https://doi.org/10.3390/en10081105