Energy Performance Assessment of a 2nd-Generation Vacuum Double Glazing Depending on Vacuum Layer Position and Building Type in South Korea
Abstract
:1. Introduction
2. Comparative Experiment in the Mock-Up Chamber
2.1. Experimental Overview
2.2. Comparative Experiment Results
3. Annual Energy Simulation Analysis
3.1. Simulation Overview
3.2. Simulation Result
4. Discussion and Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Jelle, B.P.; Hynd, A.; Gustavsen, A.; Arasteh, D.; Goudey, H.; Hart, R. Fenestration of today and tomorrow: A state-of-the-art review and future research opportunities. Sol. Energy Mater. Sol. Cells 2012, 96, 1–28. [Google Scholar] [CrossRef]
- Understanding the Government’s Data on U-Values. Available online: http://www.pilkington.com (accessed on 23 May 2017).
- Cuce, E.; Cuce, P.M. Vacuum glazing for highly insulating windows: Recent developments and future prospects. Renew. Sustain. Energy Rev. 2016, 54, 1345–1347. [Google Scholar] [CrossRef]
- Zoller, F. Hollow Pane of Glass. German Patent No. 387655, 1924. [Google Scholar]
- Simko, T.M.; Collins, R.E.; Beck, F.A.; Arasteh, D. Edge conduction in vacuum glazing. Proceedings of Thermal Performance of the Exterior Envelopes of Buildings VI, Clearwater Beach, FL, USA, 4–8 December 1995. [Google Scholar]
- Cho, S. Window technologies for realization of passive & zero energy house. J. JAIK 2014, 58, 21–25. [Google Scholar]
- Kim, S.-C.; Yoon, J.-H.; Shin, U.-C.; Ahn, J.-H. A Comparative experiment on thermal stress failure of vacuum glazing applied in curtain wall at spandrel area. KIEAE J. 2016, 16, 121–128. [Google Scholar] [CrossRef]
- Fang, Y.; Hyde, T.J.; Arya, F.; Hewit, N. A novel building component hybrid vacuum glazing: A modelling and experimental validation. ASHRAE Trans. 2013, 119, 430–441. [Google Scholar]
- Manz, H.; Brunner, S.; Wullschleger, L. Triple vacuum glazing: Heat transfer and basic mechanical design constraints. Sol. Energy 2006, 80, 1632–1642. [Google Scholar] [CrossRef]
- Eames, P.C. Vacuum glazing: Current performance and future prospects. Vacuum 2008, 82, 717–722. [Google Scholar] [CrossRef]
- Fang, Y.; Hyde, T.J.; Arya, F.; Hewitt, N.; Eames, P.C.; Norton, B.; Miller, S. Indium alloy-sealed vacuum glazing development and context. Renew. Sustain. Energy Rev. 2014, 37, 480–501. [Google Scholar] [CrossRef]
- Jang, C.-Y.; Kim, C.-H.; Lee, N.-E. A study on the vacuum glazing applied to the building energy efficiency rating of apartment. J. KSES 2010, 11, 96–101. [Google Scholar]
- Song, S.-B.; Son, B.-G.; Jung, S.-M. Insulation performance and building energy saving effect of vacuum insulation glass. J. KSES 2012, 11, 139–144. [Google Scholar]
- Fang, Y.; Hyde, T.J.; Arya, F.; Hewitt, N.; Wang, R.; Dai, Y. Enhancing the thermal performance of triple vacuum glazing with low-emittance coatings. Energy Build. 2015, 97, 186–195. [Google Scholar] [CrossRef]
- Kim, S.-C.; Yoon, J.-H.; Lee, H.-M. Comparative experimental study on heating and cooling energy performance of spectrally selective glazing. Sol. Energy 2016, 145, 78–89. [Google Scholar] [CrossRef]
- Energy Consumption Survey; Korea Energy Economics Institute: Uiwang, Korea, 2011; pp. 616–619.
- National Statistical Office (2006–2016). Available online: http://kosis.kr/statHtml/statHtml.do?orgId=116&tblId=DT_MLTM_5403&conn_path=I2 (accessed on 6 June 2017).
Thermal Properties of Construction | Value | |
---|---|---|
EPS insulation | Thermal conductivity | 0.0376 W/m·K |
Specific heat | 55 kJ/m3·K | |
Oriented strand board | Thermal conductivity | 0.1060 W/m·K |
Specific heat | 270 kJ/m3·K | |
Thermal conductance of external wall | 0.173 W/m2·K | |
Thermal conductance of floor | 0.173 W/m2·K | |
Thermal conductance of internal wall | 0.090 W/m2·K | |
Thermal conductance of roof | 0.173 W/m2·K |
Sensors and Equipment | Measurement Range | Error Range |
---|---|---|
T type T/C sensor | −250 °C to 400 °C | ±1.0 °C |
Outside thermometer | −40 °C to 60 °C | ±0.5 °C |
Pyranometer | 0 to 4000 W/m2 | ±0.5% |
Digital power analyzer | 0.5 to 100 kHz; 15 to 600 V; 5 mA to 20 A | 0.1% of reading 0.2% of range |
Properties | Inside Vacuum Double Glazing (IVG) | Single Vacuum Glazing (SVG) | Outside Vacuum Double Glazing (OVG) | Low-E Double Glazing (LEG) |
---|---|---|---|---|
U-value (W/m2·K) | 0.506 | 0.557 | 0.508 | 1.679 |
SHGC | 0.516 | 0.597 | 0.557 | 0.597 |
Tvis | 0.713 | 0.792 | 0.713 | 0.792 |
Parameter | Office | Residential |
---|---|---|
Heating setpoint temp. | 20 °C | 22 °C |
Cooling setpoint temp. | 26 °C | 26 °C |
Occupancy density | 0.1110 people/m2 | 0.0169 people/m2 |
Equipment power density | 11.77 W/m2 | 3.06 W/m2 |
Lighting power density | 13.60 W/m2 | 7.50 W/m2 |
External walls U-value | 0.435 W/m2·K | 0.650 W/m2·K |
Infiltration rate | 0.5 ACH | 0.7 ACH |
Minimum fresh air | 10 ℓ/s·person | - |
Month | Average Outdoor Air Temperature (°C) | Average Outdoor Relative Humidity (%) | Wind Speed (m/s) | Diffuse Solar Radiation (W/m2) | Direct Solar Radiation (W/m2) |
---|---|---|---|---|---|
Jan | −2.2 | 46.5 | 3.3 | 44.3 | 89.8 |
Feb | −0.3 | 61.7 | 4.6 | 57.8 | 111.4 |
Mar | 4.8 | 65.8 | 3.3 | 80.3 | 104.0 |
Apr | 10.8 | 69.6 | 3.8 | 98.5 | 125.1 |
May | 15.8 | 72.8 | 3.0 | 104.5 | 120.4 |
Jun | 20.5 | 73.8 | 3.0 | 118.2 | 101.3 |
Jul | 23.6 | 86.3 | 2.5 | 111.4 | 45.7 |
Aug | 25.0 | 83.0 | 3.7 | 108.8 | 48.8 |
Sep | 20.8 | 73.0 | 2.2 | 89.4 | 72.4 |
Oct | 14.5 | 66.2 | 2.1 | 66.7 | 87.7 |
Nov | 7.6 | 67.0 | 3.5 | 49.0 | 76.8 |
Dec | 1.2 | 59.4 | 2.7 | 42.6 | 60.4 |
U-Value (W/m2·K) | IVG | SVG | OVG | LEG | ||||
---|---|---|---|---|---|---|---|---|
Cooling | Heating | Cooling | Heating | Cooling | Heating | Cooling | Heating | |
0.50 | 26,168 | 17,742 | 27,291 | 16,979 | 26,721 | 17,297 | 25,788 | 19,738 |
0.45 | 26,469 | 17,082 | 27,604 | 16,345 | 27,029 | 16,656 | 26,052 | 19,112 |
0.40 | 26,773 | 16,448 | 27,928 | 15,718 | 27,344 | 16,027 | 26,333 | 18,497 |
0.35 | 27,093 | 15,804 | 28,270 | 15,080 | 27,675 | 15,388 | 26,621 | 17,868 |
0.30 | 27,430 | 15,151 | 28,634 | 14,433 | 28,028 | 14,732 | 26,923 | 17,214 |
0.25 | 27,789 | 14,485 | 29,016 | 13,780 | 28,400 | 14,071 | 27,240 | 16,565 |
0.20 | 28,167 | 13,812 | 29,423 | 13,115 | 28,789 | 13,403 | 27,575 | 15,904 |
0.15 | 28,566 | 13,141 | 29,856 | 12,460 | 29,207 | 12,741 | 27,926 | 15,226 |
0.10 | 28,996 | 12,454 | 30,319 | 11,767 | 29,655 | 12,044 | 28,310 | 14,540 |
U-Value (W/m2·K) | IVG | SVG | OVG | LEG | ||||
---|---|---|---|---|---|---|---|---|
Cooling | Heating | Cooling | Heating | Cooling | Heating | Cooling | Heating | |
0.70 | 1014 | 2932 | 1213 | 2540 | 1120 | 2634 | 937 | 3341 |
0.65 | 1029 | 2805 | 1234 | 2427 | 1137 | 2519 | 948 | 3237 |
0.60 | 1047 | 2673 | 1257 | 2309 | 1157 | 2401 | 959 | 3130 |
0.55 | 1064 | 2542 | 1280 | 2193 | 1177 | 2284 | 971 | 3023 |
0.50 | 1084 | 2408 | 1306 | 2073 | 1200 | 2163 | 984 | 2913 |
0.45 | 1105 | 2271 | 1334 | 1952 | 1225 | 2040 | 997 | 2801 |
0.40 | 1129 | 2133 | 1364 | 1829 | 1252 | 1916 | 1011 | 2688 |
0.35 | 1154 | 1992 | 1398 | 1705 | 1281 | 1790 | 1026 | 2573 |
0.30 | 1182 | 1849 | 1434 | 1578 | 1313 | 1662 | 1042 | 2455 |
0.25 | 1214 | 1703 | 1474 | 1448 | 1348 | 1531 | 1060 | 2336 |
0.20 | 1248 | 1555 | 1519 | 1316 | 1387 | 1398 | 1078 | 2214 |
0.15 | 1287 | 1404 | 1569 | 1182 | 1431 | 1263 | 1099 | 2091 |
0.10 | 1331 | 1249 | 1623 | 1048 | 1479 | 1125 | 1121 | 1966 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, S.-C.; Yoon, J.-H.; Lee, R.-D. Energy Performance Assessment of a 2nd-Generation Vacuum Double Glazing Depending on Vacuum Layer Position and Building Type in South Korea. Energies 2017, 10, 1240. https://doi.org/10.3390/en10081240
Kim S-C, Yoon J-H, Lee R-D. Energy Performance Assessment of a 2nd-Generation Vacuum Double Glazing Depending on Vacuum Layer Position and Building Type in South Korea. Energies. 2017; 10(8):1240. https://doi.org/10.3390/en10081240
Chicago/Turabian StyleKim, Seung-Chul, Jong-Ho Yoon, and Ru-Da Lee. 2017. "Energy Performance Assessment of a 2nd-Generation Vacuum Double Glazing Depending on Vacuum Layer Position and Building Type in South Korea" Energies 10, no. 8: 1240. https://doi.org/10.3390/en10081240
APA StyleKim, S. -C., Yoon, J. -H., & Lee, R. -D. (2017). Energy Performance Assessment of a 2nd-Generation Vacuum Double Glazing Depending on Vacuum Layer Position and Building Type in South Korea. Energies, 10(8), 1240. https://doi.org/10.3390/en10081240