Fractionation of Lignocellulosic Residues Coupling Steam Explosion and Organosolv Treatments Using Green Solvent γ-Valerolactone
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Steam Explosion
2.2.2. GVL-OS Extraction Procedures
2.2.3 Characterisation of Solid and Aqueous Fractions
3. Results and Discussion
3.1. Comparison between Extraction Techniques; Effect of Time and Temperature
3.2. Severity Factor (LogR0) Effect
4. Conclusions
Author Contributions
Conflicts of Interest
Abbreviations
GVL | γ-Valerolactone; |
OS | Organosolv; |
SE | Steam explosion; |
WIS | Water insoluble substrate; |
SOX | Soxhlet extraction; |
OV | Open vessel extraction; |
MAE | Microwave assisted extraction; |
Cf | Final percentage of cellulose in two-step treated sample; |
Hf | Final percentage of hemicellulose in two-step treated sample; |
Lf | Final percentage of lignin in two-step treated sample; |
Af | Final percentage of ash in two-step treated sample; |
Of | Final percentage of other components in two-step treated sample; |
Hrem | Removed hemicellulose in respect of initial hemicellulose content; |
Lext | Extracted lignin in respect of initial lignin content; |
Cent | Enrichment of cellulose in respect of initial cellulose content. |
References
- Gallezot, P. Conversion of biomass to selected chemical products. Chem. Soc. Rev. 2012, 41, 1538–1558. [Google Scholar] [CrossRef] [PubMed]
- Taherzadeh, M.J.; Karimi, K. Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: A review. Int. J. Mol. Sci. 2008, 9, 1621–1651. [Google Scholar] [CrossRef] [PubMed]
- Luo, L.; van der Voet, E.; Huppes, G. Biorefining of lignocellulosic feedstock—Technical, economic and environmental considerations. Bioresour. Technol. 2010, 101, 5023–5032. [Google Scholar] [CrossRef] [PubMed]
- Sathitsuksanoh, N.; Zhu, Z.; Templeton, N.; Rollin, J.A.; Harvey, S.P.; Zhang, Y.H.P. Saccharification of a Potential Bioenergy Crop, Phragmites australis (Common Reed), by Lignocellulose Fractionation Followed by Enzymatic Hydrolysis at Decreased Cellulase Loadings. Ind. Eng. Chem. Res. 2009, 48, 6441–6447. [Google Scholar] [CrossRef]
- Mosier, N.; Wyman, C.; Dale, B.; Elander, R.; Lee, Y.Y.; Holtzapple, M.; Ladisch, M. Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour. Technol. 2005, 96, 673–686. [Google Scholar] [CrossRef] [PubMed]
- Alvira, P.; Tomás-Pejó, E.; Ballesteros, M.; Negro, M.J. Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: A review. Bioresour. Technol. 2010, 101, 4851–4861. [Google Scholar] [CrossRef] [PubMed]
- Mood, S.H.; Golfeshan, A.H.; Tabatabaei, M.; Jouzani, G.S.; Najafi, G.H.; Gholami, M.; Ardjmand, M. Lignocellulosic biomass to bioethanol, a comprehensive review with a focus on pretreatment. Renew. Sustain. Energy Rev. 2013, 27, 77–93. [Google Scholar] [CrossRef]
- Rossi, F.; Nicolini, A. A cylindrical small size molten carbonate fuel cell: Experimental investigation on materials and improving performance solutions. Fuel Cells 2009, 9, 170–177. [Google Scholar] [CrossRef]
- Cotana, F.; Rossi, F.; Nicolini, A. A new geometry high performance small power MCFC. J. Fuel Cell Sci. Technol. 2004, 1, 25–29. [Google Scholar] [CrossRef]
- Rossi, F.; Nicolini, A. Experimental investigation on a novel electrolyte configuration for cylindrical molten carbonate fuel cells. J. Fuel Cell Sci. Technol. 2011, 8, 051012. [Google Scholar] [CrossRef]
- Zhao, X.; Cheng, K.; Liu, D. Organosolv pretreatment of lignocellulosic biomass for enzymatic hydrolysis. Appl. Microb. Biotechnol. 2009, 82, 815–827. [Google Scholar] [CrossRef] [PubMed]
- Avellar, B.K.; Glasser, W.G. Steam-assisted biomass fractionation. I. Process considerations and economic evaluation. Biomass Bioenergy 1998, 14, 205–218. [Google Scholar] [CrossRef]
- García, A.; Alriols, M.G.; Llano-Ponte, R.; Labidi, J. Energy and economic assessment of soda and organosolv biorefinery processes. Biomass Bioenergy 2011, 35, 516–525. [Google Scholar] [CrossRef]
- Huang, H.J.; Ramaswamy, S.; Tschirner, U.W.; Ramarao, B.V. A review of separation technologies in current and future biorefineries. Sep. Purif. Technol. 2008, 62, 1–21. [Google Scholar] [CrossRef]
- Wettstein, S.G.; Alonso, D.M.; Chong, Y.; Dumesic, J.A. Production of levulinic acid and gamma-valerolactone (GVL) from cellulose using GVL as a solvent in biphasic systems. Energy Environ. Sci. 2012, 5, 8199–8203. [Google Scholar] [CrossRef]
- Alonso, D.M.; Wettstein, S.G.; Dumesic, J.A. Gamma-valerolactone, a sustainable platform molecule derived from lignocellulosic biomass. Green Chem. 2013, 15, 584–595. [Google Scholar] [CrossRef]
- Wettstein, S.G.; Alonso, D.M.; Gürbüz, E.I.; Dumesic, J.A. A roadmap for conversion of lignocellulosic biomass to chemicals and fuels. Curr. Opin. Chem. Eng. 2012, 1, 218–224. [Google Scholar] [CrossRef]
- Bond, J.Q.; Alonso, D.M.; Wang, D.; West, R.M.; Dumesic, J.A. Integrated Catalytic Conversion of γ-Valerolactone to Liquid Alkenes for Transportation Fuels. Science 2010, 327, 1110–1114. [Google Scholar] [CrossRef] [PubMed]
- Hasan, M.; Viktória, F.; Róbert, T.; Andrea, B.; László, T.M.; István, T.H. Integration of Homogeneous and Heterogeneous Catalytic Processes for a Multi-step Conversion of Biomass: From Sucrose to Levulinic Acid, γ-Valerolactone, 1,4-Pentanediol, 2-Methyl-tetrahydrofuran, and Alkanes. Top. Catal. 2008, 48, 49–54. [Google Scholar]
- Dutta, S.; Pal, S. Promises in direct conversion of cellulose and lignocellulosic biomass to chemicals and fuels: Combined solvent–nanocatalysis approach for biorefinary. Biomass Bioenergy 2014, 62, 182–197. [Google Scholar] [CrossRef]
- Horvath, I.T.; Mehdi, H.; Fabos, V.; Boda, L.; Mika, L.T. [gamma]-Valerolactone-a sustainable liquid for energy and carbon-based chemicals. Green Chem. 2008, 10, 238–242. [Google Scholar] [CrossRef]
- Horvath, I.T. Solvents from nature. Green Chem. 2008, 10, 1024–1028. [Google Scholar] [CrossRef]
- Alonso, D.M.; Wettstein, S.G.; Mellmer, M.A.; Gurbuz, E.I.; Dumesic, J.A. Integrated conversion of hemicellulose and cellulose from lignocellulosic biomass. Energy Environ. Sci. 2013, 6, 76–80. [Google Scholar] [CrossRef]
- Zhang, L.; Yu, H.; Wang, P.; Li, Y. Production of furfural from xylose, xylan and corncob in gamma-valerolactone using FeCl3·6H2O as catalyst. Bioresour. Technol. 2014, 151, 355–360. [Google Scholar] [CrossRef] [PubMed]
- Luterbacher, J.S.; Rand, J.M.; Alonso, D.M.; Han, J.; Youngquist, J.T.; Maravelias, C.T.; Pfleger, B.F.; Dumesic, J.A. Nonenzymatic Sugar Production from Biomass Using Biomass-Derived γ-Valerolactone. Science 2014, 343, 277–280. [Google Scholar] [CrossRef] [PubMed]
- Lê, H.Q.; Ma, Y.; Borrega, M.; Sixta, H. Wood biorefinery based on γ-valerolactone/water fractionation. Green Chem. 2016, 18, 5466–5476. [Google Scholar] [CrossRef]
- Cotana, F.; Cavalaglio, G.; Gelosia, M.; Coccia, V.; Petrozzi, A.; Nicolini, A. Effect of Double-Step Steam Explosion Pretreatment in Bioethanol Production from Softwood. Appl. Biochem. Biotechnol. 2014, 174, 156–167. [Google Scholar] [CrossRef] [PubMed]
- Pan, X.; Arato, C.; Gilkes, N.; Gregg, D.; Mabee, W.; Pye, K.; Xiao, Z.; Zhang, X.; Saddler, J. Biorefining of softwoods using ethanol organosolv pulping: Preliminary evaluation of process streams for manufacture of fuel-grade ethanol and co-products. Biotechnol. Bioeng. 2005, 90, 473–481. [Google Scholar] [CrossRef] [PubMed]
- Koo, B.W.; Min, B.C.; Gwak, K.S.; Lee, S.M.; Choi, J.W.; Yeo, H.; Choi, I.G. Structural changes in lignin during organosolv pretreatment of Liriodendron tulipifera and the effect on enzymatic hydrolysis. Biomass Bioenergy 2012, 42, 24–32. [Google Scholar] [CrossRef]
- Zhang, Y.H.P.; Ding, S.Y.; Mielenz, J.R.; Cui, J.B.; Elander, R.T.; Laser, M.; Himmel, M.E.; McMillan, J.R.; Lynd, L.R. Fractionating recalcitrant lignocellulose at modest reaction conditions. Biotechnol. Bioeng. 2007, 97, 214–223. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Chen, H. Fractionation and characterization of lignin from steam-exploded corn stalk by sequential dissolution in ethanol–water solvent. Sep. Purif. Technol. 2013, 120, 402–409. [Google Scholar] [CrossRef]
- Lora, J.; Glasser, W. Recent Industrial Applications of Lignin: A Sustainable Alternative to Nonrenewable Materials. J. Polym. Environ. 2002, 10, 39–48. [Google Scholar] [CrossRef]
- Sluiter, J.; Sluiter, A. Summative Mass Closure; NREL, NREL/TP-510-48087; National Renewable Energy Laboratory: Golden, CO, USA, 2010; pp. 1–10.
- Overend, R.; Chornet, E.; Gascoigne, J. Fractionation of lignocellulosics by steam-aqueous pretreatments. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Sci. 1987, 321, 523–536. [Google Scholar] [CrossRef]
- Sluiter, A.; Hames, B.; Ruiz, R.; Scarlata, C.; Sluiter, J.; Templeton, D. Determination of Sugars, Byproducts, and Degradation Products in Liquid Fraction Process Samples; National Renewable Energy Laboratory: Golden, CO, USA, 2006.
- Sobhy, A.; Chaouki, J. Microwave-assisted biorefinery. In Proceedings of the 4th International Conference on Safety & Environment in Process Industry, Florence, Italy, 14–17 March 2010; Volume 19. [Google Scholar]
- Donaldson, L.A.; Wong, K.K.Y.; Mackie, K.L. Ultrastructure of steam-exploded wood. Wood Sci. Technol. 1988, 22, 103–114. [Google Scholar] [CrossRef]
- Li, J.; Henriksson, G.; Gellerstedt, G. Lignin depolymerization/repolymerization and its critical role for delignification of aspen wood by steam explosion. Bioresour. Technol. 2007, 98, 3061–3068. [Google Scholar] [CrossRef] [PubMed]
- Sannigrahi, P.; Kim, D.H.; Jung, S.; Ragauskas, A. Pseudo-lignin and pretreatment chemistry. Energy Environ. Sci. 2011, 4, 1306–1310. [Google Scholar] [CrossRef]
Hemicellulose | Cellulose | Acetyl | Lignin | Extractives | Ash | Total | Other |
---|---|---|---|---|---|---|---|
20.51% | 38.13% | 3.92% | 23.02% | 6.90% | 4.25% | 97.92% | 3.28% |
Sample Name | LogR0 | Extraction Technique | Time (min) | Temperature (°C) |
---|---|---|---|---|
Sm | 0 (milled) | SOX | 6 cycles | ≈90.0 |
S3.6 | 3.6 | SOX | 6 cycles | ≈90.0 |
S4.0 | 4 | SOX | 6 cycles | ≈90.0 |
S4.4 | 4.4 | SOX | 6 cycles | ≈90.0 |
OVAm | 0 (milled) | OV | 30.0 | 150.0 |
OVA3.6 | 3.6 | OV | 30.0 | 150.0 |
OVA4.0 | 4 | OV | 30.0 | 150.0 |
OVA4.4 | 4.4 | OV | 30.0 | 150.0 |
MAm | 0 (milled) | MAE | 30.0 | 150.0 |
MA3.6 | 3.6 | MAE | 30.0 | 150.0 |
MA4.0 | 4 | MAE | 30.0 | 150.0 |
MA4.4 | 4.4 | MAE | 30.0 | 150.0 |
MBm | 0 (milled) | MAE | 30.0 | 200.0 |
MB3.6 | 3.6 | MAE | 30.0 | 200.0 |
MB4.0 | 4 | MAE | 30.0 | 200.0 |
MB4.4 | 4.4 | MAE | 30.0 | 200.0 |
OVBm | 0 (milled) | OV | 120.0 | 150.0 |
OVB3.6 | 3.6 | OV | 120.0 | 150.0 |
OVB4.0 | 4 | OV | 120.0 | 150.0 |
OVB4.4 | 4.4 | OV | 120.0 | 150.0 |
MCm | 0 (milled) | MAE | 120.0 | 150.0 |
MC3.6 | 3.6 | MAE | 120.0 | 150.0 |
MC4.0 | 4 | MAE | 120.0 | 150.0 |
MC4.4 | 4.4 | MAE | 120.0 | 150.0 |
MDm | 0 (milled) | MAE | 120.0 | 200.0 |
MD3.6 | 3.6 | MAE | 120.0 | 200.0 |
MD4.0 | 4 | MAE | 120.0 | 200.0 |
MD4.4 | 4.4 | MAE | 120.0 | 200.0 |
Sample Name | Cf | sd (±) | Hf | sd (±) | Lf | sd (±) | Af | Of |
---|---|---|---|---|---|---|---|---|
Sm | 39.40% | 0.05 | 21.13% | 0.04 | 23.59% | 0.91 | 2.95% | 9.00% |
S3.6 | 59.44% | 0.43 | 11.90% | 0.08 | 18.81% | 0.19 | 3.33% | 8.76% |
S4.0 | 75.49% | 0.10 | 2.78% | 0.01 | 16.02% | 0.14 | 3.81% | 6.94% |
S4.4 | 78.68% | 0.06 | 0.72% | 0.01 | 13.09% | 0.25 | 4.36% | 6.63% |
OVAm | 38.31% | 0.22 | 21.91% | 0.15 | 23.81% | 0.07 | 3.07% | 8.98% |
OVA3.6 | 49.75% | 0.13 | 12.84% | 0.10 | 23.24% | 1.30 | 4.35% | 7.76% |
OVA4.0 | 70.98% | 0.27 | 3.02% | 0.07 | 15.39% | 0.16 | 4.80% | 5.10% |
OVA4.4 | 72.41% | 0.01 | 0.51% | 0.00 | 14.13% | 0.56 | 6.48% | 6.20% |
MAm | 40.39% | 0.16 | 21.86% | 0.04 | 22.55% | 0.11 | 2.52% | 8.51% |
MA3.6 | 56.41% | 0.90 | 11.95% | 0.04 | 20.28% | 1.09 | 3.41% | 5.76% |
MA4.0 | 73.50% | 0.07 | 2.65% | 0.02 | 15.68% | 0.88 | 5.47% | 2.71% |
MA4.4 | 75.41% | 0.92 | 0.78% | 0.04 | 14.92% | 1.19 | 6.39% | 2.49% |
MBm | 41.44% | 0.11 | 21.89% | 0.02 | 23.41% | 0.15 | 2.78% | 6.39% |
MB3.6 | 57.69% | 0.42 | 11.62% | 0.12 | 20.12% | 0.33 | 5.25% | 3.17% |
MB4.0 | 72.81% | 0.36 | 2.69% | 0.07 | 17.15% | 0.29 | 4.45% | 2.90% |
MB4.4 | 75.55% | 0.99 | 0.75% | 0.04 | 13.21% | 0.41 | 6.08% | 3.45% |
OVBm | 40.66% | 0.76 | 22.10% | 0.58 | 21.98% | 1.22 | 2.29% | 8.88% |
OVB3.6 | 59.57% | 0.29 | 11.98% | 0.08 | 19.03% | 0.45 | 3.06% | 4.21% |
OVB4.0 | 75.90% | 0.40 | 2.81% | 0.04 | 13.44% | 0.10 | 4.59% | 3.25% |
OVB4.4 | 77.51% | 0.44 | 0.58% | 0.01 | 13.21% | 0.35 | 6.14% | 2.56% |
MCm | 41.35% | 0.20 | 22.03% | 0.28 | 21.44% | 0.07 | 3.38% | 7.79% |
MC3.6 | 56.02% | 0.33 | 12.26% | 0.03 | 19.70% | 0.26 | 4.41% | 5.63% |
MC4.0 | 75.47% | 0.38 | 2.70% | 0 | 11.96% | 0.69 | 5.05% | 4.07% |
MC4.4 | 74.60% | 0.36 | 0.56% | 0.01 | 12.96% | 0.68 | 6.76% | 4.78% |
MDm | 43.15% | 0.20 | 22.59% | 0.09 | 22.24% | 0.03 | 2.16% | 5.86% |
MD3.6 | 60.62% | 0.27 | 11.79% | 0.09 | 18.99% | 0.04 | 3.72% | 3.07% |
MD4.0 | 76.69% | 0.03 | 2.62% | 0.01 | 12.32% | 0.30 | 4.50% | 3.20% |
MD4.4 | 75.87% | 0.17 | 0.50% | 0 | 14.65% | 0.75 | 6.37% | 2.30% |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gelosia, M.; Ingles, D.; Pompili, E.; D’Antonio, S.; Cavalaglio, G.; Petrozzi, A.; Coccia, V. Fractionation of Lignocellulosic Residues Coupling Steam Explosion and Organosolv Treatments Using Green Solvent γ-Valerolactone. Energies 2017, 10, 1264. https://doi.org/10.3390/en10091264
Gelosia M, Ingles D, Pompili E, D’Antonio S, Cavalaglio G, Petrozzi A, Coccia V. Fractionation of Lignocellulosic Residues Coupling Steam Explosion and Organosolv Treatments Using Green Solvent γ-Valerolactone. Energies. 2017; 10(9):1264. https://doi.org/10.3390/en10091264
Chicago/Turabian StyleGelosia, Mattia, David Ingles, Enrico Pompili, Silvia D’Antonio, Gianluca Cavalaglio, Alessandro Petrozzi, and Valentina Coccia. 2017. "Fractionation of Lignocellulosic Residues Coupling Steam Explosion and Organosolv Treatments Using Green Solvent γ-Valerolactone" Energies 10, no. 9: 1264. https://doi.org/10.3390/en10091264
APA StyleGelosia, M., Ingles, D., Pompili, E., D’Antonio, S., Cavalaglio, G., Petrozzi, A., & Coccia, V. (2017). Fractionation of Lignocellulosic Residues Coupling Steam Explosion and Organosolv Treatments Using Green Solvent γ-Valerolactone. Energies, 10(9), 1264. https://doi.org/10.3390/en10091264