Cost Projection of State of the Art Lithium-Ion Batteries for Electric Vehicles Up to 2030
Abstract
:1. Introduction
2. Market and Technology Landscape of Electric Vehicles
2.1. State of the Art—BEV
2.2. State of the Art—HEV
2.3. Electric Vehicle Prediction Up to 2030
3. Battery Discussion
The insertion material | |
Lithium inserted in material | |
An electron | |
A lithium-ion |
3.1. State of the Art—Anode
3.2. State of the Art—Cathode
3.3. State of the Art—Roadmap
3.4. Battery Cell Manufacturing
3.5. Process-Based Cost Modeling
3.5.1. Battery I—Cost Calculation
3.5.2. Battery II—Cost Calculation
3.6. Evolution of Cost in Time
3.7. Comparison
4. Conclusions
Author Contributions
Conflicts of Interest
References
- Hooftman, N.; Oliveira, L.; Messagie, M.; Coosemans, T.; Mierlo, J.V. Environmental Analysis of Petrol, Diesel and Electric Passenger Cars in a Belgian Urban Setting. Energies 2016, 9, 84. [Google Scholar] [CrossRef]
- Oliveira, L.; Messagie, M.; Rangaraju, S.; Sanfelix, J.; Rivas, M.H.; Mierlo, J.V. Key issues of lithium-ion batteries e from resource depletion to environmental performance indicators. J. Clean. Prod. 2015, 108, 354–362. [Google Scholar] [CrossRef]
- COP21. Available online: http://www.cop21paris.org/about/cop21/ (accessed on 19 April 2017).
- European Commission. White Paper: European Transport Policy for 2010: Time to Decide; Technical Report; European Commission: Luxemburg, 2001. [Google Scholar]
- Grunditz, E.A.; Thiringer, T. Performance Analysis of Current BEVs—Based on a Comprehensive Review of Specifications. IEEE Trans. Transp. Electr. 2016, 2, 270–289. [Google Scholar] [CrossRef]
- Wolfram, A.P.; Lutsey, N. Electric Vehicles: Literature Review of Technology Costs and Carbon Emissions; The International Council on Clean Transportation: Washington, DC, USA, 2016; pp. 1–23. [Google Scholar]
- European Alternative Fuels Observatory. Available online: http://www.eafo.eu/vehicle-statistics/m1 (accessed on 15 March 2017).
- Delucchi, M.E.; Lipman, T. An Analysis of the Retail and Lifecycle Cost of Barrery-Powered Electric Vehicles. Transp. Res. Part D 2001, 6, 371–404. [Google Scholar] [CrossRef]
- Neubauer, J.; Wood, E. The impact of range anxiety and home, workplace, and public charging infrastructure on simulated battery electric vehicle lifetime utility. J. Power Source 2014, 257, 12–20. [Google Scholar] [CrossRef]
- Rauh, N.; Franke, T.; Krems, J.F. Understanding the Impact of Electric Vehicle Driving Experience on Range Anxiety. J. Hum. Factors Ergon. Soc. 2015, 57, 177–187. [Google Scholar] [CrossRef] [PubMed]
- Franke, T.; Neumann, I.; Bühler, F.; Cocron, P.; Krems, J.F. Experiencing Range in an Electric Vehicle: Understanding Psychological Barriers. Appl. Psychol. 2012, 61, 368–391. [Google Scholar] [CrossRef]
- Franke, T.; Krems, J.F. What drives range preferences in electric vehicle users? Transp. Policy 2013, 30, 56–62. [Google Scholar] [CrossRef]
- Pearre, N.S.; Kempton, W.; Guensler, R.L.; Elango, V.V. Electric vehicles: How much range is required for a day’s driving? Transp. Res. Part C Emerg. Technol. 2011, 19, 1171–1184. [Google Scholar] [CrossRef]
- Dong, J.; Liu, C.; Lin, Z. Charging infrastructure planning for promoting battery electric vehicles: An activity-based approach using multiday travel data. Transp. Res. Part C Emerg. Technol. 2014, 38, 44–55. [Google Scholar] [CrossRef]
- Bakker, J. Contesting Range Anxiety: The Role of Electric Vehicle Charging Infrastructure in the Transportation Transition. Master’s Thesis, Eindhoven University of Technology, Eindhoven, The Netherlands, 2011. [Google Scholar]
- International Energy Agency (IEA). Technology Roadmap: Electric and Plug-in Hybrid Electric Vehicles; Technical Report; International Energy Agency (IEA): Paris, France, 2011. [Google Scholar]
- Klynveld Peat Marwick Goerdeler KPMG’s Global Automotive Executive Survey. Available online: https://assets.kpmg.com/content/dam/kpmg/xx/pdf/2017/01/global-automotive-executive-survey-2017.pdf (accessed on 16 May 2017).
- Lazard & Roland Berger. Global Automotive Supplier Study 2013. Available online: https://www.rolandberger.com/en/Publications/pub_global_automotive_supplier_study_by_roland_berger_and_lazard.html (accessed on 10 May 2017).
- International Energy Agency. Global EV Outlook 2016 Electric Vehicles Initiative; IEA: Lisbon, Portugal, 2016; pp. 1–51. [Google Scholar]
- Mac Donald, J. Electric Vehicles to Be 35% of Global New Car Sales by 2040. Available online: https://about.bnef.com/blog/electric-vehicles-to-be-35-of-global-new-car-sales-by-2040/ (accessed on 4 October 2017).
- Global Trends to 2025: A Transformed World; Lukoil: Moscow, Russia, 2015.
- King, N. Global Light Vehicle Sales Forecast to Exceed 100 Million Units in 2019. Available online: http://blog.euromonitor.com/2015/07/global-light-vehicle-sales-forecast-to-exceed-100-million-units-in-2019.html (accessed on 25 May 2017).
- Goldman Sachs. Cars 2025. Available online: http://www.goldmansachs.com/our-thinking/technology-driving-innovation/cars-2025/ (accessed on 5 April 2017).
- Price Waterhouse Coopers. PWC: Prediction; Electric Cars: A Market Outlook: The Future of Plug-in Hybrid Electric and All-Electric Vehicles in Hungary; Technical Report; PWC: Prediction: London, UK, 2014. [Google Scholar]
- Statista. Available online: https://www.statista.com/statistics/267128/outlook-on-worldwide-passenger-car-sales/ (accessed on 17 March 2017).
- Information Handling Services Automotive. Global Light Vehicle Forecast: Readying For The Next Stage; Technical Report; IHS Automotive: London, UK, 15 October 2015. [Google Scholar]
- International Energy Agency. Electric and Plug-In Hybrid Vehicle Roadmap; International Environmental Agency: Lisbon, Portugal, 2010; p. 4. [Google Scholar]
- Oica. Oica: Sales Figures; Technical Report; Oica: Paris, France, 2017. [Google Scholar]
- Deng, D. Li-ion batteries: Basics, progress, and challenges. Energy Sci. Eng. 2015, 3, 385–418. [Google Scholar] [CrossRef]
- Fuller, T.F.; Doyle, M.; Newman, J. Simulation and Optimization of the Dual Lithium Ion Insertion Cell. J. Electrochem. Soc. 1994, 141, 1. [Google Scholar] [CrossRef]
- Xu, G.L.; Wang, Q.; Fang, J.C.; Xu, Y.F.; Li, J.T.; Huang, L.; Sun, S.G. Tuning the structure and property of nanostructured cathode materials of lithium ion and lithium sulfur batteries Gui-Liang. J. Mater. Chem. A 2014, 2, 19941–19962. [Google Scholar] [CrossRef]
- Gopalakrishnan, R.; Goutam, S.; Oliveira, L.M.; Timmermans, J.M.; Omar, N.; Messagie, M.; Bossche, P.V.D.; Mierlo, J.V. A comprehensive study on rechargeable energy storage technologies. J. Electrochem. Energy Convers. Storage 2017, 13, 1–107. [Google Scholar] [CrossRef]
- Smekens, J.; Gopalakrishnan, R.; Van den Steen, N.; Omar, N.; Hegazy, O.; Hubin, A.; Van Mierlo, J. Influence of electrode density on the performance of Li-ion batteries: Experimental and simulation results. Energies 2016, 9, 104. [Google Scholar] [CrossRef]
- Kheirabadi, N.; Shafiekhani, A. Graphene/Li-Ion battery. J. Appl. Phys. 2012, 112, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Nitta, N.; Wu, F.; Lee, J.T.; Yushin, G. Li-ion battery materials: Present and future. Mater. Today 2015, 18, 252–264. [Google Scholar] [CrossRef]
- Mekonnen, Y.; Sundararajan, A.; Sarwat, A.I. A Review of Cathode and Anode Materials for Lithium-Ion Batteries. In Proceedings of the 2016 SoutheastCon, Norfolk, VA, USA, 30 March–3 April 2016; pp. 2–7. [Google Scholar]
- Su, X.; Wu, Q.; Li, J.; Xiao, X.; Lott, A.; Lu, W.; Sheldon, B.W.; Wu, J. Silicon-Based Nanomaterials for Lithium-Ion Batteries: A Review. Adv. Energy Mater. 2013, 4, 1–23. [Google Scholar] [CrossRef]
- Blomgren, G.E. The Development and Future of Lithium Ion Batteries. J. Electrochem. Soc. 2017, 164, A5019–A5025. [Google Scholar] [CrossRef]
- Fergus, J.W. Recent developments in cathode materials for lithium ion batteries. J. Power Source 2010, 195, 939–954. [Google Scholar] [CrossRef]
- Mizushima, K.; Jones, P.C.; Wiseman, P.J.; Goodenough, J.B. LixCoO2: A new cathode material for batteries of high energy density. Solid State Ion. 1981, 3–4, 171–174. [Google Scholar] [CrossRef]
- Liu, C.; Neale, Z.G.; Cao, G. Understanding electrochemical potentials of cathode materials in rechargeable batteries. Mater. Today 2016, 19, 109–123. [Google Scholar] [CrossRef]
- Julien, C.M.; Mauger, A.; Zaghib, K.; Groult, H. Comparative Issues of Cathode Materials for Li-Ion Batteries. Inorganics 2014, 2, 132–154. [Google Scholar] [CrossRef]
- Meyers, R.A.; Doeff, M.M. Encyclopedia of Sustainability Science and Technology; Springer: New York, NY, USA, 2012; pp. 529–564. [Google Scholar]
- Heyns, M.; Vereecken, P. Materials for the Next Generation Batteries (Some) Ways of Storing Electricity; Technical Report; KU Leuven: Leuven, Belgium, 2013. [Google Scholar]
- Meeus, M.; Pace, G. Current and Future Development of Battery Technology and Its Suitability within Smart Grids; Technical Report; Ghent University: Ghent, Belgium, 2013. [Google Scholar]
- Noorden, R.V. The rechargeable revolution: A better battery. Nature 2014, 507, 26–28. [Google Scholar] [CrossRef] [PubMed]
- Preefer, M. Lithium-Sulfur Batteries and Discharge Products from Cycling Why Li-S Batteries? Technical Report; Materials Research Laboratory at UCSB: Santa Barbara, CA, USA, 2016. [Google Scholar]
- Xu, W.; Wang, J.; Ding, F.; Chen, X.; Nasybulin, E.; Zhang, Y.; Zhang, J.G. Lithium metal anodes for rechargeable batteries. Energy Environ. Sci. 2014, 7, 513–537. [Google Scholar] [CrossRef]
- Aurbach, D.; Gofer, Y.; Lu, Z.; Schechter, A.; Chusid, O.; Gizbar, H.; Cohen, Y.; Ashkenazi, V.; Moshkovich, M.; Turgeman, R.; et al. A short review on the comparison between Li battery systems and rechargeable magnesium battery technology. J. Power Source 2001, 97–98, 28–32. [Google Scholar] [CrossRef]
- Figgemeier, E. Electrode Composition Comprising Carbon Naotubes, Electrochemical Cell and Method of Making Electrochemical Cells. Patent EP 3029759 A1, 6 August 2016. [Google Scholar]
- Kurfer, J.; Westermeier, M.; Tammer, C.; Reinhart, G. Production of large-area lithium-ion cells— Preconditioning , cell stacking and quality assurance. CIRP Ann. Manuf. Technol. 2012, 61, 1–4. [Google Scholar] [CrossRef]
- Field, F.R. Fundamentals of Process-Based Cost Modeling Session Goal & Outline Review of Process-Based Cost Model; Technical Report; MIT: Cambridge, MA, USA, 2017. [Google Scholar]
- Field, F.; Kirchain, R.; Roth, R. Process cost modeling: Strategic engineering and economic evaluation of Materials technologies. JOM J. Miner. Met. Mater. Soc. 2007, 59, 21–32. [Google Scholar] [CrossRef]
- Patry, G.; Romagny, A.; Martinet, S.; Froelich, D. Cost modeling of lithium-ion battery cells for automotive applications. Energy Sci. Eng. 2015, 3, 71–82. [Google Scholar] [CrossRef]
- Isaacs, J.A.; Tanwani, A.; Healy, M.L.; Dahlben, L.J. Economic assessment of single-walled carbon nanotube processes. J. Nanoparticle Res. 2010, 12, 551–562. [Google Scholar] [CrossRef]
- Nelson, P.A.; Gallagher, K.G.; Bloom, I.; Dees, D.W. Modeling the Performance and Cost of Lithium-Ion Batteries for Electric-Drive Vehicles; Argonne National Lab: Lemont, IL, USA, 2011; pp. 1–102.
- Wood, D.L.; Li, J.; Daniel, C. Prospects for reducing the processing cost of lithium ion batteries. J. Power Source 2015, 275, 234–242. [Google Scholar] [CrossRef]
- Henriksen, G.L.; Amine, K.; Liu, J.; Nelson, P.A. ANL-03/5 Materials Cost Evaluation Report for High-Power Li-Ion HEV Batteries; Argonne National Lab: Lemont, IL, USA, 2002; Volume 1.
- Lieberman, M. The Learning Curve and Pricing in the Chemical Processing industries. RAND J. Econ. 1984, 15, 213–228. [Google Scholar] [CrossRef]
- Gaines, L.; Cuenca, R. Costs of Lithium-Ion Batteries for Vehicles; Center for Transportation Research, Energy Division, Argonne National Labratorye: Lemont, IL, USA, 2000.
- Nykvist, B.; Nilsson, M. Rapidly falling costs of battery packs for electric vehicles. Nat. Clim. Chang. 2015, 5, 329–332. [Google Scholar] [CrossRef]
- Anderson, D. An evaluation of current and future costs for lithium-ion batteries for use in electrified vehicle powertrains. arXiv, 2009; arXiv:arXiv:1011.1669v3. [Google Scholar]
- Alibaba. Available online: https://www.alibaba.com/showroom/li-ion-nmc-battery.html (accessed on 15 April 2017).
- Aliexpress. Available online: http://www.aliexpress.com/popular/nmc-battery.html (accessed on 15 April 2017).
- Batteryspace. Available online: http://www.batteryspace.com/LiNiMnCo-Cells/Packs.aspx (accessed on 15 April 2017).
- Chung, D.; Elgqvist, E.; Santhanagopalan, S. Automotive Lithium-ion Cell Manufacturing: Regional Cost Structures and Supply Chain Considerations; Clean Energy Manufacturing Analysis Center (CEMAC): Golden, CO, USA, 2016. [Google Scholar]
- Ashley, S. Battling the High Cost of EV Batteries; SAE: Washington, DC, USA, 2015. [Google Scholar]
- Sweeting, J. Project Cost Estimating: Principles and Practice; Institution of Chemical Engineers: Rugby, UK, 1997; pp. 150–170. [Google Scholar]
- Lacy, S. Stem CTO: Lithium-Ion Battery Prices Fell 70% in the Last 18 Months. Available online: https://www.greentechmedia.com/articles/read/stem-cto-weve-seen-battery-prices-fall-70-in-the-last-18-months (accessed on 4 June 2017).
- Lambert, F. Electric Vehicle Battery Cost Dropped 80% in 6 Years down to $227/kWh – Tesla Claims to Be Below $190/kWh. Available online: https://electrek.co/2017/01/30/electric-vehicle-battery-cost-dropped-80-6-years-227kwh-tesla-190kwh/ (accessed on 6 May 2017).
- The Boston Consulting Group. Batteries for Electric cars: Challanges Opportunities, and the outlook to 2020; Technical Report; The Boston Consulting Group: Boston, MA, USA, 2010. [Google Scholar]
- Pillot, C. Battery Market Development for Consumer Electronics, Automotive, and Industrial: Materials Requirements and Trends. In Proceedings of the 5th Israeli Power Sources Conference 2015, Herzelia, Israel, 20–21 May 2015; Volume 1. [Google Scholar]
- Roland and Berger. Technology & Market Drivers for Stationary and Automotive Battery Systems. In Proceedings of the Batteries 2012, Nice, France, 24–26 October 2012. [Google Scholar]
- Roland and Berger. The Lithium-Ion Battery Value Chain. In Proceedings of the Batteries 2012, Nice, France, 24–26 October 2012. [Google Scholar]
- P3 Consulting Group. Cost Developments of Battery Systems; Technical Report; P3 Consulting Group, Inc.: Coral Gables, FL, USA, 2016. [Google Scholar]
- Haupt, R.; Kloyer, M.; Lange, M. Patent indicators for the technology life cycle development. Res. Policy 2007, 36, 387–398. [Google Scholar] [CrossRef]
Vehicle Segment | Brand | Model | Model Year | Battery Energy Content (kWh) | Range (km) |
---|---|---|---|---|---|
Small | Smart | Fortwo | 2014 | 17,6 | 160 |
Toyota | iQ EV | 2012 | 12 | 85 | |
Fiat | 500e | 2015 | 24 | 135 | |
Citroen | C-Zero | 2014 | 14,5 | 150 | |
Peugeot | iOn | 2014 | 14,5 | 150 | |
Mitsubitshi | i-MiEV | 2014 | 16 | 160 | |
VW | e-up! | 2013 | 18,7 | 160 | |
Chevrolet | Spark Ev | 2015 | 18,4 | 130 | |
Bollore | Bluecar | 2015 | 30 | 250 | |
Mitsubitshi | MinicabMiEV | 2014 | 16 | 150 | |
Average | 18.2 | 153 | |||
Median | 16.8 | 150 | |||
Medium-Large | BMW | i3 | 2014 | 22 | 190 |
Renault | Zoe | 2015 | 22 | 240 | |
Volvo | C30 Electric | 2015 | 24 | 145 | |
VW | e-Golf | 2016 | 24,2 | 190 | |
Nissan | Leaf (2016) | 2014 | 30 | 250 | |
Honda | FIT EV | 2012 | 20 | 130 | |
Renault | Fluence Z.E. | 2015 | 22 | 185 | |
Ford | Focus EV | 2015 | 23 | 162 | |
Kia | Soul Electric | 2015 | 27 | 212 | |
Mercedes | B-class El.Dr. | 2015 | 36 | 230 | |
BYD | e6 | 2015 | 61,4 | 205 | |
Nissan | e-NV200 | 2015 | 24 | 170 | |
Toyota | RAV 4 EV | 2014 | 41,8 | 182 | |
Tesla | Model S | 2015 | 75 | 480 | |
Tesla | Model X | 2015 | 90 | 489 | |
Average | 36.2 | 231 | |||
Median | 24.2 | 190 |
Vehicle Segment | Brand | Model | Model Year | Battery Energy Content (kWh) | Range (km) |
---|---|---|---|---|---|
Medium-Large | VW | Passat GTE | 2015 | 9,9 | 50 |
Mitsubishi | Outlander PHEV | 2013 | 12 | 52 | |
Volvo | XC90 PHEV | 2015 | 9,2 | 40 | |
Mercedes | GLC350e | 2016 | 8,7 | 34 | |
BMW | 225xe Active Tourer | 2015 | 7,6 | 41 | |
Mercedes | C350e | 2015 | 6,5 | 31 | |
BMW | 330e | 2015 | 7,6 | 40 | |
BMW | X5 40e | 2015 | 9 | 31 | |
Audi | A3 e-Tron | 2014 | 9 | 50 | |
BMW | i3 range extended | 2013 | 22 | 320 | |
Average | 18.2 | 153 | |||
Median | 9 | 41 |
Anode Material | Energy Density | Cost | Lifetime |
---|---|---|---|
(mAh/g) | |||
Graphite | 372 | Medium | Medium |
Li4Ti5O12 (LTO) | 175 | High | High |
Cathode Material | Energy Density | Cost | Lifetime |
---|---|---|---|
(Wh/kg) | |||
LiCoO2 (LCO) | 546 | Medium | Medium |
LiMn2O4 (LMO) | 410–492 | Low | Low |
LiNiMnCoO2 (NMC) | 610–650 | High | High |
LiFePO4 (LFP) | 518–587 | Medium | High |
LiNiCoAlO2 (NCA) | 680–760 | High | Medium |
Battery I | Battery II | |
---|---|---|
Positive electrode | NMC (6:2:2) | NMC (6:2:2) |
Negative electrode | Graphite | Silicon Alloy [50] |
Pack energy density | 155 Wh/kg | 205 Wh/kg |
Manufacturing Process | Material | |
---|---|---|
Electrode Manufacturing | Slurry Mixing | + Active Material |
+ Conductive agent | ||
+ Solvents | ||
+ Binder | ||
Coating | + Al/Cu foil | |
Drying | − Solvents | |
Calendaring | ||
Cutting | + Remaining al/Cu foil | |
Cell Assembly | Stacking/Winding | + Separator |
+ Adhesive Tape | ||
+ Al/Cu tabs | ||
Packaging (Pouch/Case) | + Pouch Foil/casing | |
Temporary sealing | + Solvents | |
Drying | ||
Filling | − Remaining al/Cu foil | |
Permanent Seal | ||
Formation | Formation | |
Cell Testing |
Material | Amount | Price in 2015 |
---|---|---|
(kg) | (Dollar) | |
Si73FeI7C10 | 0.6 | 2.76 |
Graphite | 0.128 | 1.25 |
Carbon nanotubes | 0.16 | 4.17 |
Carboxy methyl cellulose | 0.032 | 2.96 |
LiPAA | 0.08 | 11.25 |
Total | 1 | 22.39 |
Year | Amount of BEV (Millions) | Amount of HEV (Millions) | Market growth |
---|---|---|---|
2015 | 0.4 | 0.3 | 1 (Baseline) |
2020 | 1.8 | 3.4 | 7 |
2025 | 6.2 | 11.1 | 25 |
2030 | 10.5 | 25.8 | 52 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Berckmans, G.; Messagie, M.; Smekens, J.; Omar, N.; Vanhaverbeke, L.; Van Mierlo, J. Cost Projection of State of the Art Lithium-Ion Batteries for Electric Vehicles Up to 2030. Energies 2017, 10, 1314. https://doi.org/10.3390/en10091314
Berckmans G, Messagie M, Smekens J, Omar N, Vanhaverbeke L, Van Mierlo J. Cost Projection of State of the Art Lithium-Ion Batteries for Electric Vehicles Up to 2030. Energies. 2017; 10(9):1314. https://doi.org/10.3390/en10091314
Chicago/Turabian StyleBerckmans, Gert, Maarten Messagie, Jelle Smekens, Noshin Omar, Lieselot Vanhaverbeke, and Joeri Van Mierlo. 2017. "Cost Projection of State of the Art Lithium-Ion Batteries for Electric Vehicles Up to 2030" Energies 10, no. 9: 1314. https://doi.org/10.3390/en10091314
APA StyleBerckmans, G., Messagie, M., Smekens, J., Omar, N., Vanhaverbeke, L., & Van Mierlo, J. (2017). Cost Projection of State of the Art Lithium-Ion Batteries for Electric Vehicles Up to 2030. Energies, 10(9), 1314. https://doi.org/10.3390/en10091314