Characterisation of Tidal Flows at the European Marine Energy Centre in the Absence of Ocean Waves
Abstract
:1. Introduction
1.1. Scope of Analysis
1.2. Article Layout
1.3. Tidal Site Characterisation for Tidal Energy Applications
1.4. The Tidal Test Site at the European Marine Energy Centre
2. Flow Characterisation via Multi-Year Measurement Campaigns
2.1. Measurement Instruments
2.2. Instrument Selection and Configuration
2.3. Summary of the Acoustic Doppler Profiling Technique
3. Quality Control and Post-Processing
3.1. Exclusion of Data from Specific Profiling Regions
3.2. Exclusion of Data Due to Low Signal Amplitude
3.3. Exclusion of Data by Outlier Detection
3.4. Establishing a Reference Velocity
3.5. Turbulent Flow Metrics: Turbulence Intensity
Instrument Noise Correction
3.6. Variation of Flow Characteristics with Depth
3.7. Removing the Mean from a Time-Varying Signal
4. Ocean Surface Wave Measurement in Tidal Channels
5. Results
5.1. Data Availability and Data Sub-Set Selection through Filtering
5.2. Depth Profiles of Streamwise Velocity
5.3. Depth Profiles of Streamwise Velocity Further Filtered by Flow Acceleration
5.4. Depth Profiles of Turbulence Intensity
5.5. Depth Profiles of Turbulence Intensity with Noise Correction Implemented
5.6. Sensitivity of Turbulence Intensity to Spatial Averaging
5.7. Comparison of Mid-Depth Turbulence Intensity as Measured by SB-ADP and D-ADP
5.8. Summary Tables: Comparative Turbulence Intensity Values
6. Discussion
6.1. Processing and Filtering Data
6.2. Streamwise Flow Velocities
6.3. Turbulence Intensities
7. Conclusions
8. Availability of the Dataset
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Sellar, B. Metocean Data Set from the ReDAPT Tidal Project: Part 1 of 7. 2011–2014. Available online: http://dx.doi.org/10.7488/ds/1686 (accessed on 6 March 2017).
- Gunn, K.; Stock-Williams, C. Fall of Warness 3D Model Validation Report: ETI REDAPT MA1001 PM14 MD5.2; Technical Report; E.ON New Build & Technology: Coventry, UK, 2012. [Google Scholar]
- Afgan, I.; Ahmed, U.; Apsley, D.; Stallard, T.; Stansby, P. CFD Simulations of a Full-Scale Tidal Stream Turbine: Comparison Between Large-Eddy Simulations and Field Measurements: ETI REDAPT MA1001 MD1.4; Technical Report; School of MACE, University of Manchester: Manchester, UK, 2014. [Google Scholar]
- Smith, S.; Way, S.; Thomson, M. Environmental Modelling Validation ReportETI REDAPT MA1001 MD6.2; Technical Report; GL Garrad Hassan: Bristol, UK, 2014. [Google Scholar]
- Alstom Ocean Energy. ReDAPT—Initial Operation Power Curve (MC7.1); Technical Report; Alstom Ocean Energy: Nantes, France, 2014. [Google Scholar]
- Plymouth Marine Laboratory. ReDAPT—Final Report: Anti-Fouling Systems for Tidal Energy Devices (ME8.5); Technical Report; Plymouth Marine Laboratory: Plymouth, UK, 2014. [Google Scholar]
- DNV GL—Energy, Renewables Certification—Wave and Tidal. Horizontal Axis Tidal Turbines; Technical Report; DNV GL—Energy, Renewables Certification—Wave and Tidal: Høvik, Norway, 2014. [Google Scholar]
- Alstom Ocean Energy. ReDAPT—Public Domain Report: Final (MC7.3); Technical Report; Alstom Ocean Energy: Nantes, France, 2015. [Google Scholar]
- Sellar, B.; Sutherland, D. ReDAPT Tidal Site Characterisation: Final Report (MD3.8); Technical Report; University of Edinburgh: Edinburgh, UK, 2015. [Google Scholar]
- Milne, I.; Day, A.; Sharma, R.; Flay, R. The characterisation of the hydrodynamic loads on tidal turbines due to turbulence. Renew. Sustain. Energy Rev. 2016, 56, 851–864. [Google Scholar] [CrossRef] [Green Version]
- McNaughton, J.; Harper, S.; Sinclair, R.; Sellar, B. Measuring and modelling the power curve of a Commercial-Scale tidal turbine. In Proceedings of the 11th European Wave and Tidal Energy Conference (EWTEC), Nantes, France, 6–11 September 2015. [Google Scholar]
- Milne, I.; Sharma, R.; Flay, R.; Bickerton, S. The role of onset turbulence on tidal turbine blade loads. In Proceedings of the Australasian Fluid Mechanics Conference, Auckland, New Zealand, 5–9 December 2010. [Google Scholar]
- Blackmore, T.; Myers, L.E.; Bahaj, A.S. Effects of turbulence on tidal turbines: Implications to performance, blade loads, and condition monitoring. Int. J. Mar. Energy 2016, 14, 1–26. [Google Scholar] [CrossRef]
- MacEnri, J.; Reed, M.; Thiringer, T. Influence of tidal parameters on SeaGen flicker performance. Philos. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci. 2013, 371, 20120247. [Google Scholar] [CrossRef] [PubMed]
- Evans, P.; Armstrong, S.; Wilson, C.; Fairley, I.; Wooldridge, C.; Masters, I. Characterisation of a Highly Energetic Tidal Energy Site with Specific Reference to Hydrodynamics and Bathymetry. In Proceedings of the 10th European Wave and Tidal Energy Conference (EWTEC), Aalborg, Denmark, 2–5 September 2013. [Google Scholar]
- Fairley, I.; Evans, P.; Wooldridge, C.; Willis, M.; Masters, I. Evaluation of tidal stream resource in a potential array area via direct measurements. Renew. Energy 2013, 57, 70–78. [Google Scholar] [CrossRef]
- Lu, Y.; Lueck, R.G. Using a Broadband ADCP in a Tidal Channel. Part I: Mean Flow and Shear. J. Atmos. Ocean. Technol. 1999, 16, 1556–1567. [Google Scholar] [CrossRef]
- Thomson, J.; Polagye, B.; Richmond, M.; Durgesh, V. Quantifying turbulence for tidal power applications. In Proceedings of the MTS/IEEE Seattle (OCEANS 2010), Seattle, WA, USA, 20–23 September 2010. [Google Scholar]
- Goddijn-Murphy, L.; Woolf, D.K.; Easton, M.C. Current Patterns in the Inner Sound (Pentland Firth) from Underway ADCP Data. J. Atmos. Ocean. Technol. 2013, 30, 96–111. [Google Scholar] [CrossRef]
- Rippeth, T.; Williams, E.; Simpson, J. Reynolds Stress and Turbulent Energy Production in a Tidal Channel. J. Phys. Oceanogr. 2002, 32, 1242–1251. [Google Scholar] [CrossRef]
- Nystrom, E.A.; Rehmann, C.R.; Oberg, K.A. Evaluation of Mean Velocity and Turbulence Measurements with ADCPs. J. Hydraul. Eng. 2007, 133, 1310–1318. [Google Scholar] [CrossRef]
- Gunawan, B.; Neary, V.S. ORNL ADCP Post-Processing Guide and MATLAB Algorithms for MHK Site Flow and Turbulence Analysis; Technical Report; Oak Ridge National Laboratory: Oak Ridge, TN, USA, 2011.
- RD Instruments. ADCP Coordinate Transformation: Formulas and Calculations; Technical Report; RD Instruments, Teledyne: Poway, CA, USA, 1998. [Google Scholar]
- Sellar, B.; Harding, S.; Richmond, M. High-resolution velocimetry in energetic tidal currents using a convergent-beam acoustic Doppler profiler. Meas. Sci. Technol. 2015, 26, 085801. [Google Scholar] [CrossRef]
- Hay, A.E.; Zedel, L.; Nylund, S.; Craig, R.; Culina, J. The Vectron. In Proceedings of the 2015 IEEE/OES Eleveth Current, Waves and Turbulence Measurement (CWTM), St. Petersburg, FL, USA, 2–6 March 2015. [Google Scholar]
- Boldt, J.A. Use of Numerical Simulations to Investigate the Performance of a Virtual Acoustic Doppler Current Profiler in Characterizing Flow. Master’s Thesis, University of Illinois, Champaign, IL, USA, 2013. [Google Scholar]
- Richmond, M.; Harding, S.; Romero-Gomez, P. Numerical performance analysis of acoustic Doppler velocity profilers in the wake of an axial-flow marine hydrokinetic turbine. Int. J. Mar. Energy 2015, 11, 50–70. [Google Scholar] [CrossRef]
- Richard, J.B.; Thomson, J.; Polagye, B.; Bard, J. Method for identification of Doppler noise levels in turbulent flow measurements dedicated to tidal energy. Int. J. Mar. Energy 2013, 3, 52–64. [Google Scholar] [CrossRef]
- Durgesh, V.; Thomson, J.; Richmond, M.C.; Polagye, B.L. Noise correction of turbulent spectra obtained from acoustic Doppler velocimeters. Flow Meas. Instrum. 2014, 37, 29–41. [Google Scholar] [CrossRef]
- Goring, D.G.; Nikora, V.I. Despiking acoustic Doppler velocimeter data. J. Hydraul. Eng. 2002, 128, 117–126. [Google Scholar] [CrossRef]
- Cea, L.; Puertas, J.; Pena, L. Velocity measurements on highly turbulent free surface flow using ADV. Exp. Fluids 2007, 42, 333–348. [Google Scholar] [CrossRef]
- Donoho, D.L.; Johnstone, J.M. Ideal spatial adaptation by wavelet shrinkage. Biometrika 1994, 81, 425–455. [Google Scholar] [CrossRef]
- Muste, M.; Kim, D.; Gonzalez-Castro, J.; Burkhardt, A.; Brownson, Z. Near-Transducer Errors in Acoustic Doppler Current Profiler Measurements. In Proceedings of the World Environmental and Water Resource Congress, Omaha, NE, USA, 21–25 May 2006. [Google Scholar]
- RD Instruments. Acoustic Doppler Current Profiler Principles of Operation A Practical Primer, 2nd ed.; RD Instruments: Poway, CA, USA, 1996. [Google Scholar]
- Nortek, A.S. Comprehensive Manual; Technical Report; Nortek: Rud, Norway, 2013. [Google Scholar]
- Sutherland, D.R.J. Assessment of Mid-Depth Arrays of Single Beam Acoustic Doppler Velocity Sensors to Characterise Tidal Energy Sites. Ph.D. Thesis, University of Edinburgh, Edinburgh, UK, 2015. [Google Scholar]
- Rousseeuw, P.J.; Croux, C. Alternatives to the Median Absolute Deviation. J. Am. Stat. Assoc. 1993, 88, 1273–1283. [Google Scholar] [CrossRef]
- Reynolds, O. On the Dynamical Theory of Incompressible Viscous Fluids and the Determination of the Criterion. Philos. Trans. R. Soc. Lond. A 1895, 186, 123–164. [Google Scholar] [CrossRef]
- Pope, S. Turbulent Flows, 1st ed.; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Kolmogorov, A. A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number. J. Fluid Mech. 1962, 13, 82–85. [Google Scholar] [CrossRef]
- Gooch, S.; Thomson, J.; Polagye, B.; Meggitt, D. Site characterization for tidal power. In Proceedings of the MTS/IEEE Biloxi—Marine Technology for Our Future: Global and Local Challenges (OCEANS 2009), Biloxi, MS, USA, 26–29 October 2009; pp. 1–10. [Google Scholar]
- Lewis, M.; Neill, S.P.; Robins, P.; Hashemi, M.R.; Ward, S. Characteristics of the velocity profile at tidal-stream energy sites. Renew. Energy 2017, 114, 258–272. [Google Scholar] [CrossRef]
- Way, S.; Thomson, M. Site Charecterisation and Design Basis Report ReDAPT MD6.1; Technical Report; GL Garrad Hassan: Bristol, UK, 2011. [Google Scholar]
- Thomson, J.; Polagye, B.; Durgesh, V.; Richmond, M.C. Measurements of turbulence at two tidal energy sites in puget sound, WA. IEEE J. Ocean. Eng. 2012, 37, 363–374. [Google Scholar] [CrossRef]
- Petrie, J.; Diplas, P.; Gutierrez, M.; Nam, S. Data evaluation for acoustic Doppler current profiler measurements obtained at fixed locations in a natural river. Water Resour. Res. 2013, 49, 1003–1016. [Google Scholar] [CrossRef]
- SonTek. SonWave-Pro: Directional Wave Data Collection; Technical Report; SonTek: San Diego, CA, USA, 2001. [Google Scholar]
- Nortek, A.S. AWAC Acoustic Wave and Current Meter User Guide, 1st ed. Document. No: n3000-126. 2005. Available online: http://www.nortek-as.com/en/support/manuals (accessed on 14 January 2012).
- Sellar, B. Metocean Data Set from the ReDAPT Tidal Project: Part 2 of 7. 2011–2014. Available online: http://dx.doi.org/10.7488/ds/1687 (accessed on 12 March 2017).
ID | D-ADP Name | Date Deployed | Duration Days | ID | D-ADP Name | Date Deployed | Duration Days |
---|---|---|---|---|---|---|---|
0 | 01_NW_Dep0 | 2013-02-21 | 24 | 4 | 02_NW_Dep4 | 2014-04-09 | 0 |
1 | 01_NW_Dep1 | 2013-06-05 | 42 | 4 | 02_SE_Dep4 | 2014-04-09 | 58 |
1 | 02_SE_Dep1 | 2013-06-05 | 42 | 5a | 03_SE_Dep1 | 2014-06-20 | 46 |
2 | 01_NW_Dep2 | 2013-07-18 | 15 | 5a | 01_NW_Dep5 | 2014-06-22 | 41 |
2 | 02_SE_Dep2 | 2013-07-18 | 15 | 5b | 02_NW_Dep5 | 2014-07-07 | 40 |
3 | 01_NW_Dep3 | 2013-10-15 | 42 | 6a | TD7_01_Dep1 | 2014-09-17 | 85 |
3 | 02_SE_Dep3 | 2013-10-15 | 40 | 6b | TD7_02_Dep1 | 2014-09-17 | 71 |
Instrument Name (Manufacturer) | Acoustic Frequency (kHz) | Type | Sample Rate (Hz) | Quantity | Location |
---|---|---|---|---|---|
ADCP (RDI) | 600 | D-ADP | 0.5–2 | 2 | Seabed near-TEC |
AWAC (Nortek) | 1000 | D-ADP | 1 | 1 | Turbine ESIP-1 |
AD2CP (Nortek) | 1000 | SB-ADP | 1–4 | 16 | Turbine ESIP-1&2 |
Continental (Nortek) | 192 | SB-ADP | 1 | 1 | Turbine ESIP-2 |
AD2CP (Nortek) | 1000 | SB-ADP | 1–4 | 1 | Turbine Hub Centreline |
Turbine Installation Type | Range from Seabed (m) | Rotor Diameter (m) |
---|---|---|
TEC Floating | 20–38 | 18 |
TEC Mid-Depth | 10–30 | 20 |
TEC Deep (Bottom Third) | 9–21 | 12 |
Channel Mid-Depth | 19–21 | N/A |
Sensor | Direction | Flood (cm/s) | Ebb (cm/s) |
---|---|---|---|
SB-ADP | U | 6.2 | 6.2 |
D-ADP | U | 10.1 | 10.3 |
Ebb Tide | Flood Tide | |||||
---|---|---|---|---|---|---|
All Data | TI | All Data | TI | |||
Floating TEC | 8.4 | 9.2 | 9.0 | 9.7 | 9.8 | 1.2 |
Mid-Depth | 9.4 | 9.6 | 2.5 | 11.4 | 11.4 | 0.3 |
Turbine Installation Type | Noise Correction | TI (%) at Three Flow Speed Ranges (m/s) | |||||
---|---|---|---|---|---|---|---|
0.3 < U < 3.9 | 1.1 < U < 3.9 | 1.9 < U < 3.9 | |||||
Mean Std | Mean Std | Mean Std | |||||
D-ADP ebb tide | |||||||
Floating | No | 14.4 | 11.3 | 10.7 | 5.4 | 9.1 | 4.0 |
Floating | Yes | 12.8 | 10.1 | 9.4 | 5.3 | 8.1 | 4.1 |
Mid-Depth | No | 14.7 | 9.4 | 11.3 | 2.9 | 10.1 | 1.5 |
Mid-Depth | Yes | 12.9 | 7.7 | 10.3 | 2.7 | 9.3 | 1.5 |
Deep (Bottom Third) | No | 15.6 | 8.3 | 12.7 | 2.3 | 11.7 | 1.3 |
Deep (Bottom Third) | Yes | 13.9 | 6.5 | 11.7 | 2.1 | 11.0 | 1.3 |
Channel Mid-Depth | No | 13.7 | 9.8 | 10.3 | 3.2 | 9.0 | 1.5 |
Channel Mid-Depth | Yes | 12.0 | 8.2 | 9.2 | 3.0 | 8.1 | 1.6 |
D-ADP flood tide | |||||||
Floating | No | 15.4 | 9.4 | 10.8 | 2.1 | 10.0 | 1.3 |
Floating | Yes | 12.5 | 7.8 | 9.5 | 2.2 | 9.1 | 1.4 |
Mid-Depth | No | 16.7 | 9.0 | 12.4 | 2.1 | 11.7 | 1.3 |
Mid-Depth | Yes | 13.7 | 7.2 | 11.1 | 2.2 | 10.9 | 1.4 |
Deep (Bottom Third) | No | 17.5 | 9.1 | 13.3 | 2.2 | 12.6 | 1.5 |
Deep (Bottom Third) | Yes | 14.5 | 7.3 | 12.0 | 2.3 | 11.8 | 1.6 |
Channel Mid-Depth | No | 16.4 | 9.0 | 12.2 | 2.8 | 11.5 | 1.8 |
Channel Mid-Depth | Yes | 13.5 | 7.4 | 11.0 | 2.9 | 10.7 | 1.9 |
SB-ADP ebb tide | |||||||
Channel Mid-Depth | No | 10.8 | 6.1 | 7.9 | 1.9 | 7.3 | 1.3 |
SB-ADP flood tide | |||||||
Channel Mid-Depth | No | 11.9 | 6.3 | 8.8 | 1.4 | 8.5 | 1.1 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sellar, B.G.; Wakelam, G.; Sutherland, D.R.J.; Ingram, D.M.; Venugopal, V. Characterisation of Tidal Flows at the European Marine Energy Centre in the Absence of Ocean Waves. Energies 2018, 11, 176. https://doi.org/10.3390/en11010176
Sellar BG, Wakelam G, Sutherland DRJ, Ingram DM, Venugopal V. Characterisation of Tidal Flows at the European Marine Energy Centre in the Absence of Ocean Waves. Energies. 2018; 11(1):176. https://doi.org/10.3390/en11010176
Chicago/Turabian StyleSellar, Brian G., Gareth Wakelam, Duncan R. J. Sutherland, David M. Ingram, and Vengatesan Venugopal. 2018. "Characterisation of Tidal Flows at the European Marine Energy Centre in the Absence of Ocean Waves" Energies 11, no. 1: 176. https://doi.org/10.3390/en11010176
APA StyleSellar, B. G., Wakelam, G., Sutherland, D. R. J., Ingram, D. M., & Venugopal, V. (2018). Characterisation of Tidal Flows at the European Marine Energy Centre in the Absence of Ocean Waves. Energies, 11(1), 176. https://doi.org/10.3390/en11010176