Maximum Permissible Integration Capacity of Renewable DG Units Based on System Loads
Abstract
:1. Introduction
1.1. Motivation and Background
1.2. Literature Review
1.3. Content and Contribution
1.4. Organization of the Paper
2. System Modelling and Methodology
3. Case Study
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Nomenclature
Apparent power of DG unit | |
Improved apparent power of DG unit by considering loads and generations | |
Apparent power of the nth load | |
Short circuit power at DG integration point | |
Short circuit power at the point of common coupling | |
Voltage of DG unit | |
Nominal voltage of the grid | |
Voltage of the bus where the nth load is connected | |
Voltage deviation between the DG integration point and infinite bus for the unloaded case of the system | |
The current injected or absorbed from the ath bus | |
Notation for admittance | |
Notation for impedance | |
Impedance phase angle | |
Phase angle of the short circuit power at the point of common coupling | |
Phase angle of the short circuit power of DG integration point | |
Phase angle of power | |
Phase angle of the power for the nth load | |
Phase angle of the power for the kth DG unit |
References
- Caramia, P.; Di Mambro, E.; Varilone, P.; Verde, P. Impact of distributed generation on the voltage sag performance of transmission systems. Energies 2017, 10, 959. [Google Scholar] [CrossRef]
- Norshahrani, M.; Mokhlis, H.; Abu Bakar, A.H.; Jamian, J.J.; Sukumar, S. Progress on Protection Strategies to Mitigate the Impact of Renewable Distributed Generation on Distribution Systems. Energies 2017, 10, 1864. [Google Scholar] [CrossRef]
- Ackermann, T.; Andersson, G.; Söder, L. Distributed generation: A definition. Electr. Power Syst. Res. 2001, 57, 195–204. [Google Scholar] [CrossRef]
- Dugan, R.C.; McDermott, T.E. Distributed Generation. IEEE Ind. Appl. Mag. 2002, 8, 19–25. [Google Scholar] [CrossRef]
- Pepermans, G.; Driesen, J.; Haeseldonckx, D.; Belmans, R.; D’haeseleer, W. Distributed generation: Definition, benefits and issues. Energy Policy 2005, 33, 787–798. [Google Scholar] [CrossRef]
- Bollen, M.; Hassan, F. Integration of Distributed Generation in the Power System, 1st ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2011; ISBN 978-0-470-64337-2. [Google Scholar]
- Kashem, M.A.; Le, A.D.T.; Negnevitsky, M.; Ledwich, G. Distributed generation for minimization of power losses in distribution systems. In Proceedings of the IEEE Power Engineering Society General Meeting, Montreal, QC, Canada, 18–22 June 2006. [Google Scholar]
- Walling, R.A.; Saint, R.; Dugan, R.C.; Burke, J.; Kojovic, L.A. Summary of distributed resources impact on power delivery systems. IEEE Trans. Power Deliv. 2008, 23, 1636–1644. [Google Scholar] [CrossRef]
- Vita, V.; Alimardan, T.; Ekonomou, L. The Impact of Distributed Generation in the Distribution Networks’ Voltage Profile and Energy Losses. In Proceedings of the European Modelling Symposium, Madrid, Spain, 6–8 October 2015; pp. 260–265. [Google Scholar]
- Gonen, T. Electrical Power Distribution Engineering, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2014; ISBN 978-1-4822-0700-2. [Google Scholar]
- Dugan, R.C.; McDermott, T.E.; Ball, G.J. Planning for distributed generation. IEEE Ind. Appl. Mag. 2001, 7, 80–88. [Google Scholar] [CrossRef]
- Lazarou, S.; Vita, V.; Karampelas, P.; Ekonomou, L. A power system simulation platform for planning and evaluating distributed generation systems based on GIS. Energy Syst. 2013, 4, 379–391. [Google Scholar] [CrossRef]
- Singh, B.; Sharma, J. A review on distributed generation planning. Renew. Sustain. Energy Rev. 2017, 76, 529–544. [Google Scholar] [CrossRef]
- Theo, W.L.; Lim, J.S.; Ho, W.S.; Hashim, H.; Lee, C.T. Review of distributed generation (DG) system planning and optimisation techniques: Comparison of numerical and mathematical modelling methods. Renew. Sustain. Energy Rev. 2017, 67, 531–573. [Google Scholar] [CrossRef]
- Viral, R.; Khatod, D.K. Optimal planning of distributed generation systems in distribution system: A review. Renew. Sustain. Energy Rev. 2012, 16, 5146–5165. [Google Scholar] [CrossRef]
- Ehsan, A.; Yang, Q. Optimal integration and planning of renewable distributed generation in the power distribution networks: A review of analytical techniques. Appl. Energy 2018, 210, 44–59. [Google Scholar] [CrossRef]
- Prakash, P.; Khatod, D.K. Optimal sizing and siting techniques for distributed generation in distribution systems: A review. Renew. Sustain. Energy Rev. 2016, 57, 111–130. [Google Scholar] [CrossRef]
- Luna-Rubio, R.; Trejo-Perea, M.; Vargas-Vazquez, D.; Rios-Moreno, G.J. Optimal sizing of renewable hybrids energy systems: A review of methodologies. Sol. Energy 2012, 86, 1077–1088. [Google Scholar] [CrossRef]
- Georgilakis, P.S.; Member, S.; Hatziargyriou, N.D. Optimal Distributed Generation Placement in Power Distribution Networks: Models, Methods, and Future Research. IEEE Trans. Power Syst. 2013, 28, 3420–3428. [Google Scholar] [CrossRef]
- Sultana, U.; Khairuddin, A.B.; Aman, M.M.; Mokhtar, A.S.; Zareen, N. A review of optimum DG placement based on minimization of power losses and voltage stability enhancement of distribution system. Renew. Sustain. Energy Rev. 2016, 63, 363–378. [Google Scholar] [CrossRef]
- Bollen, M.H.J.; Rönnberg, K.S. Hosting Capacity of the Power Grid for Renewable Electricity Production and New Large Consumption Equipment. Energies 2017, 10, 1325. [Google Scholar] [CrossRef]
- Alturki, M.; Khodaei, A.; Paaso, A.; Bahramirad, S. Optimization-based distribution grid hosting capacity calculations. Appl. Energy 2017, in press. [Google Scholar] [CrossRef]
- Esmaili, M.; Firozjaee, E.C.; Shayanfar, H.A. Optimal placement of distributed generations considering voltage stability and power losses with observing voltage-related constraints. Appl. Energy 2014, 113, 1252–1260. [Google Scholar] [CrossRef]
- Aman, M.M.; Jasmon, G.B.; Bakar, A.H.A.; Mokhlis, H. A new approach for optimum DG placement and sizing based on voltage stability maximization and minimization of power losses. Energy Convers. Manag. 2013, 70, 202–210. [Google Scholar] [CrossRef]
- Shahzad, M.; Ahmad, I.; Gawlik, W.; Palensky, P. Load concentration factor based analytical method for optimal placement of multiple distribution generators for loss minimization and voltage profile improvement. Energies 2016, 9, 287. [Google Scholar] [CrossRef]
- Vita, V. Development of a Decision-Making Algorithm for the Optimum Size and Placement of Distributed Generation Units in Distribution Networks. Energies 2017, 10, 1433. [Google Scholar] [CrossRef]
- Hung, D.Q.; Mithulananthan, N.; Bansal, R.C. Analytical strategies for renewable distributed generation integration considering energy loss minimization. Appl. Energy 2013, 105, 75–85. [Google Scholar] [CrossRef]
- Borges, C.L.T.; Falcão, D.M. Optimal distributed generation allocation for reliability, losses, and voltage improvement. Int. J. Electr. Power Energy Syst. 2006, 28, 413–420. [Google Scholar] [CrossRef]
- Novoa, C.; Jin, T. Reliability centered planning for distributed generation considering wind power volatility. Electr. Power Syst. Res. 2011, 81, 1654–1661. [Google Scholar] [CrossRef]
- Mena, A.J.G.; Martin Garcia, J.A. An efficient approach for the siting and sizing problem of distributed generation. Int. J. Electr. Power Energy Syst. 2015, 69, 167–172. [Google Scholar] [CrossRef]
- Altin, M.; Oguz, E.U.; Bizkevelci, E.; Simsek, B. Distributed generation hosting capacity calculation of MV distribution feeders in Turkey. In Proceedings of the IEEE PES Innovative Smart Grid Technologies, Europe, Istanbul, Turkey, 12–15 October 2014; pp. 1–7. [Google Scholar]
- Wind Turbine Grid Connection and Interaction. Dtsch. Wind GmbH Tech-Wise A/S. 2001. Available online: https://ec.europa.eu/energy/sites/ener/files/documents/2001_fp5_brochure_energy_env.pdf (accessed on 16 December 2017).
- Yang, N.; Chen, T. A review on evaluation of maximun permissible capacity of distributed generations connected to a smart grid. In Proceedings of the 2012 International Conference on Machine Learning and Cybernetics, Xi’an, China, 15–17 July 2012; pp. 15–17. [Google Scholar]
- Ackermann, T. Wind Power in Power Systems, 2nd ed.; John Wiley & Sons Ltd.: West Sussex, UK, 2005; ISBN 978-0-470-97416-2. [Google Scholar]
- Papathanassiou, S.A.; Hatziargyriou, N.D. Technical Requirements for the Connection of Dispersed Generation to the Grid. In Proceedings of the IEEE Power Engineering Society Summer Meeting, Vancouver, BC, Canada, 15–19 July 2001; pp. 749–754. [Google Scholar]
- Papathanassiou, S.A. A technical evaluation framework for the connection of DG to the distribution network. Electr. Power Syst. Res. 2007, 77, 24–34. [Google Scholar] [CrossRef]
- Jothibasu, S.; Santoso, S. Sensitivity analysis of photovoltaic hosting capacity of distribution circuits. In Proceedings of the IEEE Power and Energy Society General Meeting (PESGM), Boston, MA, USA, 17–21 July 2016; pp. 1–5. [Google Scholar]
- Mahmud, M.A.; Hossain, M.J.; Pota, H.R. Worst case scenario for large distribution networks with distributed generation. In Proceedings of the IEEE Power and Energy Society General Meeting, Detroit, MI, USA, 24–29 July 2011; pp. 1–7. [Google Scholar]
- Ward, J.B. Equivalent Circuits for Power-Flow Studies. AIEE Trans. 1949, 68, 373–382. [Google Scholar] [CrossRef]
- Salama, M.M.A.; Chikhani, A.Y. A simplified network approach to the var control problem for radial distribution systems. IEEE Trans. Power Deliv. 1993, 8, 1529–1535. [Google Scholar] [CrossRef]
Load | Capacity | Power Factor | Connected Bus |
---|---|---|---|
0.5 MVA | 0.95 (lag.) | Bus-5 | |
0.5 MVA | 0.9 (lag.) | Bus-12 | |
0.4 MVA | 0.98 (lag.) | Bus-27 | |
0.6 MVA | 0.97 (lag.) | Bus-30 | |
1 MVA | 0.9 (lag.) | Bus-22 | |
3 MVA | 0.9 (lag.) | Bus-34 | |
* | 8.88 MVA | 0.9 (lag.) | Bus-20 |
Mathematical Models | Bus-3 | Bus-20 | ||
---|---|---|---|---|
MPC * | Highest Voltage | MPC * | Highest Voltage | |
Proposed Mathematical Model | 30.95 | 1.089 pu | 4.96 | 1.062 pu |
Equation (1) | 48.95 | 1.123 pu | 8.41 | 1.108 pu |
Equation (2) | 53.95 | 1.130 pu | 8.30 | 1.107 pu |
Equation (3) | 59.35 | 1.138 pu | 9.13 | 1.115 pu |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Doğanşahin, K.; Kekezoğlu, B.; Yumurtacı, R.; Erdinç, O.; Catalão, J.P.S. Maximum Permissible Integration Capacity of Renewable DG Units Based on System Loads. Energies 2018, 11, 255. https://doi.org/10.3390/en11010255
Doğanşahin K, Kekezoğlu B, Yumurtacı R, Erdinç O, Catalão JPS. Maximum Permissible Integration Capacity of Renewable DG Units Based on System Loads. Energies. 2018; 11(1):255. https://doi.org/10.3390/en11010255
Chicago/Turabian StyleDoğanşahin, Kadir, Bedri Kekezoğlu, Recep Yumurtacı, Ozan Erdinç, and João P. S. Catalão. 2018. "Maximum Permissible Integration Capacity of Renewable DG Units Based on System Loads" Energies 11, no. 1: 255. https://doi.org/10.3390/en11010255
APA StyleDoğanşahin, K., Kekezoğlu, B., Yumurtacı, R., Erdinç, O., & Catalão, J. P. S. (2018). Maximum Permissible Integration Capacity of Renewable DG Units Based on System Loads. Energies, 11(1), 255. https://doi.org/10.3390/en11010255