Research on Ultracapacitors in Hybrid Systems: Case Study
Abstract
:1. Introduction
2. Application of Hybrid Energy Storage for Combustion Engine Start-Up in Difficult Conditions
3. Characteristics of Energy Storage Solutions
3.1. General Characteristics of Battery and Ultracapacitor
3.2. Hybrid Energy Storage Based on Battery and Ultracapacitor
4. Description of the Test Stand and Research on Hybrid Energy Storage
4.1. Test Stand—Hybrid Energy Storage
4.2. Results of Test Stand Research
5. Conclusions
- A greater power density of the hybrid system in comparison to a battery-only system.
- The energy is available in a wider range (ultracapacitor effect). So, even if the battery is completely discharged (SOC = 0), the ultracapacitor can still deliver energy to the starter motor system, which allows for engine start-up, especially in difficult conditions (such as low ambient temperature, infrequent start-up, very high momentary current peaks, etc.).
- The reduction of costs related to the replacement of the battery (extension of the battery lifetime). In the considered system, the ultracapacitor takes over the larger part of the load, which means the battery is not loaded with high current values (maximal current values are not exceeded), which directly influences the extension of the battery lifetime [40].A disadvantage of this system is:
- Self-discharge. For the battery, the rate of self-discharge ranges from about 5% up to even 30% SOC over a one-month period depending on the type of battery and the storage conditions (e.g., ambient temperature). In the case of the ultracapacitor, the rate of self-discharge is about 6.25% per month (75% per year) [53].
Author Contributions
Funding
Conflicts of Interest
References
- Chmielewski, A.; Gumiński, R.; Mączak, J.; Radkowski, S.; Szulim, P. Aspects of balanced development of RES and distributed micro cogeneration use in Poland: Case study of a µCHP with Stirling engine. Renew. Sustain. Energy Rev. 2016, 60, 930–952. [Google Scholar] [CrossRef]
- Chia, Y.Y.; Lee, L.H.; Shafiabady, N.; Isa, D. A load predictive energy management system for supercapacitor-battery hybrid energy storage system in solar application using the Support Vector Machine. Appl. Energy 2015, 137, 588–602. [Google Scholar] [CrossRef]
- Chmielewski, A.; Możaryn, J.; Bogdziński, K.; Piórkowski, P.; Mydłowski, T.; Gumiński, R.; Mączak, J. Selected properties of the hybrid micro–installation model based on electrochemical battery and PV module. Int. J. Struct. Stab. Dyn. 2018, in press. [Google Scholar]
- Mellit, A.; Kalogirou, S.A. Artificial intelligence techniques for photovoltaic applications: A review. Prog. Energy Combust. Sci. 2008, 34, 574–632. [Google Scholar] [CrossRef]
- Jankowska, E.; Kopciuch, K.; Błażejczyk, M.; Majchrzycki, W.; Piórkowski, P.; Chmielewski, A.; Bogdziński, K. Hybrid energy storage based on ultracapacitor and lead acid battery: Case study. In Automation 2018: Advances in Intelligent Systems and Computing; Szewczyk, R., Zieliński, C., Kaliczyńska, M., Eds.; Springer: Cham, Switzerland, 2018; Volume 743, pp. 339–349. [Google Scholar]
- Piórkowski, P. Zastosowanie superkondensatorów do rozruchu silników spalinowych w trudnych warunkach (Application of supercapacitors to start combustion engines in tough conditions). Logistyka 2015, 3, 3918–3927. (In Polish) [Google Scholar]
- Maxwell Technologies. Maxwell’s Ultracapacitor-Based Engine Start Module. Available online: http://www.maxwell.com/esm/ (accessed on 4 August 2018).
- Hannan, M.A.; Lipu, M.S.H.; Hussain, A.; Mohamed, A. A review of lithium-ion battery state of charge estimation and management system in electric vehicle applications: Challenges and recommendations. Renew. Sustain. Energy Rev. 2017, 78, 834–854. [Google Scholar] [CrossRef]
- Chmielewski, A.; Szulim, P.; Gregorczyk, M.; Gumiński, R.; Mydłowski, T.; Mączak, J. Model of an electric vehicle powered by a PV cell—A case study. In Proceedings of the 2017 22nd International Conference on Methods and Models in Automation and Robotics (MMAR), Miedzyzdroje, Poland, 28–31 August 2017. [Google Scholar]
- Szumanowski, A.; Piórkowski, P.; Chang, Y. Batteries and ultracapacitors set in hybrid propulsion system. In Proceedings of the 2007 International Conference on Power Engineering, Energy and Electrical Drives, Setubal, Portugal, 12–14 April 2007. [Google Scholar]
- Chmielewski, A.; Piórkowski, P.; Bogdziński, K.; Szulim, P.; Gumiński, R. Test bench and model research of hybrid energy storage. J. Power Technol. 2017, 97, 406–415. [Google Scholar]
- Pavkovi, D.; Cipek, M.; Hrgeti, M.; Mance, M. DC bus feed-forward/feedback control for EVs with battery/ultracapacitor energy storage system. In Proceedings of the IEEE EUROCON 2017—17th International Conference on Smart Technologies, Ohrid, Macedonia, 6–8 July 2017. [Google Scholar]
- Lee, C.-H.; Hsu, S.-H. Prediction of equivalent-circuit parameters for double-layer capacitors module. IEEE Trans. Energy Convers. 2013, 28, 913–920. [Google Scholar] [CrossRef]
- Fathima, A.H.; Palanisamy, K. Optimization in microgrids with hybrid energy systems—A review. Renew. Sustain. Energy Rev. 2015, 45, 431–446. [Google Scholar] [CrossRef]
- Zheng, R.; Cai, R.; Li, M. An on-line active energy flow split strategy for battery-ultracapacitor energized PMSM driving system. In Proceedings of the IECON 2016—42nd Annual Conference of the IEEE Industrial Electronics Society, Florence, Italy, 23–26 October 2016. [Google Scholar]
- Ruba, M.; Ciornei, S.; Hodesiu, H.; Martis, C. Complete FPGA based real-time motor drive simulator with bidirectional battery and ultracapacitor power supply. In Proceedings of the 2017 10th International Symposium on Advanced Topics in Electrical Engineering (ATEE), Bucharest, Romania, 23–25 March 2017. [Google Scholar]
- Mirzaei, A.; Jusoh, A.; Salam, Z.; Adib, E.; Farzanehfard, H. Analysis and design of a high efficiency bidirectional DC-DC converter for battery and ultracapacitor applications. Simul. Model. Pract. Theory 2011, 19, 1651–1667. [Google Scholar] [CrossRef]
- Kuperman, A.; Aharon, I.; Kara, A.; Malki, S. A frequency domain approach to analyzing passive battery-ultracapacitor hybrids supplying periodic pulsed current loads. Energy Convers. Manag. 2011, 52, 3433–3438. [Google Scholar] [CrossRef]
- Marzougui, H.; Amari, M.; Kadri, A.; Bacha, F.; Ghouili, J. Energy management of fuel cell/battery/ultracapacitor in electrical hybrid vehicle. Int. J. Hydrog. Energy 2017, 42, 8857–8869. [Google Scholar] [CrossRef]
- Henson, W. Optimal battery/ultracapacitor storage combination. J. Power Sources 2008, 179, 417–423. [Google Scholar] [CrossRef]
- Hredzak, B.; Agelidis, V.G.; Demetriades, G. Application of explicit model predictive control to a hybrid battery-ultracapacitor power source. J. Power Sources 2015, 227, 84–94. [Google Scholar] [CrossRef]
- Kuperman, A.; Aharon, I. Battery-ultracapacitor hybrids for pulsed current loads: A review. Renew. Sustain. Energy Rev. 2011, 15, 981–992. [Google Scholar] [CrossRef]
- Atmaja, T.D.; Amin. Energy storage system using battery and ultracapacitor on mobile charging station for electric vehicle. Energy Procedia 2015, 68, 429–437. [Google Scholar] [CrossRef]
- Zhou, H.; Bhattacharya, T.; Tran, D.; Siew, T.S.T.; Khambadkone, A.M. Composite energy storage system involving battery and ultracapacitor with dynamic energy management in microgrid applications. IEEE Trans. Power Electron. 2011, 26, 923–930. [Google Scholar] [CrossRef]
- Patankar, M.M.; Wandhare, R.G.; Agarwal, V. A high performance power supply for an electric vehicle with solar PV, battery and ultracapacitor support for extended range and enhanced dynamic response. In Proceedings of the 2014 IEEE 40th Photovoltaic Specialist Conference (PVSC), Denver, CO, USA, 8–13 June 2014. [Google Scholar]
- Mandla, E.; Mandic, G.; Nasiri, A. Development of an electrical model for lithium–ion ultracapacitors. IEEE J. Emerg. Sel. Top. Power Electron. 2015, 3, 395–404. [Google Scholar] [CrossRef]
- Michalczuk, M.; Grzesiak, L.M.; Ufnalski, B. Experimental parameter identification of battery-ultracapacitor energy storage system. In Proceedings of the 2015 IEEE 24th International Symposium on Industrial Electronics (ISIE), Buzios, Brazil, 3–5 June 2015. [Google Scholar]
- García, X.d.T.; de la Cruz, C.; Roncero-Sánchez, P.; Parreño, A. A small-scale hybrid energy storage system for modeling and control validation purposes. In Proceedings of the IECON 2015—41st Annual Conference of the IEEE Industrial Electronics Society, Yokohama, Japan, 9–12 November 2015. [Google Scholar]
- Jayalakshmi, N.S.; Gaonkar, D.N.; Vikash, K.J.; Karthik, R.P. Battery-Ultracapacitor storage devices to mitigate power fluctuations for grid connected PV system. In Proceedings of the 2015 Annual IEEE India Conference (INDICON), New Delhi, India, 17–20 December 2015. [Google Scholar]
- Jing, W.; Lai, C.H.; Wong, S.H.W.; Wong, M.L.D. Battery-Supercapacitor hybrid energy storage system in standalone DC microgrids: A review. IET Renew. Power Gener. 2017, 11, 461–469. [Google Scholar] [CrossRef]
- Ostadi, A.; Kazerani, M. A comparative analysis of optimal sizing of battery-only, ultracapacitor-only, and battery–ultracapacitor hybrid energy storage systems for a city bus. IEEE Trans. Veh. Technol. 2015, 64, 4449–4460. [Google Scholar] [CrossRef]
- Miller, J.; Schneuwly, A. White paper: Power Electronic Interface for an Ultracapacitor as the Power Buffer in a Hybrid Electric Energy Storage System. Available online: http://www.maxwell.com/images/documents/whitepaper_powerelectronicsinterface.pdf (accessed on 25 July 2018).
- Stienecker, A.W.; Stuart, T.; Ashtiani, C. A Combined ultracapacitor-lead acid battery energy storage system for mild hybrid electric vehicles. In Proceedings of the 2005 IEEE Vehicle Power and Propulsion Conference, Chicago, IL, USA, 7–9 September 2005. [Google Scholar]
- Basiden, A.C.; Emadi, A. ADVISOR-Based model of battery and an ultra-capacitor energy source for hybrid electric vehicles. IEEE Trans. Veh. Technol. 2004, 53, 199–205. [Google Scholar] [CrossRef]
- Ismail, N.M.; Mishra, M.K. Control and operation of unified power quality conditioner with battery-ultracapacitor energy storage system. In Proceedings of the 2014 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES), Mumbai, India, 16–19 December 2014. [Google Scholar]
- Guo, F.; Ye, Y.; Sharma, R. A Modular multilevel converter based battery-ultracapacitor hybrid energy storage system for photovoltaic applications. In Proceedings of the 2015 Clemson University Power Systems Conference (PSC), Clemson, SC, USA, 10–13 March 2015. [Google Scholar]
- Guo, F.; Sharma, R. A modular multilevel converter with half-bridge submodules for hybrid energy storage systems integrating battery and ultracapacitor. In Proceedings of the 2015 IEEE Applied Power Electronics Conference and Exposition (APEC), Charlotte, NC, USA, 15–19 March 2015. [Google Scholar]
- Gu, R.; Malysz, P.; Emadi, A. A novel battery/ultracapacitor hybrid energy storage system analysis based on physics-based lithium-ion battery modeling. In Proceedings of the 2015 IEEE Transportation Electrification Conference and Expo (ITEC), Dearborn, MI, USA, 14–17 June 2015. [Google Scholar]
- Guidi, G.; Undeland, T.M.; Hori, Y. An interface converter with reduced VA ratings for battery-supercapacitor mixed systems. In Proceedings of the 2007 Power Conversion Conference, Nagoya, Japan, 2–5 April 2007. [Google Scholar]
- Chmielewski, A.; Bogdziński, K.; Gumiński, R.; Szulim, P.; Piórkowski, P.; Możaryn, J.; Mączak, J. Operational Research of VRLA Battery. In Automation 2018: Advances in Intelligent Systems and Computing; Szewczyk, R., Zieliński, C., Kaliczyńska, M., Eds.; Springer: Cham, Switzerland, 2018; Volume 743, pp. 783–791. [Google Scholar]
- Możaryn, J.; Chmielewski, A. Selected parameters prediction of energy storage system using recurrent neural networks. In Proceedings of the 10th IFAC Symposium on Fault Detection, Supervision and Safety for Techn. Proc.—SAFEPROCESS, Warsaw, Poland; IFAC-PapersOnLine 2018; Elsevier: New York, NY, USA, 2018; in press. [Google Scholar]
- Johnson, B.A.; White, R.E. Characterization of commercially available lithium-ion batteries. J. Power Sources 1998, 70, 48–54. [Google Scholar] [CrossRef]
- Dürr, M.; Cruden, A.; Gair, S.; McDonald, J.R. Dynamic model of a lead acid battery for use in a domestic fuel cell system. J. Power Sources 2006, 161, 1400–1411. [Google Scholar] [CrossRef]
- Simpson, C. Characteristics of Rechargeable Batteries. Available online: http://www.ti.com/lit/an/snva533/snva533.pdf (accessed on 23 July 2018).
- Li, W.; Pang, Y.; Zhu, T.; Wang, Y.; Xia, Y. A gel polymer electrolyte based lithium-sulfur battery with low self-discharge. Solid State Ion. 2018, 318, 82–87. [Google Scholar] [CrossRef]
- Wang, L.; He, Y.-B.; Shen, L.; Lei, D.; Ma, J.; Ye, H.; Shi, K.; Li, B.; Kang, F. Ultra-small self-discharge and stable lithium-sulfur batteries achieved by synergetic effects of multicomponent sandwich-type composite interlayer. Nano Energy 2018, 50, 367–375. [Google Scholar] [CrossRef]
- Knap, V.; Stroe, D.-I.; Swierczynski, M.; Purkayastha, R.; Propp, K.; Teodorescu, R.; Schaltz, E. A self-discharge model of lithium-sulfur batteries based on direct shuttle current measurement. J. Power Sources 2016, 336, 325–331. [Google Scholar] [CrossRef]
- Wang, Y.; Qiao, X.; Zhang, C.; Zhou, X. Self-discharge of a hybrid supercapacitor with incorporated galvanic cell components. Energy 2018, 159, 1035–1045. [Google Scholar] [CrossRef]
- AI-Mahmoud, S.M.; Dibden, J.W.; Owen, J.R.; Denuault, G.; Garcia-Araez, N. A simple, experiment-based model of the initial self-discharge of lithium-sulphur batteries. J. Power Sources 2016, 306, 323–328. [Google Scholar] [CrossRef] [Green Version]
- Zhu, W.H.; Zhu, Y.; Tatarchuk, B.J. Self-discharge characteristics and performance degradation of Ni-MH batteries for storage applications. Int. J. Hydrog. Energy 2014, 39, 19789–19798. [Google Scholar] [CrossRef]
- Sun, S.; Guan, T.; Shen, B.; Leng, K.; Gao, Y.; Cheng, X.; Yin, G. Changes of degradation mechanisms of LiFePO4/graphite batteries cycled at different ambient temperatures. Electrochim. Acta 2017, 237, 248–258. [Google Scholar] [CrossRef]
- Demircalı, A.; Sergeant, P.; Koroglu, S.; Kesler, S.; Öztürk, E.; Tumbek, M. Influence of the temperature on energy management in battery-ultracapacitor electric vehicles. J. Clean. Prod. 2018, 176, 716–725. [Google Scholar] [CrossRef]
- Kowal, J.; Avaroglu, E.; Chamekh, F.; Šenfelds, A.; Thien, T.; Wijaya, D.; Sauer, D.U. Detailed analysis of the self-discharge of supercapacitors. J. Power Sources 2011, 196, 573–579. [Google Scholar] [CrossRef]
- Reddy, K.J.; Natarajan, S. Energy sources and multi-input DC-DC converters used in hybrid electric vehicle applications—A review. Int. J. Hydrog. Energy 2018, 43, 17387–17408. [Google Scholar] [CrossRef]
- Blasius, E.; Wang, Z. Effects of charging battery electric vehicles on local grid regarding standardized load profile in administration sector. Appl. Energy 2018, 224, 330–339. [Google Scholar] [CrossRef]
- The Act on Road Traffic in Poland. Available online: https://prawooruchudrogowym.pl/ (accessed on 12 September 2018). (In Polish).
- Matam, M.; Barry, V.R. Improved performance of Dynamic Photovoltaic Array under repeating shade conditions. Energy Convers. Manag. 2018, 168, 639–650. [Google Scholar] [CrossRef]
- Buller, S.; Karden, E.; Kok, D.; De Doncker, R.W. Modeling the dynamic behavior of supercapacitors using impedance spectroscopy. IEEE Trans. Ind. Appl. 2002, 38, 1622–1626. [Google Scholar] [CrossRef]
- Ramadan, H.S.; Becherif, M.; Claude, F. Extended Kalman filter for accurate state of charge estimation of lithium-based batteries: A comparative analysis. Int. J. Hydrog. Energy 2017, 42, 29033–29046. [Google Scholar] [CrossRef]
- Mohamed, A.H.; Schwarz, K.P. Adaptive Kalman filtering for INS/GPS. J. Geod. 1999, 73, 193–203. [Google Scholar] [CrossRef]
- He, H.; Xiong, R.; Zhang, X.; Sun, F.; Fan, J.X. State-of-Charge estimation of the lithium-ion, battery using an adaptive extended Kalman filter based on an improved Thevenin model. IEEE Trans. Veh. Technol. 2011, 60, 1461–1469. [Google Scholar]
- Chmielewski, A.; Piórkowski, P.; Gumiński, R.; Bogdziński, K.; Możaryn, J. Model-based Research on Ultracapacitors. In Automation 2018: Advances in Intelligent Systems and Computing; Szewczyk, R., Zieliński, C., Kaliczyńska, M., Eds.; Springer: Cham, Switzerland, 2018; Volume 743, pp. 254–264. [Google Scholar]
- Zou, C.; Hu, X.; Wei, Z.; Tang, X. Electrothermal dynamics-conscious lithium-ion battery cell-level charging management via state-monitored predictive control. Energy 2017, 141, 250–259. [Google Scholar] [CrossRef]
- Goh, C.T.; Cruden, A. Automated high current cycling test system for supercapacitor characterisation. In Proceedings of the 2012 International Symposium on Power Electronics, Electrical Drives, Automation and Motion, Sorrento, Italy, 20–22 June 2012. [Google Scholar]
- Mahon, P.J.; Paul, G.L.; Keshishian, S.M.; Vassallo, A.M. Measurement and modelling of the high-power performance of carbon-based supercapacitors. J. Power Sources 2000, 91, 68–76. [Google Scholar] [CrossRef]
- Rafik, F.; Gualous, H.; Gallay, R.; Crausaz, A.; Berthon, A. Frequency, thermal and voltage supercapacitor characterization and modeling. J. Power Sources 2007, 165, 928–934. [Google Scholar] [CrossRef]
- Nikolov, G.T. High current source-measure unit based on low cost DAQ. In Proceedings of the Electronics’ 2008, Sozopol, Bulgaria, 24–26 September 2008. [Google Scholar]
- Cheng, Z.; Chen, W.; Li, Q.; Jiang, Z.; Yang, Z. Modeling and dynamic simulation of an efficient energy storage component- supercapacitor. In Proceedings of the 2010 Asia-Pacific Power and Energy Engineering Conference, Chengdu, China, 28–31 March 2010. [Google Scholar]
- Mu, H.; Xiong, R.; Zheng, H.; Chang, Y.; Chen, Z. A novel fractional order model based state-of-charge estimation method for lithium-ion battery. Appl. Energy 2017, 207, 384–393. [Google Scholar] [CrossRef]
- Chmielewski, A.; Możaryn, J.; Piórkowski, P.; Gumiński, R.; Bogdziński, K. Modelling of Ultracapacitors Using Recurrent Artificial Neural Network. In Automation 2018: Advances in Intelligent Systems and Computing; Szewczyk, R., Zieliński, C., Kaliczyńska, M., Eds.; Springer: Cham, Switzerland, 2018. [Google Scholar]
- Directives and Regulations on Motor Vehicles, Their Trailers, Systems and Components. Available online: https://ec.europa.eu/growth/sectors/automotive/legislation/motor-vehicles-trailers_en (accessed on 13 September 2018).
- ATA Industry Technical Council. Heavy Vehicle Electrical Wiring—Technical Advisory Procedure, 2nd ed.; Australian Tracking Association: Forrest, Australia, 2015; Available online: https://www.truck.net.au/system/files/industry-resources/TAPS%20-%20heavy%20vehicle%20electrical%20wiring%20final_0_0.pdf (accessed on 23 September 2018).
- Australian Government, Department of Infrastructure, Regional Development and Cities. Available online: https://infrastructure.gov.au/vehicles/design/ (accessed on 14 September 2018).
- Heavy Duty Starters and Alternators. Available online: http://www.delcoremy.com/ (accessed on 14 September 2018).
- European Committee for Electrotechnical Standardization. Lead-Acid Starter Batteries—Part 1: General Requirements and Methods of Test; National Standards Authority of Ireland: Dublin, Ireland, 2015. [Google Scholar]
- Lead-Acid Starter Batteries. Batteries for Micro-Cycle Applications; BSI: London, UK, 2015. [Google Scholar]
- Lead-Acid Starter Batteries—Part 4: Dimensions of Batteries for Heavy Vehicles. Available online: https://infostore.saiglobal.com/preview/is/en/2009/i.s.en50342-4-2009.pdf?sku=1384606 (accessed on 23 September 2018).
- BCI Group 31. Available online: https://www.impactbattery.com/batteries/voltage/12v/group-31/ (accessed on 14 September 2018).
Parameter Name | Parameter Value/Attribute |
---|---|
Displacement | 1896 cm3 |
Cylinder diameter | 79.5 mm |
Piston stroke | 95.5 mm |
Compression ratio | 19.5 |
Configuration | In-line 4-cylinder |
Number of cylinders | 4 |
Number of valves | 8 |
Injection system | fuel injection pump |
Maximum power | 77 kW/4000 rpm |
Maximum torque | 250 Nm/1900 rpm |
Version | BXE |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Piórkowski, P.; Chmielewski, A.; Bogdziński, K.; Możaryn, J.; Mydłowski, T. Research on Ultracapacitors in Hybrid Systems: Case Study. Energies 2018, 11, 2551. https://doi.org/10.3390/en11102551
Piórkowski P, Chmielewski A, Bogdziński K, Możaryn J, Mydłowski T. Research on Ultracapacitors in Hybrid Systems: Case Study. Energies. 2018; 11(10):2551. https://doi.org/10.3390/en11102551
Chicago/Turabian StylePiórkowski, Piotr, Adrian Chmielewski, Krzysztof Bogdziński, Jakub Możaryn, and Tomasz Mydłowski. 2018. "Research on Ultracapacitors in Hybrid Systems: Case Study" Energies 11, no. 10: 2551. https://doi.org/10.3390/en11102551
APA StylePiórkowski, P., Chmielewski, A., Bogdziński, K., Możaryn, J., & Mydłowski, T. (2018). Research on Ultracapacitors in Hybrid Systems: Case Study. Energies, 11(10), 2551. https://doi.org/10.3390/en11102551