Mass-Conserved Wall Treatment of the Non-Equilibrium Extrapolation Boundary Condition in Lattice Boltzmann Method
Abstract
:1. Introduction
2. Design of LBM Simulation
2.1. Single-Relaxation-Time LBM
2.2. Existing NEE Boundary Condition
2.3. Source of ML in the NEE Boundary Condition
2.4. Newly Developed Mass-Conserved Boundary Condition
3. Results and Discussion
3.1. ML with the NEE Boundary Condition
3.2. Mass-Conserved Boundary Condition
3.2.1. Steady Flow in the Multiple Right Bending Pipe
3.2.2. Poiseuille Flow
3.2.3. Lid-Driven Flow in Square Cavity
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Qian, Y.H.; d’Humieres, D.; Lallemand, P. Lattice BGK model for Navier-Stokes equation. Europhys. Lett. 1992, 17, 479–484. [Google Scholar] [CrossRef]
- Chen, S.; Doolen, G.D. Lattice Boltzmann method for fluid flow. Annu. Rev. Fluid Mech. 1998, 30, 329–364. [Google Scholar] [CrossRef]
- Wu, J.; Shu, C. An improved immersed boundary-lattice Boltzmann method for simulating three-dimensional incompressible flows. J. Comput. Phys. 2010, 229, 5022–5042. [Google Scholar] [CrossRef]
- Hasert, M.; Bernsdorf, J.; Roller, S. Lattice Boltzmann simulation of non-Darcy flow in porous media. Procedia Comput. Sci. 2011, 4, 1048–1057. [Google Scholar] [CrossRef]
- Chen, S.; Chen, H.; Martinez, D.O.; Matthaeus, W.H. Lattice Boltzmann model for simulation of magnetohydrodynamics. Phys. Rev. Lett. 1991, 67, 3776–3779. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.Y.; Zu, Y.Q.; Dong, B. LAM, a useful tool for mesoscale modelling of single-phase and multiphase flow. Appl. Therm. Eng. 2011, 31, 649–655. [Google Scholar] [CrossRef]
- Pradipto; Purgon, A. Accuracy and numerical stabilty analysis of lattice Boltzmann method with multiple relaxation time for incompressible flows. J. Phys. Conf. Ser. 2016, 877, 012035. [Google Scholar] [CrossRef]
- Sadeghi, R.; Shadloo, M.S. Three-dimensional numerical investigation of film boiling by the lattice Boltzmann method. Numer. Heat Transf. Part A Appl. 2017, 71, 560–574. [Google Scholar] [CrossRef]
- Sadeghi, R.; Shadloo, M.S.; Hopp-Hirschler, M.; Hadjadj, A.; Nieken, U. Three-dimensional lattice Boltzmann simulations of high density ratio two-phase flows in porous media. Comput. Math. Appl. 2018, 75, 2445–2465. [Google Scholar] [CrossRef]
- Chen, L.; Kang, Q.; Mu, Y.; He, Y.L.; Tao, W.Q. A critical review of the pseudopotential multiphase lattice Boltzmann model: Methods and applications. Int. J. Heat Mass Trans. 2014, 65, 210–236. [Google Scholar] [CrossRef]
- Zhang, H.; Tan, Y.; Shu, S.; Niu, X.; Trias, F.X.; Yang, D.; Li, H.; Sheng, Y. Numerical investigation on the role of discrete element method in combined LBM-IBM-DEM modeling. Comput. Fluids 2014, 94, 37–48. [Google Scholar] [CrossRef]
- Shang, Z.; Cheng, M.; Lou, J. Parallelization of Lattice Boltzmann method using MPI domain decomposition technology for a drop impact on a wetted solid wall. Int. J. Model. Simul. Sci. Comput. 2014, 5, 1350024. [Google Scholar] [CrossRef]
- Valero-Lala, P.; Jansson, J. LBM-HPC—An open-source tool for fluid simulations. Case study: Unified Parallel C (UPC-PGAS). In Proceedings of the IEEE International Conference on Cluster Computing, Chicago, IL, USA, 8–11 September 2015; pp. 318–321. [Google Scholar]
- Chang, C.; Liu, C.H.; Lin, C.A. Boundary conditions for lattice Boltzmann simulations with complex geometry flows. Comput. Math. Appl. 2009, 58, 940–949. [Google Scholar] [CrossRef] [Green Version]
- Zhou, H.; Mo, G.; Wu, F.; Zhao, J.; Rui, M.; Cen, K. GPU implementation of lattice Boltzmann method for flows with curved boundaries. Comput. Math. Appl. 2012, 225–228, 65–73. [Google Scholar] [CrossRef]
- Pinelli, A.; Naqavi, I.Z.; Piomelli, U.; Favier, J. Immersed-boundary methods for general finite-difference and finite-volume Navier-Stokes solvers. J. Comput. Phys. 2010, 229, 9073–9091. [Google Scholar] [CrossRef] [Green Version]
- Ginzbourg, I.; Adler, P.M. Boundary flow condition analysis for the three-dimensional lattice Boltzmann model. J. Phys. 1994, 4, 191–214. [Google Scholar] [CrossRef]
- Ziegler, D.P. Boundary conditions for lattice Boltzmann simulations. J. Stat. Phys. 1993, 71, 1171–1177. [Google Scholar] [CrossRef]
- Zou, Q.S.; He, X.Y. On pressure and velocity boundary conditions for the lattice Boltzmann BGK model. Phys. Fluids 1997, 9, 1591–1598. [Google Scholar] [CrossRef] [Green Version]
- Noble, D.R.; Chen, S.; Georgiadis, J.G.; Buckius, R.O. A consistent hydrodynamic boundary condition for the lattice Boltzmann method. Phys. Fluids 1995, 7, 203–209. [Google Scholar] [CrossRef]
- Inamuro, T.; Yoshino, M.; Ogino, F. A non-slip boundary condition for lattice Boltzmann simulations. Phys. Fluids 1995, 7, 2928–2930. [Google Scholar] [CrossRef] [Green Version]
- Latt, J.; Chopard, B. Straight velocity boundaries in the lattice Boltzmann method. Phys. Rev. E 2008, 77, 056703. [Google Scholar] [CrossRef] [PubMed]
- Aidun, C.K.; Lu, Y. Lattice Boltzmann simulations of solid particles suspended in fluid. J. Stat. Phys. 1995, 81, 49–61. [Google Scholar] [CrossRef]
- Chen, S.; Martinez, D.; Mei, R. On boundary conditions in lattice Boltzmann method. Phys. Fluids 1996, 8, 2527–2536. [Google Scholar] [CrossRef]
- Guo, Z.L.; Zheng, C.G.; Shi, B.C. Non-equilibrium extrapolation method for velocity and pressure boundary conditions in the lattice Boltzmann method. Chin. Phys. 2002, 11, 366–374. [Google Scholar]
- Bhatnagar, P.L.; Gross, E.P.; Krook, M. A model for collision process in gases. I. Small amplitude processes in charged and neutral one-component systems. Phys. Rev. 1954, 94, 511–525. [Google Scholar] [CrossRef]
- Qu, K.; Shu, C.; Chew, Y.T. Alternative method to construct equilibrium distribution functions in lattice-Boltzmann method simulation of inviscid compressible flows at high Mach number. Phys. Rev. E 2007, 75, 036706. [Google Scholar] [CrossRef] [PubMed]
- He, X.Y.; Zou, Q.S.; Luo, L.S.; Dembo, M. Analytic solutions of simple flows and analysis of nonslip boundary conditions for the lattice Boltzmann BGK model. J. Stat. Phys. 1997, 87, 115–136. [Google Scholar] [CrossRef]
- Luo, L.S. Theory of the lattice Boltzmann method: Lattice Boltzmann models for nonideal gases. Phys. Rev. E 2000, 62, 4982–4996. [Google Scholar] [CrossRef] [Green Version]
- Guo, Z.L.; Zheng, C. An extrapolation method for boundary conditions in lattice Boltzmann method. Phys. Fluids 2002, 14, 2007–2010. [Google Scholar] [CrossRef]
- Ghia, U.; Ghia, K.N.; Shin, C.T. High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method. J. Comput. Phys. 1982, 48, 387–411. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, Z.; Lim, H.-C. Mass-Conserved Wall Treatment of the Non-Equilibrium Extrapolation Boundary Condition in Lattice Boltzmann Method. Energies 2018, 11, 2585. https://doi.org/10.3390/en11102585
Feng Z, Lim H-C. Mass-Conserved Wall Treatment of the Non-Equilibrium Extrapolation Boundary Condition in Lattice Boltzmann Method. Energies. 2018; 11(10):2585. https://doi.org/10.3390/en11102585
Chicago/Turabian StyleFeng, Zhe, and Hee-Chang Lim. 2018. "Mass-Conserved Wall Treatment of the Non-Equilibrium Extrapolation Boundary Condition in Lattice Boltzmann Method" Energies 11, no. 10: 2585. https://doi.org/10.3390/en11102585
APA StyleFeng, Z., & Lim, H. -C. (2018). Mass-Conserved Wall Treatment of the Non-Equilibrium Extrapolation Boundary Condition in Lattice Boltzmann Method. Energies, 11(10), 2585. https://doi.org/10.3390/en11102585