Numerical Study of the Axial Gap and Hot Streak Effects on Thermal and Flow Characteristics in Two-Stage High Pressure Gas Turbine
Abstract
:1. Introduction
2. Numerical Method
2.1. Numerical Model and Grid
2.2. Numerical Details and Boundary Conditions
2.3. Unsteady State
2.4. Validation of the Turbulence Model
3. Results and Discussions
3.1. Effect of Inlet Temperature Field
3.2. Flow and Thermal Characteristics at R1, R2
3.3. Effect of Heat Flux on the Vane and the Blade Surface
3.4. Total-to-Total Efficiency
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Nomenclature
CS1 | Axial chord length of S1 [mm] |
d | Axial chord length [mm] |
Heat flux [W/m2] | |
Wall temperature [K] | |
Adiabatic wall temperature [K] | |
Pressure [Pa] | |
Inlet total pressure [Pa] | |
Temperature [K] | |
Inlet total temperature [K] | |
X, Y, Z | Cartesian coordinates |
Abbreviations
HP | High pressure |
HS | Hot streak |
S1, R1, S2, R2 | first stage stator, rotor, second-stage stator, rotor |
HTC, h | Heat transfer coefficient |
AG | Axial gap |
LE | Leading edge |
TE | Trailing edge |
PS | Pressure side |
SS | Suction side |
AC, Ca | Axial chord |
Subscripts | |
ave | Averaged |
max | Maximum value |
min | Minimum value |
References
- Wang, Z.; Liu, Z.; Feng, Z. Influence of mainstream turbulence intensity on heat transfer characteristics of a high pressure turbine stage with inlet hot streak. J. Turbomach. 2016, 138, 041005. [Google Scholar] [CrossRef]
- Butler, T.L.; Sharma, O.P.; Dring, R.P. Redistribution of an inlet temperature distortion in an axial flow turbine stage. J. Propuls. Power 1989, 5, 64–71. [Google Scholar] [CrossRef]
- Povey, T.; Qureshi, I. A hot-streak (combustor) simulator suited to aerodynamic performance measurements. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 2008, 222, 705–720. [Google Scholar] [CrossRef]
- Gundy-Burlet, K.L.; Dorney, D.J. Effects of radial location on the migration of hot streaks in a turbine. J. Propuls. Power 2000, 16, 377–387. [Google Scholar] [CrossRef]
- An, B.T.; Liu, J.J.; Jiang, H.D. Numerical investigation on unsteady effects of hot streak on flow and heat transfer in a turbine stage. In Proceedings of the ASME Turbo Expo 2008: Power for Land, Sea, and Air, Berlin, Germany, 9–13 June 2008. [Google Scholar]
- Feng, Z.; Liu, Z.; Shi, Y.; Wang, Z. Effects of hot streak and airfoil clocking on heat transfer and aerodynamic characteristics in gas turbine. J. Turbomach. 2016, 138, 021002. [Google Scholar] [CrossRef]
- Smith, C.I.; Chang, D.; Tavoularis, S. Effect of inlet temperature nonuniformity on high-pressure turbine performance. In Proceedings of the ASME Turbo Expo 2010: Power for Land, Sea, and Air, Glasgow, UK, 14–18 June 2010. [Google Scholar]
- Yamada, K.; Funazaki, K.; Kikuchi, M.; Sato, H. Influences of axial gap between blade rows on secondary flow and aerodynamic performance in a turbine stage. In Proceedings of the ASME Turbo Expo 2009: Power for Land, Sea, and Air, Orlando, FL, USA, 8–12 June 2009. [Google Scholar]
- Danish, S.N.; Qureshi, S.R.; Imran, M.M.; Khan, S.U.; Sarfraz, M.M.; El-Leathy, A.; Al-Ansary, H.; Wei, M. Effect of tip clearance and rotor–stator axial gap on the efficiency of a multistage compressor. Appl. Therm. Eng. 2016, 99, 988–995. [Google Scholar] [CrossRef] [Green Version]
- Dring, R.P.; Joslyn, H.D.; Hardin, L.W.; Wagner, J.H. Turbine rotor-stator interaction. J. Eng. Power 1982, 104, 729–742. [Google Scholar] [CrossRef]
- Gaetani, P.; Persico, G.; Dossena, V.; Osnaghi, C. Investigation of the flow field in a HP turbine stage for two stator-rotor axial gaps: Part I—3D time averaged flow field. In Proceedings of the ASME Turbo Expo 2006: Power for Land, Sea and Air, Barcelona, Spain, 8–11 May 2006. [Google Scholar]
- Funazaki, K.I.; Yamada, K.; Kikuchi, M.; Sato, H. Experimental studies on aerodynamic performance and unsteady flow behaviors of a single turbine stage with variable rotor-stator axial gap: Comparisons with time-accurate numerical simulation. In Proceedings of the ASME Turbo Expo 2007: Power for Land, Sea, and Air, Montreal, QC, Canada, 14–17 May 2007. [Google Scholar]
- Sasao, Y.; Kato, H.; Yamamoto, S.; Satsuki, H.; Ooyama, H.; Ishizaka, K. Numerical and experimental investigations of unsteady 3-D flow through two-stage cascades in steam turbine model. In Proceedings of the International Conference on Power Engineering, Kobe, Japan, 16–20 November 2009. [Google Scholar]
- Ghenaiet, A.; Touil, K. Characterization of component interactions in two-stage axial turbine. Chin. J. Aeronaut. 2016, 29, 893–913. [Google Scholar] [CrossRef]
- Timko, L.P. Energy Efficient Engine High Pressure Turbine Component Test Performance Report; Technical Report; National Aeronautics and Space Administration (NASA): Cincinnati, OH, USA, 1 January 1984.
- Arnone, A.; Benvenuti, E. Three-dimensional Navier-Stokes analysis of a two-stage gas turbine. In Proceedings of the ASME 1994 International Gas Turbine and Aeroengine Congress and Exposition, The Hague, The Neterlands, 13–16 June 1994. [Google Scholar]
- Ryu, J.; Livescu, D. Turbulence structure behind the shock in canonical shock–vortical turbulence interaction. J. Fluid Mech. 2014, 756, R1. [Google Scholar] [CrossRef]
- Ryu, J.; Lele, S.K.; Viswanathan, K. Study of supersonic wave components in high-speed turbulent jets using an LES database. J. Sound Vib. 2014, 333, 6900–6923. [Google Scholar] [CrossRef]
- Celik, I.; Yavuz, I.; Smirnov, A. Large eddy simulations of in-cylinder turbulence for internal combustion engines: A review. Int. J. Engine Res. 2001, 2, 119–148. [Google Scholar] [CrossRef]
- Meloni, R.; Naso, V. An insight into the effect of advanced injection strategies on pollutant emissions of a heavy-duty diesel engine. Energies 2013, 6, 4331–4351. [Google Scholar] [CrossRef]
- Haworth, D.C.; Jansen, K. Large-eddy simulation on unstructured deforming meshes: Towards reciprocating IC engines. Comput. Fluids 2000, 29, 493–524. [Google Scholar] [CrossRef]
- Hao, Z.R.; Gu, C.W.; Ren, X.D. The application of discontinuous Galerkin methods in conjugate heat transfer simulations of gas turbines. Energies 2014, 7, 7857–7877. [Google Scholar] [CrossRef]
- Kim, J.; Park, J.G.; Kang, Y.S.; Cho, L.; Cho, J. A study on the numerical analysis methodology for thermal and flow characteristics of high pressure turbine in aircraft gas turbine engine. Korean Soc. Fluid Mach. 2013, 17, 46–51. [Google Scholar] [CrossRef]
- Hylton, L.; Mihelc, M.; Turner, E.; Nealy, D.; York, R. Analytical and Experimental Evaluation of the Heat Transfer Distribution over the Surfaces of Turbine Vanes; Technical Report; National Aeronautics and Space Administration (NASA): Indianapolis, IN, USA, 1 May 1983.
- Martini, P.; Schulz, A.; Bauer, H.J.; Whitney, C.F. Detached eddy simulation of film cooling performance on the trailing edge cutback of gas turbine airfoils. In Proceedings of the ASME Turbo Expo 2005: Power for Land, Sea, and Air, Reno, NV, USA, 6–9 June 2005. [Google Scholar]
- Effendy, M.; Yao, Y.F.; Yao, J.; Marchant, D.R. DES study of blade trailing edge cutback cooling performance with various lip thicknesses. Appl. Therm. Eng. 2016, 99, 434–445. [Google Scholar] [CrossRef] [Green Version]
- Mao, X.; Dal Monte, A.; Benini, E.; Zheng, Y. Numerical study on the internal flow field of a reversible turbine during continuous guide vane closing. Energies 2017, 10, 988. [Google Scholar] [CrossRef]
GE-E3 | Domain Scaling | |||||||
---|---|---|---|---|---|---|---|---|
S1 | R1 | S2 | R2 | S1 | R1 | S2 | R2 | |
Airfoil number | 46 | 76 | 48 | 70 | 38 | 76 | 38 | 76 |
Chord length [mm] | 70.412 | 41.821 | 78.370 | 40.734 | 85.211 | 41.821 | 98.991 | 37.504 |
TE pitch [mm] | 47.042 | 28.452 | 45.337 | 31.066 | 56.646 | 28.452 | 57.268 | 28.613 |
Pitch chord ratio | 0.668 | 0.680 | 0.579 | 0.668 | 0.668 | 0.680 | 0.579 | 0.668 |
Tip clearance [mm] | - | 0.426 | - | 0.4191 | - | 0.426 | - | 0.4191 |
Domain Node Number | Area Averaged Heat Flux [W/m2K] | ||||||||
---|---|---|---|---|---|---|---|---|---|
S1 | R1 | S2 | R2 | S1 | Relative Error | R1 (Relative Error) | S2 (Relative Error) | R2 (Relative Error) | |
Mesh-1 | 0.99 | 2.48 | 0.97 | 2.34 | 277,226 | Relative errors are less than 0.01% | 382,851 (0.75%) | 236,005 (1.83%) | 185,058 (1.79%) |
Mesh-2 | 1.32 | 3.38 | 1.33 | 3.12 | 277,022 | 385,727 (0.41%) | 240,406 (0.96%) | 188,448 (1.32%) | |
Mesh-3 | 1.82 | 4.40 | 1.85 | 4.18 | 276,993 | 387,291 | 242,747 (0.52%) | 190,926 (0.8%) | |
Mesh-4 | - | - | 2.49 | 5.50 | - | - | 244,028 | 192,473 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, M.G.; Ryu, J. Numerical Study of the Axial Gap and Hot Streak Effects on Thermal and Flow Characteristics in Two-Stage High Pressure Gas Turbine. Energies 2018, 11, 2654. https://doi.org/10.3390/en11102654
Choi MG, Ryu J. Numerical Study of the Axial Gap and Hot Streak Effects on Thermal and Flow Characteristics in Two-Stage High Pressure Gas Turbine. Energies. 2018; 11(10):2654. https://doi.org/10.3390/en11102654
Chicago/Turabian StyleChoi, Myung Gon, and Jaiyoung Ryu. 2018. "Numerical Study of the Axial Gap and Hot Streak Effects on Thermal and Flow Characteristics in Two-Stage High Pressure Gas Turbine" Energies 11, no. 10: 2654. https://doi.org/10.3390/en11102654
APA StyleChoi, M. G., & Ryu, J. (2018). Numerical Study of the Axial Gap and Hot Streak Effects on Thermal and Flow Characteristics in Two-Stage High Pressure Gas Turbine. Energies, 11(10), 2654. https://doi.org/10.3390/en11102654