Thermal Performance Analysis of an Absorption Cooling System Based on Parabolic Trough Solar Collectors
Abstract
:1. Introduction
2. System and Model
2.1. System Description
2.2. Thermodynamic Model
2.2.1. PTC
- (1).
- The space between the metal and glass tubes does not absolutely correspond to the vacuum because of a small amount of residual air, thus the convection heat transfer exists.
- (2).
- The heat conduction between the metal tube and hose is ignored.
- (3).
- The heat conduction between the metal tube and bracket of the PTC is ignored.
2.2.2. Absorption Chiller
- (1).
- The heat losses in each component and the pressure losses between each connection lines are ignored.
- (2).
- The systemic analysis is based on the steady state, and the LiBr–H2O solution is steady during the cycle.
- (3).
- The states are statured and include the outlet refrigerant steam of evaporator, the outlet refrigerant liquid of condenser, the outlet weak solution of absorber, and the outlet solution of HG and LG.
- (4).
- The power consumption of solution pump is ignored.
- (5).
- Counter flow heat exchanger is employed, and the logarithmic mean temperature difference is adopted in the heat transfer calculation.
2.3. Evaluation Criteria
3. Results and Discussions
3.1. Validity of Models
3.2. Performances of the Solar Collector
3.3. Performances of Absorption Chiller
3.4. Systemic Performances
3.5. Applicability of the Solar Cooling System
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Manjarres, D.; Mera, A.; Perea, E.; Lejarazu, A.; Gil-Lopez, S. An energy-efficient predictive control for HVAC systems applied to tertiary buildings based on regression techniques. Energy Build. 2017, 152, 409–417. [Google Scholar] [CrossRef]
- Pérez-Lombard, L.; Ortiz, J.; Pout, C. A review on buildings energy consumption information. Energy Build. 2008, 40, 394–398. [Google Scholar] [CrossRef]
- Cao, X.; Dai, X.; Liu, J. Building energy-consumption status worldwide and the state-of-the-art technologies for zero-energy buildings during the past decade. Energy Build. 2016, 128, 198–213. [Google Scholar] [CrossRef]
- Wang, J.J.; Yang, K.; Xu, Z.L.; Fu, C. Energy and exergy analyses of an integrated CCHP system with biomass air gasification. Appl. Energy 2015, 142, 317–327. [Google Scholar] [CrossRef]
- Wang, J.J.; Yang, Y. Energy, exergy and environmental analysis of a hybrid combined cooling heating and power system utilizing biomass and solar energy. Energy Convers. Manag. 2016, 124, 566–577. [Google Scholar] [CrossRef]
- Ge, T.S.; Wang, R.Z.; Xu, Z.Y.; Pan, Q.W.; Du, S.; Chen, X.M.; Ma, T.; Wu, X.N.; Sun, X.L.; Chen, J.F. Solar heating and cooling: Present and future development. Renew. Energy 2018, 126, 1126–1140. [Google Scholar] [CrossRef]
- Lazzarin, R.M.; Noro, M. Past, present, future of solar cooling: Technical and economical considerations. Sol. Energy 2018. [Google Scholar] [CrossRef]
- El Fadar, A. Novel process for performance enhancement of a solar continuous adsorption cooling system. Energy 2016, 114, 10–23. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, H.; Luo, Y. Investigation on solar assisted liquid desiccant dehumidifier and evaporative cooling system for fresh air treatment. Energy 2018, 143, 114–127. [Google Scholar] [CrossRef]
- Alsaman, A.S.; Askalany, A.A.; Harby, K.; Ahmed, M.S. Performance evaluation of a solar-driven adsorption desalination-cooling system. Energy 2017, 128, 196–207. [Google Scholar] [CrossRef]
- Li, Y.; Lu, L.; Yang, H. Energy and economic performance analysis of an open cycle solar desiccant dehumidification air-conditioning system for application in Hong Kong. Sol. Energy 2010, 84, 2085–2095. [Google Scholar] [CrossRef]
- Allouhi, A.; Kousksou, T.; Jamil, A.; El Rhafiki, T.; Mourad, Y.; Zeraouli, Y. Economic and environmental assessment of solar air-conditioning systems in Morocco. Renew. Sustain. Energy Rev. 2015, 50, 770–781. [Google Scholar] [CrossRef]
- Prieto, A.; Knaack, U.; Auer, T.; Klein, T. Solar coolfacades: Framework for the integration of solar cooling technologies in the building envelope. Energy 2017, 137, 353–368. [Google Scholar] [CrossRef]
- Jin, J.; Ling, Y.; Hao, Y. Similarity analysis of parabolic-trough solar collectors. Appl. Energy 2017, 204, 958–965. [Google Scholar] [CrossRef]
- Noro, M.; Lazzarin, R.M. Solar cooling between thermal and photovoltaic: An energy and economic comparative study in the Mediterranean conditions. Energy 2014, 73, 453–464. [Google Scholar] [CrossRef]
- Tsilingiris, P.T. Theoretical modelling of a solar air conditioning system for domestic applications. Energy Convers. Manag. 1993, 34, 523–531. [Google Scholar] [CrossRef]
- Mazloumi, M.; Naghashzadegan, M.; Javaherdeh, K. Simulation of solar lithium bromide-water absorption cooling system with parabolic trough collector. Energy Convers. Manag. 2008, 49, 2820–2832. [Google Scholar] [CrossRef]
- Li, M.; Xu, C.; Hassanien, R.H.E.; Xu, Y.; Zhuang, B. Experimental investigation on the performance of a solar powered lithium bromide-water absorption cooling system. Int. J. Refrig. 2016, 71, 46–59. [Google Scholar] [CrossRef]
- Qu, M.; Yin, H.; Archer, D.H. A solar thermal cooling and heating system for a building: Experimental and model based performance analysis and design. Sol. Energy 2010, 84, 166–182. [Google Scholar] [CrossRef]
- Tzivanidis, C.; Bellos, E. The use of parabolic trough collectors for solar cooling—A case study for Athens climate. Case Stud. Therm. Eng. 2016, 8, 403–413. [Google Scholar] [CrossRef]
- Aman, J.; Ting, D.S.K.; Henshaw, P. Residential solar air conditioning: Energy and exergy analyses of an ammonia-water absorption cooling system. Appl. Therm. Eng. 2014, 62, 424–432. [Google Scholar] [CrossRef]
- Bellos, E.; Tzivanidis, C.; Antonopoulos, K.A. Exergetic, energetic and financial evaluation of a solar driven absorption cooling system with various collector types. Appl. Therm. Eng. 2016, 102, 749–759. [Google Scholar] [CrossRef]
- Delač, B.; Pavković, B.; Lenić, K. Design, monitoring and dynamic model development of a solar heating and cooling system. Appl. Therm. Eng. 2018, 142, 489–501. [Google Scholar] [CrossRef]
- Neyer, D.; Ostheimer, M.; Hauer, N.; Halmdienst, C.; Pink, W. Application of an adapted single-/half-effect NH3/H2O absorption chiller in tri-generation and solar cooling systems. Sol. Energy 2018, 173, 715–727. [Google Scholar] [CrossRef]
- Calise, F.; Libertini, L.; Vicidomini, M. Dynamic simulation and thermoeconomic analysis of a novel solar cooling system for a triple-pressure combined cycle power plant. Energy Convers. Manag. 2018, 170, 82–96. [Google Scholar] [CrossRef]
- Jebasingh, V.K.; Herbert, G.M.J. A review of solar parabolic trough collector. Renew. Sustain. Energy Rev. 2016, 54, 1085–1091. [Google Scholar] [CrossRef]
- Wang, J.; Wang, J.; Zhang, Y.; Bi, X. Analysis of heat transfer characteristics for parabolic trough solar collector. Trans. Chin. Soc. Agric. Eng. 2015, 31, 185–192. [Google Scholar]
- Burkholder, F.; Kutscher, C.F. Heat Loss Testing of Schott’s 2008 PTR 70 Parabolic Trough Receiver; NREL/TP-550-45633 2012; National Renewable Energy Laborator: Golden, CO, USA, 2009.
- Chen, G. Thermal Performance Analysis and Experimental Study of Parabolic Trough Collector. Master’s Thesis, Chongqing University, Chongqing, China, 2012. [Google Scholar]
- Dong, Z.; Zhang, M.; Geng, S. Research on heat efficiency of solar paarabolic trough collectors. Energy Conserv. 2012, 7, 28–32. [Google Scholar]
- Dudley, V.E.; Kolb, G.J.; Mahoney, A.R.; Mancini, T.R.; Matthews, C.W.; Sloan, M.; Kearney, D. Test Results: SEGS LS-2 Solar Collector; SAND-94-1884ON: DE95010682; Sandia National Laboratories: Albuquerque, NM, USA, 1994; pp. 2506–2514.
- Wang, J.; Wu, J. Investigation of a mixed effect absorption chiller powered by jacket water and exhaust gas waste heat of internal combustion engine. Int. J. Refrig. 2015, 50, 193–206. [Google Scholar] [CrossRef]
- Zheng, J.J. Study of the Off-Design Performance of Absorption Chiller in Distributed Energy System. Master’s Thesis, Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing, China, May 2012. [Google Scholar]
- Liu, L. The Simulation and Experimental Analysis of the Small Steam Absorption Chiller. Master’s Thesis, Hunan University, Changsha, Hunan, China, 2004. [Google Scholar]
- Wang, J.; Zhai, Z.; Jing, Y.; Zhang, C. Optimization design of BCHP system to maximize to save energy and reduce environmental impact. Energy 2010, 35, 3388–3398. [Google Scholar] [CrossRef]
Parameter | Value | Parameter | Value |
---|---|---|---|
Structure | Torsion tube | Inside diameter of glass tube, m | 0.115 |
Concentration ratio | 71:1 | Thermal conductivity, W/m·K | 54 |
Length, m | 7.8 | Optical efficiency | 0.733 |
Opening width, m | 5 | Coating absorptivity | 0.915 |
Outside diameter of metal tube, m | 0.075 | Metal tube emissivity | 0.08 |
Inside diameter of metal tube, m | 0.067 | Glass tube emissivity | 0.88 |
Outside diameter of glass tube, m | 0.118 | Solar incidence angle modifier | 1.0 |
Number | DNI, W/m2 | Inlet Temperature of HCO, °C | Outlet Temperature of HCO, °C | Relative Error, % | |
---|---|---|---|---|---|
Experimental Data | Simulation Data | ||||
1 | 933.7 | 102.2 | 124 | 122.4 | 1.29 |
2 | 968.2 | 151.0 | 173.3 | 171.7 | 0.92 |
3 | 982.3 | 197.5 | 219.5 | 217.7 | 0.82 |
4 | 909.5 | 250.7 | 269.4 | 267.3 | 0.78 |
5 | 937.7 | 297.8 | 316.9 | 314.4 | 0.79 |
6 | 880.6 | 299.0 | 317.2 | 314.5 | 0.85 |
7 | 920.9 | 379.5 | 398 | 394.8 | 0.80 |
Parameters | m, kg/s | , °C | w, % | Q, kW | kA, kW/K |
---|---|---|---|---|---|
Average relative error | 0.056% | 0.038% | 0 | 0.01% | 0.015% |
Parameter | Value | Parameter | Value |
---|---|---|---|
Steam temperature, °C | 158 | Heat efficiency of HX, % | 85 |
Steam pressure, MPa | 0.6 | Heat efficiency of LX, % | 85 |
Steam flow rate, kg/s | 0.3 | ||
Condensate temperature, °C | 71 | kAa of HG, kW/K | 36.48 |
Condensate pressure, MPa | 0.1 | kA of LG, kW/K | 111.7 |
Temperature of chilled water, °C | 7/12 | kA of the evaporator, kW/K | 191.2 |
Temperature of cooling water, °C | 35/30 | kA of the condenser, kW/K | 113.9 |
Evaporating temperature, °C | 3.878 | kA of the absorber, kW/K | 238 |
Condensing temperature, °C | 39 | COP | 1.332 |
Parameter | Value |
---|---|
Solar collector area, m2 | 2886 |
Sets of collectors | 74 |
Arrangements (row/column) | 7/11 |
Inlet temperature of HCO, °C | 160 |
Outlet temperature of HCO, °C | 300 |
Cooling capacity of absorption chiller, kW | 1000 |
Pressure of steam, Mpa | 0.6 |
Steam temperature, °C | 158 |
Condensed water temperature, °C | 71 |
Item | Hotel | Shopping Mall | Office |
---|---|---|---|
Cooling capacity, kW | 1000 | 1000 | 750 |
Correlation coefficient | 0.16 | 0.72 | 0.80 |
Area of the PTC, m2 | 2886 | 2184 | 1716 |
Number of LS-2 solar collector | 74 | 56 | 44 |
Thermal storage ratio | 0.73 | 0.39 | 0.32 |
Capacity of HST, kWh | 8995 | 3633 | 2354 |
Thermal efficiency, % | 61.98 | 68.73 | 69.47 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Yan, R.; Wang, Z.; Zhang, X.; Shi, G. Thermal Performance Analysis of an Absorption Cooling System Based on Parabolic Trough Solar Collectors. Energies 2018, 11, 2679. https://doi.org/10.3390/en11102679
Wang J, Yan R, Wang Z, Zhang X, Shi G. Thermal Performance Analysis of an Absorption Cooling System Based on Parabolic Trough Solar Collectors. Energies. 2018; 11(10):2679. https://doi.org/10.3390/en11102679
Chicago/Turabian StyleWang, Jiangjiang, Rujing Yan, Zhuang Wang, Xutao Zhang, and Guohua Shi. 2018. "Thermal Performance Analysis of an Absorption Cooling System Based on Parabolic Trough Solar Collectors" Energies 11, no. 10: 2679. https://doi.org/10.3390/en11102679
APA StyleWang, J., Yan, R., Wang, Z., Zhang, X., & Shi, G. (2018). Thermal Performance Analysis of an Absorption Cooling System Based on Parabolic Trough Solar Collectors. Energies, 11(10), 2679. https://doi.org/10.3390/en11102679