Hydrogen as a Long-Term Large-Scale Energy Storage Solution to Support Renewables
Abstract
:1. Introduction
2. Previous Studies
2.1. Storage Technology Overview
2.2. Hydrogen Storage System in a Renewable Energy Input System
3. Method
4. Energy Modelling Using HOMER
4.1. Scenarios and Modelling Structures
4.1.1. Battery Based Storage System
- Ppv: output of the PV array;
- YPV: rated capacity of PV array under STC;
- FPV: derating factor (%);
- GT: solar radiation incident on the PV array in a particular time step [kW/m2];
- GT,STC: incident radiation at STC;
- α P: temperature coefficient of power [%/°C];
- TC: PV cell temperature in a particular time step; and
- TC,STC: PV cell temperature under STC
- Co: Initial Investment;
- C: Cash flow;
- r: Discount rate; and
- t: time.
4.1.2. Hybrid Battery-Hydrogen Storage System
5. Results and Discussion
5.1. Current Scenarios
5.2. Alternative Scenarios
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
PHS | Pumped hydroelectric storage |
SA | South Australia |
PV | Photovoltaic |
RET | Renewable energy target |
CAES | Compressed air energy storage |
HOMER | Hybrid Optimisation Model for Electric Renewables |
IRENA | International Renewable Energy Agency |
AEMO | Australian energy market operator |
STC | Standard test conditions |
RTE | Round-trip efficiency |
PEM | Proton exchange membrane |
O&M | Operations and maintenance |
COE | Cost of electricity |
SOC | State of charge |
PP2 | Power pack 2 |
References
- Shabani, B.; Andrews, J. Hydrogen and Fuel cells. In Energy Sustainability through Green Energy; Springer: Berlin, Germany, 2015; pp. 453–491. [Google Scholar]
- Aris, A.M.; Shabani, B. Sustainable Power Supply Solutions for Off-Grid Base Stations. Energies 2015, 8, 10904–10941. [Google Scholar] [CrossRef] [Green Version]
- Castillo, A.; Gayme, D.F. Grid-scale energy storage applications in renewable energy integration: A survey. Energy Convers. Manag. 2014, 87, 885–894. [Google Scholar] [CrossRef]
- Suberu, M.Y.; Mustafa, M.W.; Bashir, N. Energy storage systems for renewable energy power sector integration and mitigation of intermittency. Renew. Sustain. Energy Rev. 2014, 35, 499–514. [Google Scholar] [CrossRef]
- Tan, X.; Li, Q.; Wang, H. Advances and trends of energy storage technology in Microgrid. Int. J. Electr. Power Energy Syst. 2013, 44, 179–191. [Google Scholar] [CrossRef]
- Assaf, J.; Shabani, B. Transient simulation modelling and energy performance of a standalone solar-hydrogen combined heat and power system integrated with solar-thermal collectors. Appl. Energy 2016, 178, 66–77. [Google Scholar] [CrossRef]
- Assaf, J.; Shabani, B. Experimental study of a novel hybrid solar-thermal/PV-hydrogen system: Towards 100% renewable heat and power supply to standalone applications. Energy 2018, 157, 862–876. [Google Scholar] [CrossRef]
- Kavadias, K.; Apostolou, D.; Kaldellis, J. Modelling and optimisation of a hydrogen-based energy storage system in an autonomous electrical network. Appl. Energy 2017, 227, 574–586. [Google Scholar] [CrossRef]
- Rehman, S.; Al-Hadhrami, L.M.; Alam, M.M. Pumped hydro energy storage system: A technological review. Renew. Sustain. Energy Rev. 2015, 44, 586–598. [Google Scholar] [CrossRef]
- Leng, F.; Tan, C.M.; Pecht, M. Effect of temperature on the aging rate of Li ion battery operating above room temperature. Sci. Rep. 2015, 5, 12967. [Google Scholar] [CrossRef] [PubMed]
- Yuksel, T.; Michalek, J.J. Effects of regional temperature on electric vehicle efficiency, range, and emissions in the United States. Environ. Sci. Technol. 2015, 49, 3974–3980. [Google Scholar] [CrossRef] [PubMed]
- Shabani, B.; Biju, M. Theoretical modelling methods for thermal management of batteries. Energies 2015, 8, 10153–10177. [Google Scholar] [CrossRef]
- Moore, J.; Shabani, B. A Critical Study of Stationary Energy Storage Policies in Australia in an International Context: The Role of Hydrogen and Battery Technologies. Energies 2016, 9, 674. [Google Scholar] [CrossRef]
- Australian Energy Market Operator (AEMO). South Australian Electricity Report; Australian Energy Market Operator Ltd.: Melbourne, Australia, 2017. [Google Scholar]
- Zoulias, E.; Lymberopoulos, N. Techno-economic analysis of the integration of hydrogen energy technologies in renewable energy-based stand-alone power systems. Renew. Energy 2007, 32, 680–696. [Google Scholar] [CrossRef]
- Giannakoudis, G.; Papadopoulos, A.I.; Seferlis, P.; Voutetakis, S. Optimum design and operation under uncertainty of power systems using renewable energy sources and hydrogen storage. Int. J. Hydrog. Energy 2010, 35, 872–891. [Google Scholar] [CrossRef]
- Bahramara, S.; Moghaddam, M.P.; Haghifam, M. Optimal planning of hybrid renewable energy systems using HOMER: A review. Renew. Sustain. Energy Rev. 2016, 62, 609–620. [Google Scholar] [CrossRef]
- Nguyen, H.Q.; Aris, A.M.; Shabani, B. PEM fuel cell heat recovery for preheating inlet air in standalone solar-hydrogen systems for telecommunication applications: An exergy analysis. Int. J. Hydrog. Energy 2016, 41, 2987–3003. [Google Scholar] [CrossRef]
- Assaf, J.; Shabani, B. Economic analysis and assessment of a standalone solar-hydrogen combined heat and power system integrated with solar-thermal collectors. Int. J. Hydrog. Energy 2016, 41, 18389–18404. [Google Scholar] [CrossRef]
- Gray, E.M.; Webb, C.J.; Andrews, J.; Shabani, B.; Tsai, P.J.; Chan, S.L.I. Hydrogen storage for off-grid power supply. Int. J. Hydrog. Energy 2011, 36, 654–663. [Google Scholar] [CrossRef]
- Rehman, S.; El-Amin, I.M.; Ahmad, F.; Shaahid, S.M.; Al-Shehri, A.M.; Bakhashwain, J.M.; Shash, A. Feasibility study of hybrid retrofits to an isolated off-grid diesel power plant. Renew. Sustain. Energy Rev. 2007, 11, 635–653. [Google Scholar] [CrossRef] [Green Version]
- Sen, R.; Bhattacharyya, S.C. Off-grid electricity generation with renewable energy technologies in India: An application of HOMER. Renew. Energy 2014, 62, 388–398. [Google Scholar] [CrossRef]
- Dursun, B. Determination of the optimum hybrid renewable power generating systems for Kavakli campus of Kirklareli University, Turkey. Renew. Sustain. Energy Rev. 2012, 16, 6183–6190. [Google Scholar] [CrossRef]
- Ngan, M.S.; Tan, C.W. Assessment of economic viability for PV/wind/diesel hybrid energy system in southern Peninsular Malaysia. Renew. Sustain. Energy Rev. 2012, 16, 634–647. [Google Scholar] [CrossRef]
- Khan, M.R.B.; Jidin, R.; Pasupuleti, J.; Shaaya, S.A. Optimal combination of solar, wind, micro-hydro and diesel systems based on actual seasonal load profiles for a resort island in the South China Sea. Energy 2015, 82, 80–97. [Google Scholar] [CrossRef]
- Nandi, S.K.; Ghosh, H.R. Techno-economical analysis of off-grid hybrid systems at Kutubdia Island, Bangladesh. Energy Policy 2010, 38, 976–980. [Google Scholar] [CrossRef]
- Andrews, J.; Shabani, B. Re-envisioning the role of hydrogen in a sustainable energy economy. Int. J. Hydrog. Energy 2012, 37, 1184–1203. [Google Scholar] [CrossRef]
- Andrews, J.; Shabani, B. Where does hydrogen fit in a sustainable energy economy? Procedia Eng. 2012, 49, 15–25. [Google Scholar] [CrossRef]
- Andrews, J.; Shabani, B. The role of hydrogen in a global sustainable energy strategy. Wiley Interdiscip. Rev. Energy Environ. 2014, 3, 474–489. [Google Scholar] [CrossRef]
- Cavanagh, K.; Ward, J.K.; Behrens, S.; Bhatt, A.I.; Ratnam, E.L.; Oliver, E.; Hayward, J. Electrical Energy Storage: Technology Overview and Applications; Commonwealth Scientific and Industrial Research Organization (CSIRO): Canberra, Australia, 2015. [Google Scholar]
- Whiteman, A.; Esparrago, J.; Rinke, T.; Elsayed, S.; Arkhipova, I.; Strinati, C.; Alay, L.F. Renewable Energy Stastics 2017; International Renewable Energy Agency (IRENA): Masdar City, UAE, 2017. [Google Scholar]
- Stocks, M.; Blakers, A.; Lu, M.B. Pumped Hydro Energy Storage to Support a 50–100% Renewable Electricity Grid. 2017. Available online: http://energy.anu.edu.au/files/Senate%20submission%20-%20ANU%20pumped%20hydro%20energy%20storage%20030217_0.pdf (accessed on 30 June 2018).
- Database, D.G.E.S. Available online: http://www.energystorageexchange.org/projects/data_visualization (accessed on 9 September 2017).
- Mahlia, T.M.I.; Saktisahdan, T.J.; Jannifar, A.; Hasan, M.H.; Matseelar, H.S.C. A review of available methods and development on energy storage; technology update. Renew. Sustain. Energy Rev. 2014, 33, 532–545. [Google Scholar] [CrossRef]
- Madlener, R.; Latz, J. Economics of centralized and decentralized compressed air energy storage for enhanced grid integration of wind power. Appl. Energy 2013, 101, 299–309. [Google Scholar] [CrossRef]
- Zhao, H.; Wu, Q.; Hu, S.; Xu, H.; Rasmussen, C.N. Review of energy storage system for wind power integration support. Appl. Energy 2015, 137, 545–553. [Google Scholar] [CrossRef] [Green Version]
- Blume, S. Global Energy Storage Market Overview & Regional Summary Report; Energy Storage Council: Mawson, Australia, 2015. [Google Scholar]
- Kempener, R.; Borden, E. Battery Storage for Renewables: Market Status and Technology Outlook; International Renewable Energy Agency: Abu Dhabi, UAE, 2015. [Google Scholar]
- Emonts, B.; Schiebahn, S.; Görner, K.; Lindenberger, D.; Markewitz, P.; Merten, F.; Stolten, D. Re-energizing energy supply: Electrolytically-produced hydrogen as a flexible energy storage medium and fuel for road transport. J. Power Sources 2017, 342, 320–326. [Google Scholar] [CrossRef]
- Eriksson, E.; Gray, E.M. Optimization and integration of hybrid renewable energy hydrogen fuel cell energy systems–A critical review. Appl. Energy 2017, 202, 348–364. [Google Scholar] [CrossRef]
- Biswas, R. Hydrogen Storage: Materials, Technologies and Global Markets; bccResearch: Wellesley, MA, USA, 2017. [Google Scholar]
- Khan, M.; Iqbal, M. Pre-feasibility study of stand-alone hybrid energy systems for applications in Newfoundland. Renew. Energy 2005, 30, 835–854. [Google Scholar] [CrossRef]
- Bezmalinović, D.; Barbir, F.; Tolj, I. Techno-economic analysis of PEM fuel cells role in photovoltaic-based systems for the remote base stations. Int. J. Hydrog. Energy 2013, 38, 417–425. [Google Scholar] [CrossRef] [Green Version]
- Amutha, W.M.; Rajini, V. Techno-economic evaluation of various hybrid power systems for rural telecom. Renew. Sustain. Energy Rev. 2015, 43, 553–561. [Google Scholar] [CrossRef]
- Ashourian, M.H.; Cherati, S.M.; Zin, A.M.; Niknam, N.; Mokhtar, A.S.; Anwari, M. Optimal green energy management for island resorts in Malaysia. Renew. Energy 2013, 51, 36–45. [Google Scholar] [CrossRef]
- Shabani, B.; Andrews, J. Standalone solar-hydrogen systems powering fire contingency networks. Int. J. Hydrog. Energy 2015, 40, 5509–5517. [Google Scholar] [CrossRef]
- Das, H.S.; Tan, C.W.; Yatim, A.H.M.; Lau, K.Y. Feasibility analysis of hybrid photovoltaic/battery/fuel cell energy system for an indigenous residence in East Malaysia. Renew. Sustain. Energy Rev. 2017, 76, 1332–1347. [Google Scholar] [CrossRef]
- Kalinci, Y.; Hepbasli, A.; Dincer, I. Techno-economic analysis of a stand-alone hybrid renewable energy system with hydrogen production and storage options. Int. J. Hydrog. Energy 2015, 40, 7652–7664. [Google Scholar] [CrossRef]
- AEMO Data Dashboard. Available online: https://www.aemo.com.au/Electricity/Wholesale-Electricity-Market-WEM/Data-dashboard (accessed on 30 June 2018).
- AEMO. Update to Renewable Energy Integration in South Australia; Australian Energy Market Operator Ltd.: Melbourne, Australia, 2016. [Google Scholar]
- Lambert, F. Tesla and SolarCity in Talks for ‘a Number of Large’ Utility Scale Energy Storage Installations. 2016. Available online: https://electrek.co/2016/11/07/tesla-solarcity-in-talks-number-of-large-utility-scale-energy-storage-installations/ (accessed on 2 October 2018).
- Lambert, F. Tesla Slashes Price of the Powerpack System by Another 10% with New Generation. 2016. Available online: https://electrek.co/2016/11/14/tesla-powerpack-2-price/ (accessed on 10 September 2018).
- Keane, D. Tesla Battery Cost Revealed Two Years After SA Blackout. Available online: https://www.abc.net.au/news/2018-09-27/tesla-battery-cost-revealed-two-years-after-blackout/10310680 (accessed on 30 September 2018).
- Petit, M.; Prada, E.; Sauvant-Moynot, V. Development of an empirical aging model for Li-ion batteries and application to assess the impact of Vehicle-to-Grid strategies on battery lifetime. Appl. Energy 2016, 172, 398–407. [Google Scholar] [CrossRef]
- Moné, C.; Hand, M.; Bolinger, M.; Rand, J.; Heimiller, D.; Ho, J. 2015 Cost of Wind Energy Review; National Renewable Energy Laboratory: Golden, CO, USA, 2017. [Google Scholar]
- Choice, S. Commercial Solar PV Price Index for February 2018. Available online: https://www.solarchoice.net.au/blog/commercial-solar-system-prices-february-2018 (accessed on 7 March 2018).
- Andrews, J.; Shabani, B. Dimensionless analysis of the global techno-economic feasibility of solar-hydrogen systems for constant year-round power supply. Int. J. Hydrog. Energy 2012, 37, 6–18. [Google Scholar] [CrossRef]
- Lamy, C. From hydrogen production by water electrolysis to its utilization in a PEM fuel cell or in a SO fuel cell: Some considerations on the energy efficiencies. Int. J. Hydrog. Energy 2016, 41, 15415–15425. [Google Scholar] [CrossRef]
- Sharaf, O.Z.; Orhan, M.F. An overview of fuel cell technology: Fundamentals and applications. Renew. Sustain. Energy Rev. 2014, 32, 810–853. [Google Scholar] [CrossRef]
- Shabani, B.; Andrews, J.; Badwal, S. Fuel cell heat recovery, electrical load management, and the economics of solar-hydrogen systems. Int. J. Power Energy Syst. 2010, 30, 256. [Google Scholar] [CrossRef]
- Khare, V.; Nema, S.; Baredar, P. Optimization of hydrogen based hybrid renewable energy system using HOMER, BB-BC and GAMBIT. Int. J. Hydrog. Energy 2016, 41, 16743–16751. [Google Scholar] [CrossRef]
- James, B.D. Hydrogen Storage Cost Analysis, Preliminary Results; Strategic Analysis Inc.: Arlington, VA, USA, 2012. [Google Scholar]
- Mohammed, O.H.; Amirat, Y.; Benbouzid, M.; Elbaset, A.A. Optimal design of a PV/fuel cell hybrid power system for the city of Brest in France. In Proceedings of the 2014 First International Conference on Green Energy ICGE 2014, Sfax, Tunisia, 25–27 March 2014. [Google Scholar]
- Shabani, B.; Andrews, J. An experimental investigation of a PEM fuel cell to supply both heat and power in a solar-hydrogen RAPS system. Int. J. Hydrog. Energy 2011, 36, 5442–5452. [Google Scholar] [CrossRef]
- Shabani, B.; Andrews, J.; Watkins, S. Energy and cost analysis of a solar-hydrogen combined heat and power system for remote power supply using a computer simulation. Sol. Energy 2010, 84, 144–155. [Google Scholar] [CrossRef]
- Shabani, B.; Omrani, R.; Andrews, J. Energy Security and Sustainability for Road Transport Sector: The Role of Hydrogen Fuel Cell Technology, in Energy Security and Sustainability; Shukla, A., Sharma, A., Eds.; Taylor and Francis: Abingdon, UK, 2017; pp. 149–203. [Google Scholar]
- Shabani, B. Solar-Hydrogen Combined Heat and Power Systems for Remote Area Power Supply. Ph.D. Thesis, RMIT University, Melbourne, Australia, 2010. [Google Scholar]
- P Tetuko, A.; Shabani, B.; Andrews, J. Passive Fuel Cell Heat Recovery Using Heat Pipes to Enhance Metal Hydride Canisters Hydrogen Discharge Rate: An Experimental Simulation. Energies 2018, 11, 915. [Google Scholar] [CrossRef]
- Tetuko, A.P.; Shabani, B.; Omrani, R.; Paul, B.; Andrews, J. Study of a thermal bridging approach using heat pipes for simultaneous fuel cell cooling and metal hydride hydrogen discharge rate enhancement. J. Power Sources 2018, 397, 177–188. [Google Scholar] [CrossRef]
- Assaf, J.; Shabani, B. Multi-objective sizing optimisation of a solar-thermal system integrated with a solar-hydrogen combined heat and power system, using genetic algorithm. Energy Convers. Manag. 2018, 164, 518–532. [Google Scholar] [CrossRef]
Mechanical Energy Storage | Thermal Energy Storage | Electrical/Electrochemical Energy Storage | Chemical Energy Storage |
---|---|---|---|
Pumped hydro | Hot water | Super capacitors | Hydrogen |
Compressed air | Molten salt | Superconducting magnets | Synthetic natural gas |
Flywheel | Phase-change material | Batteries | Other chemical compounds e.g., ammonia, methanol |
Hydrogen-based energy storage |
Components | Capital Cost ($/kw) | Replacement Cost ($/kW) | O&M Cost ($/Year) | Lifetime (Year) |
---|---|---|---|---|
Solar PV | 831 | 831 | 145 | 25 |
Wind Turbine | 2,535,000/unit | 2,535,000 | 76,500 | 20 |
Battery | 398 ($/kWh) | 398 ($/kWh) | 0 | 5 |
Converter | 210 | 210 | 0 | 15 |
Electrolyser | 2000 | 1200 | 20 | 15 |
Hydrogen Tank | 438 $/kg | 438 $/kg | 0 | 25 |
Fuel Cell | 600 | 500 | 0.08 $/op. h | 40,000 h |
Design | PV (MW) | Wind Turbine (Units) | Tesla PP2 (Units) | Electrolyser (MW) | Fuel Cell (MW) | Hydrogen Tank (kg) | COE ($/kWh) |
---|---|---|---|---|---|---|---|
PV/Wind/Battery | 1515 | 3300 | 1,475,001 | - | - | - | 2.54 |
PV/Wind/Battery/Hydrogen | 1515 | 3300 | 150,000 | 2400.8 | 2400 | 10,000,000 | 0.626 |
Design | PV (MW) | Wind Turbine (Units) | Tesla PP2 (Units) | Electrolyser (MW) | Fuel Cell (MW) | Hydrogen Tank (kg) | COE ($/kWh) |
---|---|---|---|---|---|---|---|
PV/wind/Battery/Hydrogen | 1515 | 3300 | 150,000 | 2400.8 | 2400 | 10,000,000 | 0.494 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kharel, S.; Shabani, B. Hydrogen as a Long-Term Large-Scale Energy Storage Solution to Support Renewables. Energies 2018, 11, 2825. https://doi.org/10.3390/en11102825
Kharel S, Shabani B. Hydrogen as a Long-Term Large-Scale Energy Storage Solution to Support Renewables. Energies. 2018; 11(10):2825. https://doi.org/10.3390/en11102825
Chicago/Turabian StyleKharel, Subodh, and Bahman Shabani. 2018. "Hydrogen as a Long-Term Large-Scale Energy Storage Solution to Support Renewables" Energies 11, no. 10: 2825. https://doi.org/10.3390/en11102825
APA StyleKharel, S., & Shabani, B. (2018). Hydrogen as a Long-Term Large-Scale Energy Storage Solution to Support Renewables. Energies, 11(10), 2825. https://doi.org/10.3390/en11102825