An Analytical Flow Model for Heterogeneous Multi-Fractured Systems in Shale Gas Reservoirs
Abstract
:1. Introduction
2. Physical Model
- (1)
- A hydraulically fractured horizontal well is at the center of a closed shale gas reservoir;
- (2)
- Each hydraulic fracture is perpendicular to the horizontal well, spaced uniformly along the horizontal wellbore, and has the same length;
- (3)
- Fluid flow in each region is a one-dimensional single-phase flow;
- (4)
- Desorption in shale matrix yields to the Langmuir isotherm adsorption law;
- (5)
- The continuity of flux and pressure at interfaces is used to couple the adjacent regions.
3. Mathematical Model
3.1. Mechanisms and Properties
3.1.1. Adsorption/Desorption and Apparent Permeability
3.1.2. Fractal Permeability and Porosity in Induced Fractures
3.1.3. Anomalous Diffusion in Induced Fractures
3.1.4. Pressure-Dependent Permeability
3.2. Governing Flow Equations and Solutions
3.2.1. Unstimulated Regions (Region 4 + Region 3 + Region 2)
3.2.2. Region 1 (SRV)
3.2.3. Hydraulic Fracture Region
4. Discussion and Analysis
4.1. Flow Regimes
4.2. Sensitivity Analysis
5. Case Study
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Nomenclature
MPa−1 | gas compressibility | |
m | reservoir thickness | |
mD | permeability | |
MPa2/(mPa·s) | pseudo-pressure | |
Mpa | gas pressure | |
Mpa | Langmuir pressure | |
104 m3/d | fracture production rate | |
m | spherical radius of matrix block | |
- | Laplace transform parameter | |
d | time | |
K | temperature | |
sm3/m3 | Langmuir volume | |
m | fracture half length | |
- | gas factor | |
α | - | anomalous diffusion exponent |
- | apparent permeability coefficient | |
- | dimensionless stress-sensitive factor | |
cm2/s | diffusivity | |
- | inter-porosity flow coefficient | |
mPa·s | viscosity | |
g/cm3 | gas density | |
- | absorption factor | |
- | porosity | |
- | storage capacity coefficient |
Appendix A. Dimensionless Definitions
Appendix B. Derivations for General Diffusivity Equation in the SRV
References
- Taherdangkoo, R.; Tatomir, A.; Taylor, R.; Sauter, M. Numerical investigations of upward migration of fracking fluid along a fault zone during and after stimulation. Energy Procedia 2017, 125, 126–135. [Google Scholar] [CrossRef]
- Tatomir, A.; McDermott, C.; Bensabat, J.; Class, H.; Edlmann, K.; Taherdangkoo, R.; Sauter, M. Conceptual model development using a generic Features, Events, and Processes (FEP) database for assessing the potential impact of hydraulic fracturing on groundwater aquifers. Adv. Geosci. 2018, 45, 185–192. [Google Scholar] [CrossRef]
- Wang, J.; Jia, A.; Wei, Y.; Qi, Y. Approximate semi-analytical modeling of transient behavior of horizontal well intercepted by multiple pressure-dependent conductivity fractures in pressure-sensitive reservoir. J. Pet. Sci. Eng. 2017, 153, 157–177. [Google Scholar] [CrossRef]
- Tang, C.; Chen, X.; Du, Z.; Yue, P.; Wei, J. Numerical Simulation Study on Seepage Theory of a Multi-Section Fractured Horizontal Well in Shale Gas Reservoirs Based on Multi-Scale Flow Mechanisms. Energies 2018, 11, 2329. [Google Scholar] [CrossRef]
- Wang, H. Discrete fracture networks modeling of shale gas production and revisit rate transient analysis in heterogeneous fractured reservoirs. J. Pet. Sci. Eng. 2018, 169, 796–812. [Google Scholar] [CrossRef]
- Zhang, Q.; Su, Y.; Wang, W.; Sheng, G. A new semi-analytical model for simulating the effectively stimulated volume of fractured wells in tight reservoirs. J. Nat. Gas Sci. Eng. 2015, 27, 1834–1845. [Google Scholar] [CrossRef]
- Chen, P.; Jiang, S.; Chen, Y.; Zhang, K. Pressure response and production performance of volumetric fracturing horizontal well in shale gas reservoir based on boundary element method. Eng. Anal. Boundary Elem. 2018, 87, 66–77. [Google Scholar] [CrossRef]
- Wang, M.; Fan, Z.; Xing, G.; Zhao, W.; Song, H.; Su, P. Rate Decline Analysis for Modeling Volume Fractured Well Production in Naturally Fractured Reservoirs. Energies 2018, 11, 43. [Google Scholar] [CrossRef]
- Brown, M.; Ozkan, E.; Raghavan, R.; Kazemi, H. Practical solutions for pressure-transient responses of fractured horizontal wells in unconventional shale reservoirs. SPE Reserv. Eval. Eng. 2011, 14, 663–676. [Google Scholar] [CrossRef]
- Stalgorova, K.; Mattar, L. Analytical model for unconventional multifractured composite systems. SPE Reserv. Eval. Eng 2013, 16, 246–256. [Google Scholar] [CrossRef]
- Zhao, Y.-L.; Zhang, L.-H.; Luo, J.-X.; Zhang, B.-N. Performance of fractured horizontal well with stimulated reservoir volume in unconventional gas reservoir. J. Hydrol. 2014, 512, 447–456. [Google Scholar] [CrossRef]
- Deng, Q.; Nie, R.-S.; Jia, Y.-L.; Huang, X.-Y.; Li, J.-M.; Li, H.-K. A new analytical model for non-uniformly distributed multi-fractured system in shale gas reservoirs. J. Nat. Gas Sci. Eng. 2015, 27, 719–737. [Google Scholar] [CrossRef]
- Chen, D.; Pan, Z.; Ye, Z. Dependence of gas shale fracture permeability on effective stress and reservoir pressure: Model match and insights. Fuel 2015, 139, 383–392. [Google Scholar] [CrossRef]
- Guo, J.; Zhang, L.; Zhu, Q. A quadruple-porosity model for transient production analysis of multiple-fractured horizontal wells in shale gas reservoirs. Environ. Earth Sci. 2015, 73, 5917–5931. [Google Scholar] [CrossRef]
- Zhang, J.; Huang, S.; Cheng, L.; Xu, W.; Liu, H.; Yang, Y.; Xue, Y. Effect of flow mechanism with multi-nonlinearity on production of shale gas. J. Nat. Gas Sci. Eng. 2015, 24, 291–301. [Google Scholar] [CrossRef]
- Zhang, L.; Gao, J.; Hu, S.; Guo, J.; Liu, Q. Five-region flow model for MFHWs in dual porous shale gas reservoirs. J. Nat. Gas Sci. Eng. 2016, 33, 1316–1323. [Google Scholar] [CrossRef]
- Al-Rbeawi, S. Analysis of pressure behaviors and flow regimes of naturally and hydraulically fractured unconventional gas reservoirs using multi-linear flow regimes approach. J. Nat. Gas Sci. Eng. 2017, 45, 637–658. [Google Scholar] [CrossRef]
- Yuan, B.; Su, Y.; Moghanloo, R.G.; Rui, Z.; Wang, W.; Shang, Y. A new analytical multi-linear solution for gas flow toward fractured horizontal wells with different fracture intensity. J. Nat. Gas Sci. Eng. 2015, 23, 227–238. [Google Scholar] [CrossRef]
- Zeng, Y.; Wang, Q.; Ning, Z.; Sun, H. A Mathematical Pressure Transient Analysis Model for Multiple Fractured Horizontal Wells in Shale Gas Reservoirs. Geofluids 2018, 2018. [Google Scholar] [CrossRef]
- Zeng, J. Analytical Modeling of Multi-Fractured Horizontal Wells in Heterogeneous Unconventional Reservoirs. Master’s Thesis, University of Regina, Regina, Saskatchewan, 2017. [Google Scholar]
- Zeng, J.; Wang, X.; Guo, J.; Zeng, F. Composite linear flow model for multi-fractured horizontal wells in heterogeneous shale reservoir. J. Nat. Gas Sci. Eng. 2017, 38, 527–548. [Google Scholar] [CrossRef]
- Chen, C.; Raghavan, R. Transient flow in a linear reservoir for space–time fractional diffusion. J. Pet. Sci. Eng. 2015, 128, 194–202. [Google Scholar] [CrossRef]
- Ren, J.; Guo, P. Anomalous diffusion performance of multiple fractured horizontal wells in shale gas reservoirs. J. Nat. Gas Sci. Eng. 2015, 26, 642–651. [Google Scholar] [CrossRef]
- Albinali, A.; Ozkan, E. Analytical Modeling of Flow in Highly Disordered, Fractured Nano-Porous Reservoirs. In Proceedings of the SPE Western Regional Meeting, Anchorage, AK, USA, 23–26 May 2016. [Google Scholar]
- Wang, W.; Su, Y.; Sheng, G.; Cossio, M.; Shang, Y. A mathematical model considering complex fractures and fractal flow for pressure transient analysis of fractured horizontal wells in unconventional reservoirs. J. Nat. Gas Sci. Eng. 2015, 23, 139–147. [Google Scholar] [CrossRef]
- Fan, D.; Ettehadtavakkol, A. Semi-analytical modeling of shale gas flow through fractal induced fracture networks with microseismic data. Fuel 2017, 193, 444–459. [Google Scholar] [CrossRef]
- Raghavan, R.S.; Chen, C.-C.; Agarwal, B. An analysis of horizontal wells intercepted by multiple fractures. SPE J. 1997, 2, 235–245. [Google Scholar] [CrossRef]
- Al-Hussainy, R.; Ramey, H., Jr.; Crawford, P. The flow of real gases through porous media. J. Pet. Technol. 1966, 18, 624–636. [Google Scholar] [CrossRef]
- King, G.R.; Ertekin, T. Comparative evaluation of vertical and horizontal drainage wells for the degasification of coal seams. SPE Reserv. Eng. 1988, 3, 720–734. [Google Scholar] [CrossRef]
- Zhang, L.; Shan, B.; Zhao, Y.; Tang, H. Comprehensive Seepage Simulation of Fluid Flow in Multi-scaled Shale Gas Reservoirs. Transp. Porous Media 2017, 121, 263–288. [Google Scholar] [CrossRef]
- Cai, J.; Yu, B. Prediction of maximum pore size of porous media based on fractal geometry. Fractals 2010, 18, 417–423. [Google Scholar] [CrossRef]
- Cai, J.; Luo, L.; Ye, R.; Zeng, X.; Hu, X. Recent advances on fractal modeling of permeability for fibrous porous media. Fractals 2015, 23, 1540006. [Google Scholar] [CrossRef]
- Sheng, M.; Li, G.; Tian, S.; Huang, Z.; Chen, L. A fractal permeability model for shale matrix with multi-scale porous structure. Fractals 2016, 24, 1650002. [Google Scholar] [CrossRef]
- Cai, J.; Wei, W.; Hu, X.; Liu, R.; Wang, J. Fractal characterization of dynamic fracture network extension in porous media. Fractals 2017, 25, 1750023. [Google Scholar] [CrossRef]
- Chang, J.; Yortsos, Y.C. Pressure transient analysis of fractal reservoirs. SPE Form. Eval. 1990, 5, 31–38. [Google Scholar] [CrossRef]
- Acuna, J.; Ershaghi, I.; Yortsos, Y. Practical application of fractal pressure transient analysis of naturally fractured reservoirs. SPE Form. Eval. 1995, 10, 173–179. [Google Scholar] [CrossRef]
- Acuna, J.A.; Yortsos, Y.C. Application of fractal geometry to the study of networks of fractures and their pressure transient. Water Resour. Res. 1995, 31, 527–540. [Google Scholar] [CrossRef]
- Ozcan, O.; Sarak, H.; Ozkan, E.; Raghavan, R.S. A trilinear flow model for a fractured horizontal well in a fractal unconventional reservoir. In Proceedings of the SPE Annual Technical Conference and Exhibition, Amsterdam, The Netherlands, 27–29 October 2014. [Google Scholar]
- Caputo, M. Linear models of dissipation whose Q is almost frequency independent—II. Geophys. J. Int. 1967, 13, 529–539. [Google Scholar] [CrossRef]
- Molina, O.M.; Zeidouni, M. Analytical Model for Multifractured Systems in Liquid-Rich Shales with Pressure-Dependent Properties. Transp. Porous Media 2017, 119, 1–23. [Google Scholar] [CrossRef]
- Pedrosa, O.A., Jr. Pressure transient response in stress-sensitive formations. In Proceedings of the SPE California Regional Meeting, Oakland, CA, USA, 2–4 April 1986. [Google Scholar]
- Davies, B.; Martin, B. Numerical inversion of the Laplace transform: A survey and comparison of methods. J. Comput. Phys. 1979, 33, 1–32. [Google Scholar] [CrossRef]
Serial Number | Features | Models | ||||
---|---|---|---|---|---|---|
Stalgorova and Mattar [10] | Albinali and Ozkan [24] | Wang et al. [25] | Fan and Ettehadtavakkol [26] | Present Model | ||
1 | Fractal permeability in SRV | - | - | Fractal | Tortuosity-dependent | Fractal |
2 | Dual porous media in SRV | Cubic geometry | Spherical geometry | Cubic geometry | Slab geometry | Spherical geometry |
3 | Diffusion in fractures | Normal | Anomalous | Normal | Normal | Anomalous |
4 | Pressure-dependence of permeability | - | - | - | - | Exponential |
5 | Slip flow in shale matrix | - | - | - | Klinkenberg | Klinkenberg |
6 | Diffusion in shale matrix | - | - | - | Knudsen | Composite |
7 | Ad-desorption | - | - | - | Langmuir | Langmuir |
8 | Flow types | Five regions | Three regions | Five regions | Three regions | Five regions |
Parameter Name | Parameter Value |
---|---|
Dimensionless half fracture length, xfD | 1 |
Dimensionless fracture conductivity, FCD | 2 |
Inter-porosity flow coefficient, λ | λ = 0.2 |
Storage capacity coefficient, ω | ω = 0.2 |
Dimensionless distance in x direction, xnfD/xeD | xnfD = 1, xeD = 50 |
Dimensionless distance in y direction, ynfD/yeD | ynfD = 1, yeD = 50 |
Ratio of permeability, ki/kj | k3a/knf = 0.0005, k2a/knf = 0.1, k4a/k2a = 0.02 |
Absorption factor, | 5 |
Diffusion factor (apparent permeability coefficient), βt | 1.1 |
Dimensionless stress sensitivity factor, | 0.00009 |
Anomalous diffusion exponent, α | 0.85 |
Tortuosity index, θ | 0.35 |
Mass fractal dimension, df | 1.9 |
Number of fractures, n | 10 |
Parameter | Parameter Value |
---|---|
Half fracture length, xf | 35 m |
Inter-porosity flow coefficient, λ | λ = 0.1 |
Storage capacity coefficient, ω | ω = 0.05 |
Permeability of hydraulic fracture, kF | 4000 mD |
Fracture permeability in SRV, knf | 0.0002 mD |
Matrix permeability in regions, kim | k1m= k2m= k3m= k4m= 0.000005 mD |
Absorption factor, | 4 |
Diffusion factor(Apparent permeability coefficient), βt | 1.5 |
Dimensionless stress-sensitive factor, | 0.00008 |
Anomalous diffusion exponent, α | 0.7 |
Tortuosity index, θ | 0.86 |
Hausdorff index, df | 1.85 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tao, H.; Zhang, L.; Liu, Q.; Deng, Q.; Luo, M.; Zhao, Y. An Analytical Flow Model for Heterogeneous Multi-Fractured Systems in Shale Gas Reservoirs. Energies 2018, 11, 3422. https://doi.org/10.3390/en11123422
Tao H, Zhang L, Liu Q, Deng Q, Luo M, Zhao Y. An Analytical Flow Model for Heterogeneous Multi-Fractured Systems in Shale Gas Reservoirs. Energies. 2018; 11(12):3422. https://doi.org/10.3390/en11123422
Chicago/Turabian StyleTao, Honghua, Liehui Zhang, Qiguo Liu, Qi Deng, Man Luo, and Yulong Zhao. 2018. "An Analytical Flow Model for Heterogeneous Multi-Fractured Systems in Shale Gas Reservoirs" Energies 11, no. 12: 3422. https://doi.org/10.3390/en11123422
APA StyleTao, H., Zhang, L., Liu, Q., Deng, Q., Luo, M., & Zhao, Y. (2018). An Analytical Flow Model for Heterogeneous Multi-Fractured Systems in Shale Gas Reservoirs. Energies, 11(12), 3422. https://doi.org/10.3390/en11123422