Oscillation Suppression Method by Two Notch Filters for Parallel Inverters under Weak Grid Conditions
Abstract
:1. Introduction
2. Oscillation Mechanism of Paralleled Multi-Inverter System
2.1. System Description
2.2. Oscillation Mechanism
3. Oscillation Suppression Method by Two Notch Filters for Parallel Inverters
3.1. Demand for the Inverter Output Impedance
3.2. Oscillation Suppression Method
4. Contrast Analysis of System Stability under Weak Grid Condition
5. Simulation Verification
6. Experimental Verification
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Yu, Y.; Konstantinou, G.; Hredzak, B.; Agelidis, V.G. Power balance optimization of cascaded H-bridge multilevel converters for large-scale photovoltaic integration. IEEE Trans. Power Electron. 2016, 31, 1108–1120. [Google Scholar] [CrossRef]
- Guo, X.; Yang, Y.; Zhu, T. ESI: A novel three-phase inverter with leakage current attenuation for transformerless PV systems. IEEE Trans. Ind. Electron. 2018, 65, 2967–2974. [Google Scholar] [CrossRef]
- Bouloumpasis, I.; Vovos, P.; Georgakas, K.; Vovos, N.A. Current harmonics compensation in microgrids exploiting the power electronics interfaces of renewable energy sources. Energies 2015, 8, 2295–2311. [Google Scholar] [CrossRef]
- Hany, M.H. Whale optimisation algorithm for automatic generation control of interconnected modern power systems including renewable energy sources. IET Gener. Transm. Distrib. 2018, 12, 607–614. [Google Scholar]
- Li, X.; Fang, J.; Tang, Y.; Wu, X. Robust design of LCL filters for single-current-loop-controlled grid-connected power converters with unit PCC voltage feedforward. IEEE J. Emerg. Sel. Top. Power Electron. 2018, 6, 54–72. [Google Scholar] [CrossRef]
- Guo, X.; Yang, Y.; Wang, X. Advanced control of grid-connected current source converter under unbalanced grid voltage conditions. IEEE Trans. Ind. Electron. 2018, 65, 9225–9233. [Google Scholar] [CrossRef]
- Yang, Y.; Ye, Q.; Tung, L.J.; Greenleaf, M.; Li, H. Integrated size and energy management design of battery storage to enhance grid integration of large-scale PV power plants. IEEE Trans. Ind. Electron. 2018, 65, 394–402. [Google Scholar] [CrossRef]
- Rohner, S.; Bernet, S.; Hiller, M.; Sommer, R. Modulation, losses, and semiconductor requirements of modular multilevel converters. IEEE Trans. Ind. Electron. 2010, 57, 2633–2642. [Google Scholar] [CrossRef]
- Remon, D.; Cantarellas, A.M.; Mauricio, J.M.; Rodriguez, P. Power system stability analysis under increasing penetration of photovoltaic power plants with synchronous power controllers. IET Renew. Power Gener. 2017, 11, 733–741. [Google Scholar] [CrossRef] [Green Version]
- Malinowski, M.; Gopakumar, K.; Rodriguez, J.; Perez, M.A. A survey on cascaded multilevel inverters. IEEE Trans. Ind. Electron. 2010, 57, 2197–2206. [Google Scholar] [CrossRef]
- Amin, M.; Molinas, M. Small-signal stability assessment of power electronics based power systems: A discussion of impedance- and eigenvalue-based methods. IEEE Trans. Ind. Appl. 2017, 53, 5014–5030. [Google Scholar] [CrossRef]
- Bakhshizadeh, M.K.; Yoon, C.; Hjerrild, J.; Bak, C.L.; Kocewiak, Ł.H.; Blaabjerg, F.; Hesselbæk, B. The application of vector fitting to eigenvalue-based harmonic stability analysis. IEEE J. Emerg. Sel. Top. Power Electron. 2017, 5, 1487–1498. [Google Scholar] [CrossRef]
- Sun, J. Impedance-based stability criterion for grid-connected inverters. IEEE Trans. Power Electron. 2011, 26, 3075–3078. [Google Scholar] [CrossRef]
- Yang, L.; Chen, Y.; Luo, A.; Chen, Z.; Zhou, L.; Zhou, X.; Wu, W.; Tan, W.; Guerrero, J.M. Effect of phase-locked loop on small-signal perturbation modelling and stability analysis for three-phase LCL-type inverter connected to weak grid. IET Renew. Power Gener. 2008. [Google Scholar] [CrossRef]
- Xu, J.; Xie, S.; Tang, T. Improved control strategy with grid-voltage feedforward for LCL-filter-based inverter connected to weak grid. IET Power Electron. 2014, 7, 2660–2671. [Google Scholar] [CrossRef]
- Harnefors, L. Modeling of three-phase dynamic systems using complex transfer functions and transfer matrices. IEEE Trans. Ind. Electron. 2007, 54, 2239–2248. [Google Scholar] [CrossRef]
- Wang, X.; Blaabjerg, F.; Liserre, M.; Chen, Z.; He, J.; Li, Y. An Active Damper for Stabilizing Power-Electronics-Based AC Systems. IEEE Trans. Power Electron. 2014, 29, 3318–3329. [Google Scholar] [CrossRef]
- Yang, D.; Ruan, X.; Wu, H. A real-time computation method with dual sampling modes to improve the current control performances of the LCL-type grid-connected inverter. IEEE Trans. Ind. Electron. 2015, 62, 4563–4572. [Google Scholar] [CrossRef]
- Li, X.; Wu, X.; Geng, Y.; Yuan, X.; Xia, C.; Zhang, X. Wide damping region for LCL-type grid-connected inverter with an improved capacitor-current-feedback method. IEEE Trans. Power Electron. 2015, 30, 5247–5259. [Google Scholar] [CrossRef]
- Dannehl, J.; Fuchs, F.W.; Hansen, S.; Thogersen, P.B. Investigation of active damping approaches for PI-based current control of grid-connected pulse width modulation inverters with LCL filters. IEEE Trans. Ind. Appl. 2010, 46, 1509–1517. [Google Scholar] [CrossRef]
- Komurcugil, H.; Altin, N.; Ozdemir, S.; Sefa, I. Lyapunov-function and proportional-resonant-based control strategy for single-phase grid-connected VSI with LCL filter. IEEE Trans. Ind. Electron. 2016, 63, 2838–2849. [Google Scholar] [CrossRef]
- Chen, Z.; Chen, Y.; Guerrero, J.M.; Kuang, H.; Huang, Y.; Zhou, L.; Luo, A. Generalized coupling resonance modeling, analysis, and active damping of multi-parallel inverters in microgrid operating in grid-connected mode. J. Mod. Power Syst. Clean Energy 2016, 4, 63–75. [Google Scholar] [CrossRef] [Green Version]
- He, J.; Li, Y.; Bosnjak, D.; Harris, B. Investigation and active damping of multiple resonances in a parallel-inverter-based microgrid. IEEE Trans. Power Electron. 2013, 28, 234–246. [Google Scholar] [CrossRef]
- Zheng, C.; Zhou, L.; Xie, B.; Zhang, Q.; Li, H. A stabilizer for suppressing harmonic resonance in multi-parallel inverter system. In Proceedings of the IEEE Transportation Electrification Conference and Expo, (ITEC Asia-Pacific), Harbin, China, 1–6 August 2017. [Google Scholar]
- Jeong, S.-G.; Park, M.-H. The analysis and compensation of dead-time effects in PWM inverters. IEEE Trans. Ind. Electron. 1991, 38, 108–114. [Google Scholar] [CrossRef]
- Shuai, Z.; Huang, W.; Shen, C.; Ge, J.; Shen, Z.J. Characteristics and restraining method of fast transient inrush fault currents in synchronverters. IEEE Trans. Ind. Electron. 2017, 64, 7487–7497. [Google Scholar] [CrossRef]
Number | Parallel Virtual Impedance Zpj | Series Virtual Impedance Zsj | Control Method |
---|---|---|---|
I | r1 | r2 | case I |
II | r1/GN | r2GN | case II |
Parameter/Unit | Value | Parameter/Unit | Value |
---|---|---|---|
DC voltage Udc/V | 720 | Switching frequency fs/kHz | 10 |
Grid phase voltage Ug/V | 220 | Proportional coefficient kp | 2.1 |
Amplitude of triangular carrier Utri/V | 1 | Resonance gain ki1 | 175 |
Inverter-side inductor L1/mH | 2.2 | Cut-off angular frequency ωc/rad/s | 6.28 |
Parasitic resistance of L1 RL1/Ω | 0.002 | Fundamental angular frequency ωo/rad/s | 314 |
Filter capacitor C1/μF | 10 | Fundamental frequency fo/Hz | 50 |
Grid-side inductor L2/mH | 0.8 | Quality factor Q | 0.5 |
Parasitic resistance of L2 RL2/Ω | 0.001 | Proportional coefficient r1 | 5 |
Grid inductor Lg/mH | 2 | Proportional coefficient r2 | 15 |
Number | Case | Before Reference Current Transient | After Reference Current Transient | ||
---|---|---|---|---|---|
THD | Resonance Point and Resonance Peak | THD | Resonance Point and Resonance Peak | ||
2 | I | 6.07% | 25th harmonic 1.77 A | 3.16% | 25th harmonic 1.81 A |
II | 3.27% | 39th harmonic 0.88 A | 1.51% | 39th harmonic 0.79 A |
Number | Case | THD | Resonance Point and Resonance Peak |
---|---|---|---|
7 | I | (unstable) | (unstable) |
II | 3.38% | 39th harmonic 1.51 A |
Number | Case | Before Reference Current Transient | After Reference Current Transient | ||
---|---|---|---|---|---|
THD | Resonance Point and Resonance Peak | THD | Resonance Point and Resonance Peak | ||
2 | I | 7.01% | 25th harmonic 2.66 A | 4.22% | 25th harmonic 2.89 A |
II | 4.82% | 39th harmonic 2.06 A | 2.79% | 39th harmonic 2.04 A |
Number | Case | THD | Resonance Point and Resonance Peak |
---|---|---|---|
7 | I | (unstable) | (unstable) |
II | 4.36% | 39th harmonic 2.99 A |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, L.; Chen, Y.; Wang, H.; Luo, A.; Huai, K. Oscillation Suppression Method by Two Notch Filters for Parallel Inverters under Weak Grid Conditions. Energies 2018, 11, 3441. https://doi.org/10.3390/en11123441
Yang L, Chen Y, Wang H, Luo A, Huai K. Oscillation Suppression Method by Two Notch Filters for Parallel Inverters under Weak Grid Conditions. Energies. 2018; 11(12):3441. https://doi.org/10.3390/en11123441
Chicago/Turabian StyleYang, Ling, Yandong Chen, Hongliang Wang, An Luo, and Kunshan Huai. 2018. "Oscillation Suppression Method by Two Notch Filters for Parallel Inverters under Weak Grid Conditions" Energies 11, no. 12: 3441. https://doi.org/10.3390/en11123441
APA StyleYang, L., Chen, Y., Wang, H., Luo, A., & Huai, K. (2018). Oscillation Suppression Method by Two Notch Filters for Parallel Inverters under Weak Grid Conditions. Energies, 11(12), 3441. https://doi.org/10.3390/en11123441