Laboratory Testing of the Innovative Low-Cost Mewar Angithi Insert for Improving Energy Efficiency of Cooking Tasks on Three-Stone Fires in Critical Contexts
Abstract
:1. Introduction
1.1. Access to Energy in Critical and Humanitarian Settings
1.2. The Mewar Angithi Insert: Concept and Characteristics
2. Materials and Methods
2.1. Materials Testing Protocol
2.2. Laboratory Equipment
- Electronic weight scale, resolution 1 g up to 5 kg, 2 g from 5 to 10 kg;
- Wood moisture meter, electric resistance type, sensitivity 1% up to 30% of moisture content, 2% between 30% and 60%, 4% from 60% up to 90%;
- Air moisture (humidity) meter, resolution 0.1%, accuracy ±3% (30–99% RH), ±5% (10–30% RH);
- Thermocouple type K.
2.3. Statistical Analysis
3. Results
4. Discussion and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- IEA. World Energy Outlook 2018; IEA: Paris, France, 2018. [Google Scholar]
- IEA. Energy Access Outlook 2017: From Poverty to Prosperity; IEA: Paris, France, 2017; Volume 94. [Google Scholar]
- Putti, V.R.; Tsan, M.; Mehta, S.; Kammila, S. The State of the Global Clean and Improved Cooking Sector; World Bank: Washington, DC, USA, 2015. [Google Scholar]
- Sovacool, B.K. The political economy of energy poverty: A review of key challenges. Energy Sustain. Dev. 2012, 16, 272–282. [Google Scholar] [CrossRef]
- Arnold, J.E.M.; Köhlin, G.; Persson, R. Woodfuels, livelihoods, and policy interventions: Changing perspectives. World Dev. 2006, 34, 596–611. [Google Scholar] [CrossRef]
- Mandelli, S.; Barbieri, J.; Mattarolo, L.; Colombo, E. Sustainable energy in Africa: A comprehensive data and policies review. Renew. Sustain. Energy Rev. 2014, 37, 656–686. [Google Scholar] [CrossRef]
- Barbieri, J.; Riva, F.; Colombo, E. Cooking in refugee camps and informal settlements: A review of available technologies and impacts on the socio-economic and environmental perspective. Sustain. Energy Technol. Assess. 2017, 22, 194–207. [Google Scholar] [CrossRef] [Green Version]
- Ramanathan, V.; Carmichael, G. Global and regional climate changes due to black carbon. Nat. Geosci. 2008, 1, 221–227. [Google Scholar] [CrossRef]
- UNHCR. Global Trends—Forced Displacement in 2015; UNHCR: Geneva, Switzerland, 2016. [Google Scholar]
- Moving Energy Initiative. Energy Consumption of Refugees and Displaced People Database; Moving Energy Initiative: London, UK, 2018. [Google Scholar]
- Burrows, G.; Ballard-Tremeer, G.; Garside, B.; Jones, D.; Rai, K.; Severi, L. Energy in Emergency Settings; Boiling Point: Chislehurst, UK, 2016. [Google Scholar]
- Shepherd, G. The Impact of Refugees on the Environment and Appropriate Response; Humanitarian Practice Network: London, UK, 1995. [Google Scholar]
- Lahn, G.; Grafham, O. Heat, Light and Power for Refugees. Saving Lives, Reducing Costs; Chatham House: London, UK, 2015. [Google Scholar]
- Köhlin, G.; Sills, E.O.; Pattanayak, S.K.; Wilfong, C. Energy, Gender and Development: What Are the Linkages? Where Is the Evidence? World Bank: Washington, DC, USA, 2011. [Google Scholar]
- IASC. Guidelines for Integrating Gender-Based Violence Interventions in Humanitarian Action; IASC: Geneva, Switzerland, 2015. [Google Scholar]
- Corbyn, D.; Vianello, M. Prices, Products and Priorities Meeting Refugees’ Energy Needs; Chatham House: London, UK, 2018. [Google Scholar]
- Bellanca, R. Sustainable Energy Provision among Displaced Populations: Policy and Practice; Chatham House: London, UK, 2014. [Google Scholar]
- Confino, J.; Paddison, L. Cookstove designs are failing the poorest communities. The Guardian, 7 February 2014. [Google Scholar]
- Lehne, J.; Blyth, W.; Lahn, G.; Bazilian, M.; Grafham, O. Energy services for refugees and displaced people. Energy Strateg. Rev. 2016, 13–14, 134–146. [Google Scholar] [CrossRef]
- Parigi, F.; Del Viscio, M.; Amicabile, S.; Testi, M.; Rao, S.; Udaykumar, H.S. High efficient Mewar Angithi stove testing in rural Kenya. In Proceedings of the 2016 7th International Renewable Energy Congress (IREC), Hammamet, Tunisia, 22–24 March 2016; pp. 1–6. [Google Scholar]
- Udaykumar, H.S.; Kindig, A.; Rao, S.; Del Viscio, M.; Kukillaya, V.; Panwar, N.L.; Sharma, D. How a simple inexpensive device makes a three-stone hearth as efficient as an improved cook-stove. Solut. J. 2015, 6, 53–60. [Google Scholar]
- Jetter, J.J.; Kariher, P. Solid-fuel household cook stoves: Characterization of performance and emissions. Biomass Bioenergy 2009, 33, 294–305. [Google Scholar] [CrossRef]
- Shen, G.; Gaddam, C.K.; Ebersviller, S.M.; Vander Wal, R.L.; Williams, C.; Faircloth, J.W.; Jetter, J.J.; Hays, M.D. A Laboratory Comparison of Emission Factors, Number Size Distributions, and Morphology of Ultrafine Particles from 11 Different Household Cookstove-Fuel Systems. Environ. Sci. Technol. 2017, 51, 6522–6532. [Google Scholar] [CrossRef] [PubMed]
- Ojo, K.D.; Soneja, S.I.; Scrafford, C.G.; Khatry, S.K.; LeClerq, S.C.; Checkley, W.; Katz, J.; Breysse, P.N.; Tielsch, J.M. Indoor particulate matter concentration, water boiling time, and fuel use of selected alternative cookstoves in a home-like setting in rural Nepal. Int. J. Environ. Res. Public Health 2015, 12, 7558–7581. [Google Scholar] [CrossRef] [PubMed]
- Obeng, G.Y.; Mensah, E.; Ashiagbor, G.; Boahen, O.; Sweeney, D.J. Watching the smoke rise up: Thermal efficiency, pollutant emissions and global warming impact of three biomass cookstoves in Ghana. Energies 2017, 10, 1–14. [Google Scholar] [CrossRef]
- Jetter, J.; Zhao, Y.; Smith, K.R.; Khan, B.; Yelverton, T.; Decarlo, P.; Hays, M.D. Pollutant emissions and energy efficiency under controlled conditions for household biomass cookstoves and implications for metrics useful in setting international test standards. Environ. Sci. Technol. 2012, 46, 10827–10834. [Google Scholar] [CrossRef] [PubMed]
- Lombardi, F.; Riva, F.; Bonamini, G.; Barbieri, J.; Colombo, E. Laboratory protocols for testing of Improved Cooking Stoves (ICSs): A review of state-of-the-art and further developments. Biomass Bioenergy 2017, 98, 321–335. [Google Scholar] [CrossRef] [Green Version]
- Global Alliance for Clean Cookstoves. Water Boiling Test, version 4.2.3; Global Alliance for Clean Cookstoves: Washington, DC, USA, 2014. [Google Scholar]
- ISO. IWA 11:2012(en) Guidelines for Evaluating Cookstove Performance; ISO: Geneva, Switzerland, 2012. [Google Scholar]
- Lombardi, F.; Riva, F.; Colombo, E. Guidelines for Reporting and Analysing Laboratory Test Results for Biomass Cooking Stoves; Politecnico di Milano: Milano, Italy, 2017. [Google Scholar]
- Lombardi, F.; Riva, F.; Colombo, E. Dealing with small sets of laboratory test replicates for Improved Cooking Stoves (ICSs): Insights for a robust statistical analysis of results. Biomass Bioenergy 2018, 115, 27–34. [Google Scholar] [CrossRef] [Green Version]
- Riva, F.; Lombardi, F.; Pavarini, C.; Colombo, E. Fuzzy interval propagation of uncertainties in experimental analysis for improved and traditional three—Stone fire cookstoves. Sustain. Energy Technol. Assess. 2016, 18, 59–68. [Google Scholar] [CrossRef]
- Wang, Y.; Sohn, M.D.; Wang, Y.; Lask, K.M.; Kirchstetter, T.W.; Gadgil, A.J. How many replicate tests are needed to test cookstove performance and emissions?—Three is not always adequate. Energy Sustain. Dev. 2014, 20, 21–29. [Google Scholar] [CrossRef]
- Vianello, M.; Okello, S. The Energy Situation in Goudoubo Refugee Camp, Burkina Faso; Practical Action: London, UK, 2016. [Google Scholar]
CO | CO2 | PM |
---|---|---|
Type: Electrochemical cell Range: 0–5000 ppm Accuracy: 25 ppm Resolution: 1 ppm Response time: T90 < 25 s | Type: Non-Dispersive Infrared Range: 0–10,000 ppm Accuracy: 75 ppm or 10% (whichever is greater) Resolution: 2 ppm Response time: T90 < 2 min | Type: Red laser scattering photometer Range: 0–60,000 ug/m3 Resolution: 25 ug/m3 Response time: 1 s |
Indicator | TSF | MA Insert | Percentage Difference (MA Insert vs TSF) (%) |
---|---|---|---|
Number of test replicates (-) | 10 | 10 | |
High Power Thermal Efficiency (-) | 0.0951 (0.0173) | 0.1274 (0.0194) | 34.07 *** (31.79) |
Low Power Specific Consumption Rate (MJ/min/L) | 0.1413 (0.0311) | 0.1199 (0.0173) | −15.14 ** (22.32) |
High Power Fuel Consumption (g) | 1101.2680 (268.0091) | 791.5806 (143.5347) | −28.12 *** (21.81) |
Low Power Fuel Consumption (g) | 639.2175 (128.7607) | 507.0024 (83.1822) | −20.68 *** (20.61) |
Total Fuel Consumption (g) | 1740.4860 (354.8518) | 1298.5830 (191.8221) | −25.39 *** (18.78) |
High Power PM (mg/MJd) | 178.8463 (76.1455) | 112.8398 (43.3735) | −36.91 ** (36.19) |
Low Power PM (mg/min/L) | 3.8971 (1.3743) | 2.0293 (1.2452) + | −47.93 *** (36.85) ++ |
High Power CO (g/MJd) | 10.7817 (4.6559) | 9.7703 (2.7739) | −9.38 (46.83) |
Low Power CO (g/min/l) | 0.2473 (0.0714) | 0.2045 (0.0453) + | −17.32 (30.09) ++ |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barbieri, J.; Parigi, F.; Riva, F.; Colombo, E. Laboratory Testing of the Innovative Low-Cost Mewar Angithi Insert for Improving Energy Efficiency of Cooking Tasks on Three-Stone Fires in Critical Contexts. Energies 2018, 11, 3463. https://doi.org/10.3390/en11123463
Barbieri J, Parigi F, Riva F, Colombo E. Laboratory Testing of the Innovative Low-Cost Mewar Angithi Insert for Improving Energy Efficiency of Cooking Tasks on Three-Stone Fires in Critical Contexts. Energies. 2018; 11(12):3463. https://doi.org/10.3390/en11123463
Chicago/Turabian StyleBarbieri, Jacopo, Fabio Parigi, Fabio Riva, and Emanuela Colombo. 2018. "Laboratory Testing of the Innovative Low-Cost Mewar Angithi Insert for Improving Energy Efficiency of Cooking Tasks on Three-Stone Fires in Critical Contexts" Energies 11, no. 12: 3463. https://doi.org/10.3390/en11123463
APA StyleBarbieri, J., Parigi, F., Riva, F., & Colombo, E. (2018). Laboratory Testing of the Innovative Low-Cost Mewar Angithi Insert for Improving Energy Efficiency of Cooking Tasks on Three-Stone Fires in Critical Contexts. Energies, 11(12), 3463. https://doi.org/10.3390/en11123463