Optimization of the Transesterification of Waste Cooking Oil with Mg-Al Hydrotalcite Using Response Surface Methodology
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Hydrotalcite Catalyst
2.3. Characterization of Hydrotalcite
2.4. Transesterification Reaction
2.5. Biodiesel Analysis
2.6. Response Surface Methodology
3. Results and Discussion
3.1. Catalyst Characterization
3.2. Influence of Reaction Parameters on Conversion
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Corral Bobadilla, M.; Lostado Lorza, R.; Garcia, R.E.; Somovilla Gomez, F.; Vergara Gonzalez, E.P. An improvement in biodiesel production from waste cooking oil by applying thought multi-response surface methodology using desirability functions. Energies 2017, 10, 130. [Google Scholar] [CrossRef]
- Pinzi, S.; Lopez Garcia, I.; Lopez-Gimenez, F.J.; Luque de Castro, M.D.; Dorado, G.; Dorado, M.P. The ideal vegetable oil-based biodiesel composition: A review of social, economical and technical implications. Energy Fuels 2009, 23, 2325–2341. [Google Scholar] [CrossRef]
- Dorado, M.P.; Ballesteros, E.; de Almeida, J.A.; Schellert, C.; Lohrlein, H.P.; Krause, R. An alkali-catalyzed transesterification process for high free fatty acid waste oils. Trans. ASAE 2002, 45, 525–529. [Google Scholar] [CrossRef]
- Dorado, M.P.; Ballesteros, E.; Lopez, F.J.; Mittelbach, M. Optimization of alkali-catalyzed transesterification of Brassica carinata oil for biodiesel production. Energy Fuels 2004, 18, 77–83. [Google Scholar] [CrossRef]
- Sharma, Y.C.; Singh, B.; Korstad, J. Latest developments on application of heterogenous basic catalysts for an efficient and eco friendly synthesis of biodiesel: A review. Fuel 2011, 90, 1309–1324. [Google Scholar] [CrossRef]
- Lee, H.V.; Juan, J.C.; Hin, T.Y.Y.; Ong, H.C. Environment-friendly heterogeneous alkaline-based mixed metal oxide catalysts for biodiesel production. Energies 2016, 9, 611. [Google Scholar] [CrossRef]
- Arzamendi, G.; Campo, I.; Arguinarena, E.; Sanchez, M.; Montes, M.; Gandia, L.M. Synthesis of biodiesel with heterogeneous NaOH/alumina catalysts: Comparison with homogeneous NaOH. Chem. Eng. J. 2007, 134, 123–130. [Google Scholar] [CrossRef]
- Reyero, I.; Arzamendi, G.; Gandia, L.M. Heterogenization of the biodiesel synthesis catalysis: CaO and novel calcium compounds as transesterification catalysts. Chem. Eng. Res. Des. 2014, 92, 1519–1530. [Google Scholar] [CrossRef]
- Santacesaria, E.; Vicente, G.M.; Di Serio, M.; Tesser, R. Main technologies in biodiesel production: State of the art and future challenges. Catal. Today 2012, 195, 2–13. [Google Scholar] [CrossRef]
- Kouzu, M.; Kasuno, T.; Tajika, M.; Yamanaka, S.; Hidaka, J. Active phase of calcium oxide used as solid base catalyst for transesterification of soybean oil with refluxing methanol. Appl. Catal. A Gen. 2008, 334, 357–365. [Google Scholar] [CrossRef]
- Granados, M.L.; Poves, M.D.Z.; Alonso, D.M.; Mariscal, R.; Galisteo, F.C.; Moreno-Tost, R.; Santamaría, J.; Fierro, J.L.G. Biodiesel from sunflower oil by using activated calcium oxide. Appl. Catal. B Environ. 2007, 73, 317–326. [Google Scholar] [CrossRef]
- Verziu, M.; Coman, S.M.; Richards, R.; Parvulescu, V.I. Transesterification of vegetable oils over CaO catalysts. Catal. Today 2011, 167, 64–70. [Google Scholar] [CrossRef]
- Navajas, A.; Campo, I.; Moral, A.; Echave, J.; Sanz, O.; Montes, M.; Odriozola, J.A.; Arzamendi, G.; Gandía, L.M. Outstanding performance of rehydrated Mg-Al hydrotalcites as heterogeneous methanolysis catalysts for the synthesis of biodiesel. Fuel 2018, 211, 173–181. [Google Scholar] [CrossRef]
- Hojjat, M.; Nayebzadeh, H.; Khadangi-Mahrood, M.; Rahmani-Vahid, B. Optimization of process conditions for biodiesel production over CaO-Al2O3/ZrO2 catalyst using response surface methodology. Chem. Pap. 2017, 71, 689–698. [Google Scholar] [CrossRef]
- De Paiva, E.J.M.; Sterchele, S.; Corazza, M.L.; Murzin, D.Y.; Wypych, F.; Salmi, T. Esterification of fatty acids with ethanol over layered zinc laurate and zinc stearate—Kinetic modeling. Fuel 2015, 153, 445–454. [Google Scholar] [CrossRef]
- Stošić, D.; Hosoglu, F.; Bennici, S.; Travert, A.; Capron, M.; Dumeignil, F.; Couturier, J.L.; Dubois, J.L.; Auroux, A. Methanol and ethanol reactivity in the presence of hydrotalcites with Mg/Al ratios varying from 2 to 7. Catal. Commun. 2017, 89, 14–18. [Google Scholar] [CrossRef]
- Theiss, F.L.; Ayoko, G.A.; Frost, R.L. Synthesis of layered double hydroxides containing Mg2+, Zn2+, Ca2+ and Al3+ layer cations by co-precipitation methods—A review. Appl. Surf. Sci. 2016, 383, 200–213. [Google Scholar] [CrossRef]
- Kutalek, P.; Capek, L.; Smolakova, L.; Kubicka, D. Aspects of Mg-Al mixed oxide activity in transesterification of rapeseed oil in a fixed-bed reactor. Fuel Proc. Technol. 2014, 122, 176–181. [Google Scholar] [CrossRef]
- Zeng, H.-Y.; Feng, Z.; Deng, X.; Li, Y.-Q. Activation of Mg-Al hydrotalcite catalysts for transesterification of rape oil. Fuel 2008, 87, 3071–3076. [Google Scholar] [CrossRef]
- Brito, A.; Borges, M.E.; Garin, M.; Hernandez, A. Biodiesel production from waste oil using Mg-Al layered double hydroxide catalysts. Energy Fuels 2009, 23, 2952–2958. [Google Scholar] [CrossRef]
- Del Remedio Hernández, M.; Reyes-Labarta, J.A.; Valdés, F.J. New heterogeneous catalytic transesterification of vegetable and used frying oil. Ind. Eng. Chem. Res. 2010, 49, 9068–9076. [Google Scholar] [CrossRef]
- Yagiz, F.; Kazan, D.; Akin, A.N. Biodiesel production from waste oils by using lipase immobilized on hydrotalcite and zeolites. Chem. Eng. J. 2007, 134, 262–267. [Google Scholar] [CrossRef]
- Ma, Y.; Wang, Q.; Zheng, L.; Gao, Z.; Wang, Q.; Ma, Y. Mixed methanol/ethanol on transesterification of waste cooking oil using Mg/Al hydrotalcite catalyst. Energy 2016, 107, 523–531. [Google Scholar] [CrossRef]
- Dorado, M.P.; Cruz, F.; Palomar, J.M.; Lopez, F.J. An approach to the economics of two vegetable oil-based biofuels in Spain. Renew. Energy 2006, 31, 1231–1237. [Google Scholar] [CrossRef]
- Chhetri, A.B.; Watts, K.C.; Islam, M.R. Waste cooking oil as an alternate feedstock for biodiesel production. Energies 2008, 1, 3–18. [Google Scholar] [CrossRef]
- Jahirul, M.I.; Koh, W.; Brown, R.J.; Senadeera, W.; O’Hara, I.; Moghaddam, L. Biodiesel production from non-edible beauty leaf (Calophyllum inophyllum) oil: Process optimization using response surface methodology (RSM). Energies 2014, 7, 5317–5331. [Google Scholar] [CrossRef]
- Kustrowski, P.; Chmielarz, L.; Bozek, E.; Sawalha, M.; Roessner, F. Acidity and basicity of hydrotalcite derived mixed Mg-Al oxides studied by test reaction of MBOH conversion and temperature programmed desorption of NH3 and CO2. Mater. Res. Bull. 2004, 39, 263–281. [Google Scholar] [CrossRef]
- Fraile, J.M.; García, N.; Mayoral, J.A.; Pires, E.; Roldán, L. The basicity of mixed oxides and the influence of alkaline metals: The case of transesterification reactions. Appl. Catal. A Gen. 2010, 387, 67–74. [Google Scholar] [CrossRef] [Green Version]
- Lam, M.K.; Lee, M.T.; Mohamed, A.R. Homogeneous, heterogeneous and enzymatic catalysis for transesterification of high free fatty acid oil (waste cooking oil) to biodiesel: A review. Biotechnol. Adv. 2010, 28, 500–518. [Google Scholar] [CrossRef] [PubMed]
- Qasim, M.; Ansari, T.M.; A Hussain, M. Combustion, performance, and emission evaluation of a diesel engine with biodiesel like fuel blends derived from a mixture of Pakistani waste canola and waste transformer oils. Energies 2017, 10, 1023. [Google Scholar] [CrossRef]
- Di Serio, M.; Ledda, M.; Cozzolino, M.; Minutillo, G.; Tesser, R.; Santacesaria, E. Transesterification of soybean oil to biodiesel by using heterogeneous basic catalysts. Ind. Eng. Chem. Res. 2006, 45, 3009–3014. [Google Scholar] [CrossRef]
Physical Properties | |
---|---|
Acid value (mg KOH/g sample) | 1.77 |
Peroxide value (meqO2/kg) | 30.30 |
Density (kg/m3) | 900 |
Kinematic viscosity (mm2/s) | 32.5 |
High calorific value (kJ/kg) | 39,000 |
Flash point (°C) | 244 |
Water content (mg/kg) | 1.16 |
Fatty acid composition (% w) | |
16:0 | 10 |
18:0 | 4 |
18:1 | 33 |
18:2 | 53 |
Range of Used Factors | |||||||||
---|---|---|---|---|---|---|---|---|---|
Hydrotalcite (% w/w) | Reaction Time (h) | Methanol-To-Oil (Molar Relation) | |||||||
Level code | −1 | 0 | 1 | −1 | 0 | 1 | −1 | 0 | 1 |
Used frying oil | 5 | 7.5 | 10 | 2 | 3 | 4 | 3:1 | 6:1 | 9:1 |
Type of Experiment: Linear Step | FAME Content (% w/w) | ||||
---|---|---|---|---|---|
Run Number | Hydrotalcite | Reaction Time | Methanol-To-Oil | Experimental Value | Simulated Value |
1 | −1 | 0 | −1 | 41. 7 | 39.42 |
2 | −1 | −1 | 0 | 47.9 | 51.04 |
3 | 0 | −1 | −1 | 36.6 | 35.99 |
4 | 1 | 0 | 0 | 78.3 | 80.31 |
5 | 1 | 0 | −1 | 58.8 | 58.65 |
6 | 0 | 1 | 1 | 80.8 | 81.91 |
7 | 1 | 1 | 0 | 78.1 | 74.46 |
8 | 0 | 1 | −1 | 49.8 | 52.83 |
9 | −1 | 1 | 0 | 72.6 | 72.10 |
10 | −1 | 0 | 1 | 81.5 | 81.15 |
11 | 1 | 0 | 1 | 83.6 | 85.38 |
12 | 0 | −1 | 1 | 77.9 | 75.37 |
Central points | |||||
13 | 0 | 0 | 0 | 78.7 | 76.83 |
14 | 0 | 0 | 0 | 76.6 | 76.83 |
15 | 0 | 0 | 0 | 76.2 | 76.83 |
Sum of Squares | Degree of Freedom | F-Ratio | p-Value | Regression Coefficients | |
---|---|---|---|---|---|
Constant | −190.404 | ||||
A: Hydrotalcite | 230.15 | 1 | 127.62 | 0.0077 | 41.75 |
B: Time | 191.93 | 1 | 106.43 | 0.0093 | 67.11 |
C: Methanol-to-oil molar ratio | 2342.70 | 1 | 1299.09 | 0.0008 | 6.93 |
AA | 238.29 | 1 | 132.14 | 0.0075 | −0.08 |
AB | 26.52 | 1 | 14.71 | 0.0618 | −0.26 |
AC | 56.25 | 1 | 31.19 | 0.0306 | −0.38 |
BB | 147.55 | 1 | 81.82 | 0.0120 | −7.01 |
BC | 47.51 | 1 | 26.34 | 0.0359 | −4.68 |
CC | 18.91 | 1 | 10.49 | 0.0836 | −2.39 |
Lack of fit | 53.44 | 3 | 9.88 | 0.0933 | |
Pure error | 3.61 | 2 | |||
Total (correlation) | 3669.90 | 14 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Costarrosa, L.; Leiva-Candia, D.E.; Cubero-Atienza, A.J.; Ruiz, J.J.; Dorado, M.P. Optimization of the Transesterification of Waste Cooking Oil with Mg-Al Hydrotalcite Using Response Surface Methodology. Energies 2018, 11, 302. https://doi.org/10.3390/en11020302
Costarrosa L, Leiva-Candia DE, Cubero-Atienza AJ, Ruiz JJ, Dorado MP. Optimization of the Transesterification of Waste Cooking Oil with Mg-Al Hydrotalcite Using Response Surface Methodology. Energies. 2018; 11(2):302. https://doi.org/10.3390/en11020302
Chicago/Turabian StyleCostarrosa, Laureano, David Eduardo Leiva-Candia, Antonio José Cubero-Atienza, Juan José Ruiz, and M. Pilar Dorado. 2018. "Optimization of the Transesterification of Waste Cooking Oil with Mg-Al Hydrotalcite Using Response Surface Methodology" Energies 11, no. 2: 302. https://doi.org/10.3390/en11020302
APA StyleCostarrosa, L., Leiva-Candia, D. E., Cubero-Atienza, A. J., Ruiz, J. J., & Dorado, M. P. (2018). Optimization of the Transesterification of Waste Cooking Oil with Mg-Al Hydrotalcite Using Response Surface Methodology. Energies, 11(2), 302. https://doi.org/10.3390/en11020302