Effect of Surface Thermal Resistance on the Simulation Accuracy of the Condensation Risk Assessment for a High-Performance Window
Abstract
:1. Introduction
2. Methods
2.1. Assessment of Condensation Risk
2.2. Experimental Investigations
2.3. Numerical Procedure
3. Results and Discussion
3.1. Comparison of Temperatures
3.2. Comparison of Temperature Factors
4. Conclusions and Future Work
Acknowledgments
Author Contributions
Conflicts of Interest
Nomenclature
fRsi | Temperature factor, dimensionless |
Uw | Window thermal transmittance, W/m2K |
W | Width of a window, m |
H | Height of a window, m |
θi | Internal temperature, °C |
θe | External temperature, °C |
θsi | Internal surface temperature, °C |
References
- Gustavsen, A.; Grynning, S.; Arasteh, D.K.; Jelle, B.P.; Goudey, H. Key elements of and materials performance targets for highly insulating window frames. Energy Build. 2011, 43, 2583–2594. [Google Scholar] [CrossRef]
- ISO 10211. Thermal Bridges in Building Construction—Heat Flows and Surface Temperatures—Detailed Calculations; International Standard Organization: Geneva, Switzerland, 2017. [Google Scholar]
- Berthier, J. Diffusion de Vapeur Au-Travers des Parois: Condensation; Sciences du Batiment; CSTB REEF: Nantes, France, 1980; Volume 2. [Google Scholar]
- DIN 4108-2:2013-02. Thermal Protection and Energy Economy in Buildings—Part 2: Minimum Requirements to Thermal Insulation; Deutsches Institut für Normung: Berlin, Germany, 2013. [Google Scholar]
- Dutch Building Code Online. Available online: http://www.bouwbesluitonline.nl (accessed on 6 November 2017).
- ÖNORM B 8110-2: 2002. Wärmeschutz im Hochbau—Wasserdampfdiffusion und Kondensationsschutz (Water Vapor Diffusion and Protection against Condensation); Austrian Standards: Vienna, Austria, 2003. [Google Scholar]
- Building Regulations 2000: Approved Document L1A, L1B, L2A, L2B; Ministry of Housing, Communities and Local Government: London, UK, 2010.
- Ministry of Land, Infrastructure and Transportation; Korean Design Standard for Preventing Condensation in Apartment Buildings No. 2016-238; Ministry of Land, Infrastructure and Transportation: Seoul, Korea, 2016. (In Korean)
- National Fenestration Rating Council (NFRC). Determining Fenestration Product Condensation Resistance Values; NFRC 500-2010; National Fenestration Rating Council (NFRC): Greenbelt, MD, USA, 2010.
- Passive House Institute. Criteria and Algorithms for Certified Passive House Components: Transparent Building Components and Opening Elements in the Building Envelope; verion 5.1; Passive House Institute: Darmstadt, Germany, 2017. [Google Scholar]
- Bergh, V.D.; Hart, R.; Jelle, B.P.; Gustavsen, A. Window spacers and edge seals in insulating glass units: A state of the art review and future perspectives. Energy Build. 2013, 59, 253–280. [Google Scholar]
- Shin, M.S.; Rhee, K.N.; Yu, J.Y.; Jung, G.J. Determination of equivalent thermal conductivity of window spacers in consideration of condensation prevention and energy saving performance. Energies 2017, 10, 717. [Google Scholar] [CrossRef]
- Hong, G.; Kim, D.D.; Kim, B.S. Experimental investigation of thermal behaviors in window systems by monitoring of surface condensation using full-scale measurements and simulation tools. Energies 2016, 9, 979. [Google Scholar] [CrossRef]
- Lechowska, A.; Schonotale, J. The window edge-of-glass region temperature profile improvement by inserting a small additional glass pane—A CFD study and measurements. J. Build. Eng. 2015, 4, 41–51. [Google Scholar] [CrossRef]
- Arasteh, D.; Dariush, K.; Beck, F.A.; Stone, N.; Dupont, W.; Mathis, R.C.; Koenig, M. PHASE I Results of the NFRC U-value procedure validation project. ASHRAE Trans. 1994, 100, 1724–1731. [Google Scholar]
- Gustavsen, A.; Uvslokk, S.; Jelle, B.P. Numerical and experimental studies of the effect of various glazing spacers on the window U-value and the glazing temperature. In Proceedings of the 7th Symposium on Building Physics in the Nordic Countries, Reykjavik, Iceland, 13–15 June 2005; pp. 1003–1010. [Google Scholar]
- Gustavsen, A.; Arasteh, D.; Jelle, B.P.; Curcija, D.C.; Kohler, C. Developing low-conductance window frames: Capabilities and limitations of current window heat transfer design tools. J. Build. Phys. 2008, 32, 131–153. [Google Scholar] [CrossRef]
- ISO 15099. Thermal Performance of Windows, Doors, and Shading Devices—Detailed Calculations; International Standard Organization: Geneva, Switzerland, 2003. [Google Scholar]
- ISO 10077-2. Thermal Performance of Windows, Doors and Shutters—Calculation of Thermal Transmittance—Part 2: Numerical Method for Frames; International Standard Organization: Geneva, Switzerland, 2017. [Google Scholar]
- Gustavsen, A.; Goudey, H.; Arasteh, D.; Uvslokk, S. Experimental and numerical examination of the thermal transmittance of high performance window frames. In Proceedings of the Thermal Performance of the Exterior Envelopes of Whole Buildings XI International Conference, Clearwater Beach, FL, USA, 5–9 December 2010. [Google Scholar]
- Kohler, C.; Arasteh, D.; Mitchell, R. THERM simulations of window indoor surface temperatures for predicting condensation. ASHRAE Trans. 2002, 109, 593–599. [Google Scholar]
- Curcija, D.; Arasteh, D.; Huizenga, C.; Kohler, C.; Mitchell, R.; Bhandari, M. Analyzing thermal performance of building envelope components using 2-D heat transfer tool with detailed radiation modeling. In Proceedings of the 7th International IBPSA Conference, Rio de Janeiro, Brazil, 13–15 August 2001; pp. 219–226. [Google Scholar]
- Bystronic Glass Homepage. TPS—The Original from the Inventor. Available online: http://www.bystronic-glass.com (accessed on 6 November 2017).
- Lawrence Berkeley National Laboratory. WINDOW/THERM 6.3 Manual. 2013. Available online: https://windows.lbl.gov/sites/default/files/Downloads/nfrcsim6-3-2013-07-manual.pdf (accessed on 6 November 2017).
- Lawrence Berkeley National Laboratory. THERM Material Library, THERM 6.3. 2012. Available online: https://windows.lbl.gov/software/window (accessed on 6 November 2017).
- Lawrence Berkeley National Laboratory. WINDOW Glass and Gas Library, WINDOW 6.3. 2013. Available online: https://windows.lbl.gov/software/therm (accessed on 6 November 2017).
- ASHRAE. ASHRAE Handbook of Fundamentals; ASHRAE: Atlanta, GA, USA, 2017. [Google Scholar]
- Ministry of Land, Infrastructure and Transportation; Korean Design Standard for Energy-Efficient Building Design, Notification No. 2015-1108; Korean Ministry of Land, Infrastructure and Transportation: Seoul, Korea, 2015. (In Korean)
- Korean Standard Association. KS F 2295 Test Method of Dew Condensation for Windows and Doors; Korean Standard Association: Seoul, Korea, 2014. (In Korean) [Google Scholar]
- Korean Standard Association. KS F 2278 Standard Test Method for Thermal Resistance for Windows and Doors; Korean Standard Association: Seoul, Korea, 2014. (In Korean) [Google Scholar]
- Physibel. TRISCO Manual of Version 12.0w, Maldegem, Belgium, 2010. Available online: http://www.physibel.be (accessed on 6 November 2017).
- DIN EN 673. Glass in Building—Determination of Thermal Transmittance (U Value)—Calculation Method; German Institute for Standardization: Berlin, Germany, 2011. [Google Scholar]
- ISO 13788. Hygrothermal Performance of Building Components and Building Elements—Internal Surface Temperature to Avoid Critical Surface Humidity and Interstitial Condensation—Calculation Methods; International Standard Organization: Geneva, Switzerland, 2012. [Google Scholar]
- ISO 6946. Building Components and Building Elements—Thermal Resistance and Thermal Transmittance—Calculation Method; International Standard Organization: Geneva, Switzerland, 2007. [Google Scholar]
- LG Hausys. Accredited Test Report; LG Hausys: Seoul, Korea, 2015. (In Korean) [Google Scholar]
- Hart, R.; Misiopecki, C.; Gustavsen, A.; Jelle, B.P.; Arasteh, D. Impacts of operating hardware on window thermal performance. In Proceedings of the Building Enclosure Science & Technology (BEST 3-2012), Atlanta, GA, USA, 2–4 April 2012. [Google Scholar]
Chamber | Temperature (°C) | Relative Humidity (%) | Surface Resistance (m2K/W) |
---|---|---|---|
Hot box | 25.0 ± 1.0 | 50 ± 1.0 | 0.11 ± 0.02 |
Cold box | −15.0 ± 1.0 | - | 0.05 ± 0.02 |
Temperature (°C) | Case | Surface Thermal Resistance (m2K/W) | Reference | |||
---|---|---|---|---|---|---|
External | Internal | External | Internal | |||
−15.0 | 25.0 | 1 | 0.043 | 0.11 | [8] | |
2 | 0.05 | 0.11 | [29] | |||
3 | 0.04 | 0.13 | [33,34] | |||
4 | 0.04 | Normal | 0.13 | [19] | ||
Reduced radiation and convection at edges | 0.20 |
Group | Material | Thermal Conductivity (W/mK) | Emissivity | Reference |
---|---|---|---|---|
Frame | Steel, oxidized | 50.0 | 0.8 | [25] |
EPDM (gaskets) | 0.25 | 0.9 | [25] | |
PVC | 0.17 | 0.9 | [19] | |
Glazing | Glass | 1.00 | 0.84 | [26] |
Low-e coating | 1.00 | 0.03 | [26] | |
Argon gas | 0.017 | - | [26] | |
Spacer | Silicone sealant | 0.35 | 0.9 | [19] |
Thermoplastic | 0.25 | 0.9 | [35] |
Case | C-1 | E-1 | E-2 | F-1 | F-2 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Tsi (°C) | fRsi | Tsi (°C) | fRsi | Tsi (°C) | fRsi | Tsi (°C) | fRsi | Tsi (°C) | fRsi | ||
Test | 22.8 | 0.95 | 14.8 | 0.75 | 15.7 | 0.77 | 19.6 | 0.87 | 19.0 | 0.85 | |
Sim. | 1 | 21.9 | 0.92 | 17.6 | 0.82 | 17.8 | 0.82 | 18.5 | 0.84 | 18.0 | 0.83 |
3.9% * | 2.4% | 18.9% | 9.3% | 13.4% | 6.8% | 5.6% | 3.2% | 5.3% | 2.9% | ||
2 | 21.9 | 0.92 | 17.7 | 0.82 | 17.9 | 0.82 | 18.5 | 0.84 | 18.1 | 0.83 | |
3.9% | 2.4% | 19.6% | 9.7% | 14.0% | 7.1% | 5.6% | 3.2% | 4.7% | 2.6% | ||
3 | 21.4 | 0.91 | 16.5 | 0.79 | 16.8 | 0.80 | 17.6 | 0.82 | 17.0 | 0.80 | |
6.1% | 3.7% | 11.5% | 5.7% | 7.0% | 3.6% | 10.2% | 5.7% | 10.5% | 5.9% | ||
4 | 21.4 | 0.91 | 15.6 | 0.77 | 16.0 | 0.78 | 17.3 | 0.81 | 16.9 | 0.80 | |
6.1% | 3.7% | 5.4% | 2.7% | 1.9% | 1.0% | 11.7% | 6.6% | 11.1% | 6.2% |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koo, S.Y.; Park, S.; Song, J.-H.; Song, S.-Y. Effect of Surface Thermal Resistance on the Simulation Accuracy of the Condensation Risk Assessment for a High-Performance Window. Energies 2018, 11, 382. https://doi.org/10.3390/en11020382
Koo SY, Park S, Song J-H, Song S-Y. Effect of Surface Thermal Resistance on the Simulation Accuracy of the Condensation Risk Assessment for a High-Performance Window. Energies. 2018; 11(2):382. https://doi.org/10.3390/en11020382
Chicago/Turabian StyleKoo, So Young, Sihyun Park, Jin-Hee Song, and Seung-Yeong Song. 2018. "Effect of Surface Thermal Resistance on the Simulation Accuracy of the Condensation Risk Assessment for a High-Performance Window" Energies 11, no. 2: 382. https://doi.org/10.3390/en11020382
APA StyleKoo, S. Y., Park, S., Song, J. -H., & Song, S. -Y. (2018). Effect of Surface Thermal Resistance on the Simulation Accuracy of the Condensation Risk Assessment for a High-Performance Window. Energies, 11(2), 382. https://doi.org/10.3390/en11020382