Phase Change Material Selection for Thermal Energy Storage at High Temperature Range between 210 °C and 270 °C
Abstract
:1. Introduction
2. Materials Screening
2.1. Inorganic Materials
2.2. Organic Materials
3. Materials and Methodology
3.1. Materials
3.2. Health Hazard
3.3. Thermophysical Characterization
3.4. Thermal Stability
3.5. Cycling Stability
4. Results and Discussion
4.1. Health Hazard
4.2. Thermophysical Characterization
4.3. Thermal Stability
4.4. Cycling Stability
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- ISE, Fraunhoffer. Levelized Cost of Electricity Renewable Energy Technologies. Available online: https://www.ise.fraunhofer.de/en/publications/veroeffentlichungen-pdf-dateien-en/studien-und-konzeptpapiere/study-levelized-cost-of-electricity-renewable-energies.pdf (accessed on 19 February 2018).
- Zalba, B.; Marín José, M.A.; Cabeza, L.F.; Mehling, H. Review on thermal energy storage with phase change: Materials, heat transfer analysis and applications. Appl. Therm. Eng. 2003, 23, 251–283. [Google Scholar] [CrossRef]
- Haillot, D.; Bauer, T.; Kröner, U.; Tamme, R. Thermal analysis of phase change materials in the temperature range 120–150 °C. Thermochim. Acta 2011, 513, 49–59. [Google Scholar] [CrossRef]
- Del Barrio, E.P.; Godin, A.; Duquesne, M.; Daranlot, J.; Jolly, J.; Alshaer, W.; Kouadio, T.; Sommier, A. Characterization of different sugar alcohols as phase change materials for thermal energy storage applications. Sol. Energy Mater. Sol. Cells 2017, 159, 560–569. [Google Scholar] [CrossRef]
- Bayón, R.; Coco, S.; Barcenilla, M.; Espinet, P.; Imbuluzqueta, G. Feasibility of Storing Latent Heat with Liquid Crystals. Proof of Concept at Lab Scale. Appl. Sci. 2016, 6, 121. [Google Scholar] [CrossRef] [Green Version]
- Miró, L.; Barreneche, C.; Ferrer, G.; Solé, A.; Martorell, I.; Cabeza, L.F. Health hazard, cycling and thermal stability as key parameters when selecting a suitable phase change material (PCM). Thermochim. Acta 2016, 627–629, 39–47. [Google Scholar] [CrossRef]
- Gasia, J.; Martín, M.; Solé, A.; Barreneche, C.; Cabeza, L.F. Phase Change Material Selection for Thermal Processes Working under Partial Load Operating Conditions in the Temperature Range between 120 and 200 °C. Appl. Sci. 2017, 7, 722. [Google Scholar] [CrossRef]
- Kenisarin, M. High-temperature phase change materials for thermal energy storage. Renew. Sustain. Energy Rev. 2010, 14, 955–970. [Google Scholar] [CrossRef]
- Waschull, J.; Müller, R.; Römer, S. Investigation of Phase Change Materials for Elevated Temperatures. In Proceedings of the 11th International Conference on Thermal Energy Storage EFFSTOCK, Stockholm, Sweden, 14–17 June 2009; pp. 14–17. [Google Scholar]
- Kamimoto, M.; Tanaka, T.; Tani, T.; Horigome, T. Investigation of nitrate salts for solar latent heat storage. Sol. Energy 1980, 24, 581–587. [Google Scholar] [CrossRef]
- Fernandez, A.G.; Lasanta, M.I.; Perez, F.J. Molten Salt Corrosion of Stainless Steels and Low-Cr Steel in CSP Plants. Oxid. Met. 2012, 78, 329–348. [Google Scholar] [CrossRef]
- Greis, K.; Bahamdan, M.; Uwais, B.M. The phase diagram of the system NaNO-KNO, by differential scanning calorimetry. Thermochim. Acta 1985, 86, 343–350. [Google Scholar] [CrossRef]
- Berg, R.W.; Kerridge, D.H.; Larsen, P.H. NaNO2+NaNO3 Phase Diagram: New Data from DSC and Raman Spectroscopy. J. Chem. Eng. Data 2006, 51, 34–39. [Google Scholar] [CrossRef]
- Takahashi, Y.; Kamimoto, M.; Abe, Y.; Sakamoto, R.; Kanari, K.; Ozawa, T. Investigation of latent heat thermal energy storage materials: V. thermoanalytical evaluation of binary eutectic mixtures and compounds of NaOH with NaNO3 or NaNO2. Thermochim. Acta 1988, 123, 233–245. [Google Scholar] [CrossRef]
- Heine, D.; Heess, F.; Groll, M. Investigation of the corrosion and melting/freezing behavior of high temperature latent storage materials. In Proceedings of the 14th Intersociety Energy Conversion Engineering Conference, Boston, MA, USA, 5–10 August 1979; pp. 459–466. [Google Scholar]
- Laing, D. Energy Storage for Concentrating Solar Power Plants; Energy Forum: Hannover, Germany, 2008; pp. 1–25. [Google Scholar]
- Tye, R.P.; Bourne, J.G.; Desjarlais, A.O. Thermal Energy Storage Material Thermophysical Property Measurement and Heat Transfer Impact; Dynatech R/D Co.: Cambridge, MA, USA, 1976. [Google Scholar]
- Risueño, E.; Faik, A.; Rodríguez-aseguinolaza, J.; Blanco-rodríguez, P.; Gil, A. Mg-Zn-Al eutectic alloys as phase change material for latent heat thermal energy storage. Energy Procedia 2015, 69, 1006–1013. [Google Scholar] [CrossRef]
- Kotzé, J.P.; von Backstrom, T.W.; Erens, P.J. High temperature thermal energy storage utilizing metallic phase change materials and metallic heat transfer fluids. J. Sol. Energy Eng. 2013, 135, 1–6. [Google Scholar] [CrossRef]
- Ge, H.; Li, H.; Mei, S.; Liu, J. Low melting point liquid metal as a new class of phase change material: An emerging frontier in energy area. Renew. Sustain. Energy Rev. 2013, 21, 331–346. [Google Scholar] [CrossRef]
- Fernández, A.I.; Barreneche, C.; Belusko, M.; Segarra, M.; Bruno, F.; Cabeza, L.F. Solar Energy Materials and Solar Cells Considerations for the use of metal alloys as phase change materials for high temperature applications. Sol. Energy Mater. Sol. Cells 2017, 171, 275–281. [Google Scholar] [CrossRef]
- Software CES EduPack 2015 Version:15.3.10. Granta Design Limited: Cambridge, UK, 2015.
- Stankus, S.V.; Khairulin, R.A. The peculiarities of crystallization of low-temperature eutectic in magnesium-lead system. Thermophys. Aeromech. 2010, 17, 205–211. [Google Scholar] [CrossRef]
- PubChem. Available online: https://pubchem.ncbi.nlm.nih.gov (accessed on 20 March 2017).
- Solé, A.; Neumann, H.; Niedermaier, S.; Martorell, I.; Schossig, P.; Cabeza, L.F. Stability of sugar alcohols as PCM for thermal energy storage. Sol. Energy Mater. Sol. Cells 2014, 126, 125–134. [Google Scholar] [CrossRef]
- Hérault, D.; Rodembusch, F.; Campo, L.; Gingras, M.; Cerveau, G.; Corriu, R.J.P. Valorization of by-products of the sugar industry: New nanostructured hybrid materials containing sugar derived structures. C. R. Acad. Sci. Ser. IIC Chem. 2010, 13, 566–574. [Google Scholar] [CrossRef]
- Hu, P.; Zhao, P.; Jin, Y.; Chen, Z. Experimental study on solid-solid phase change properties of pentaerythritol (PE)/nano-AIN composite for thermal storage. Sol. Energy 2014, 102, 91–97. [Google Scholar] [CrossRef]
- Nkhonjera, L.; Kuboth, M.; König-haagen, A.; John, G.; Brüggemann, D.; Bello-ochende, T. Experimental investigation of a finned pentaerythritol-based heat storage unit for solar cooking at 150–200 °C. Energy Procedia 2016, 93, 160–167. [Google Scholar] [CrossRef]
- Largest Selection of Safety Labels Online. Available online: https://www.mysafetylabels.com (accessed on 16 February 2018).
- MSDS-Europe—A Real Alternative to an MSDS Software’. Available online: http://www.msds-europe.com/ (accessed on 13 December 2018).
- Science Lab n.d. Available online: https://www.sciencelab.com/ (accessed on 20 November 2017).
- BASF. Ultradur B 4520 Uncolored Polybutylene Terephthalate; BASF: Ludwigshafen, Germany, 2015. [Google Scholar]
- Bauer, T.; Laing, D.; Tamme, R. Overview of PCMs for concentrated solar power in the temperature range 200 to 350 °C. Adv. Sci. Technol. 2010, 74, 272–277. [Google Scholar] [CrossRef]
- Fernández, A.G.; Veliz, S.; Fuentealba, E.; Galleguillos, H. Thermal characterization of solar salts from north of Chile and variations of their properties over time at high temperature. J. Therm. Anal. Calorim. 2017, 128, 1241–1249. [Google Scholar] [CrossRef]
Inorganic Salt | Price (€/kg) | Melting Temperature (°C) | Melting Enthalpy (J/g) | Reference |
---|---|---|---|---|
80 wt % NaOH/20 wt % LiOH | 52.3 | 215 | 280 | [8,9] |
40 wt % KNO3/60 wt % NaNO3 | 33 | 222 | 100 | [10,11,12] |
NaNO3/NaNO2 * | 39.3 | 226–233 | n.a. | [13] |
45 wt % Ca(NO3)2/55 wt % NaNO3 | 40.3 | 230 | ~110 | [10] |
61 wt % NaOH/39 wt % NaNO2 | 32.9 | 232–265 | 250–300 | [14] |
87 wt % NaNO2/13 wt % NaOH * | 33.2 | 230–232 | 206–252 | [14] |
Ca(NO3)2/LiNO3 | 90.6 | 235 | n.a. | [15] |
LiNO3 | 147 | 252 | 380 | [16] |
NaNO2 | 33.25 | 270 | 200 | [17] |
Metal | Price (€/kg) | Melting Temperature (°C) | Reference |
---|---|---|---|
Lead—Antimony alloys | 2–3 | 251–254 | [22] |
Lead, babbitt metall alloy (Cu, Pb, Sb, etc.) | 2.5–4 | 237–272 | [22] |
Lead—Tin alloys | 5–6 | 183–277 | [22] |
Lead—Magnesium eutectic alloy | n.a. | 249 | [23] |
Tin—Lead alloys | 13–14 | 181–296 | [22] |
Tin, babbitt metall alloys | 16–19 | 241–354 | [22] |
Tin—Antimony alloys | 7–7.5 | 236–256 | [22] |
Tin (pure) | 7–7.5 | 227–232 | [22] |
Tin—silver alloys | 35–40 | 221–222 | [22] |
Selenium (pure) | 37–43 | 221 | [22] |
Organic Material | Molecular Formula | Price (€/kg) | Melting Temperature (°C) | Melting Enthalpy (J/g) | Reference |
---|---|---|---|---|---|
Pentaerythritol | C5H12O4 | 9.7–13 * | 258–260 | n.a. | [24] |
Myo-Inositol | C6H12O6 | 8–10 * | 220 | 190 | [25] |
PBT | (C12H12O4)n | 2.14–2.36 | 220–267 | n.a. | [20] |
PCTFE | (CF2CClF)n | 87.7–105 | 206–226 | n.a. | [20] |
PCM | Melting Temperature (°C) | Melting Enthalpy (J/g) | Reference |
---|---|---|---|
40 wt % KNO3/60 wt % NaNO3 | 222 | 100 | [10,11] |
61 wt % NaOH/39 wt % NaNO2 | 232–265 | 250–300 | [14] |
87 wt % NaNO2/13 wt % NaOH | 230–232 | 206–252 | [14] |
80 wt % NaOH/20 wt % LiOH | 215 | 280 | [8] |
70 wt % NaOH/30 wt % LiOH | 215 | 280 | [9] |
NaNO2 | 270 | 200 | [17] |
Myo-inositol | 220 | 190 | [25] |
PBT | 220–267 | n.a. | [20] |
Material | NFPA 704 | GHS | |
---|---|---|---|
KNO3 | H272 | May intensify fire; oxidizer | |
H315 | Causes skin irritation | ||
H319 | Causes serious eye irritation | ||
H335 | May cause respiratory irritation | ||
NaNO3 | H272 | May intensify fire; oxidizer | |
H320 | Causes eye irritation | ||
H341 | Suspected of causing genetic defects | ||
H370 | Causes damage to organs | ||
H372 | Causes damage to organs through prolonged or repeated exposure | ||
LiOH | H290 | May be corrosive to metals | |
H302 | Harmful if swallowed | ||
H314 | Causes severe skin burns and eye damage | ||
H318 | Causes serious eye damage | ||
H412 | Harmful to aquatic life with long lasting effects | ||
NaNO2 | H272 | May intensify fire; oxidizer | |
H301 | Toxic if swallowed | ||
H319 | Causes serious eye irritation | ||
H341 | Suspected of causing genetic defects | ||
H361 | Suspected of damaging fertility or the unborn child | ||
H362 | May cause harm to breast-fed children | ||
H370 | Causes damage to organs | ||
H373 | Causes damage to organs through prolonged or repeated expose | ||
H400 | Very toxic to aquatic life | ||
H410 | Very toxic to aquatic life with long lasting effects | ||
NaOH | H290 | May be corrosive to metals | |
H314 | Causes severe skin burns and eye damage | ||
H315 | Causes skin irritation | ||
H318 | Causes serious eye damage | ||
H319 | Causes serious eye irritation |
Material | NFPA 704 | GHS | |
---|---|---|---|
Pentaerythritol | H319 | Causes serious eye irritation | |
Myo-Inositol | H315 | Causes skin irritation | |
H319 | Causes serious eye irritation | ||
H335 | May cause respiratory irritation | ||
Polybutylene terephthalate PBT (C12H12O4)n | - | No need for classification according to GHS criteria for this product |
Inorganic Materials | Melting Temperature (°C) | Melting Enthalpy (J/g) | Observations | ||
---|---|---|---|---|---|
Literature | Experimental | Literature | Experimental | ||
40 wt % KNO3/60 wt % NaNO3 | 222 | 221 | 100 | 94 | √ No subcooling |
61 wt % NaOH/39 wt % NaNO2 | 232–265 | 232 | 250–300 | 60 | × Poor eutectic phase formation |
87 wt % NaNO2/13 wt % NaOH | 230–232 | 232 | 206–252 | 35 | × Poor eutectic phase formation |
80 wt % NaOH/20 wt % LiOH | 215 | 214 | 280 | 8 | × Poor eutectic phase formation |
70 wt % NaOH/30 wt % LiOH | 215 | - | 280 | - | × No eutectic phase formation |
NaNO2 | 270 | 281 | 200 | 178 | × Phase change temperature out of range √ High latent heat storage capacity |
Organic Material | Melting Temperature (°C) | Melting Enthalpy (J/g) | Comments | ||
---|---|---|---|---|---|
Literature | Experimental | Literature | Experimental | ||
Pentaerythritol | 258–260 | - | - | - | × Did not show solid-liquid phase change peak |
Myo-Inositol | 220 | 235 | 190 | 223 | × High difference between solidification and melting temperature (>35 °C) √ High latent heat storage capacity √ Phase change temperature within the range |
Polybutylene terephthalate (PBT) | 220–267 | 227 | - | 49 | × High difference between solidification and melting temperature (>25 °C) × Low latent heat storage capacity √ Phase change temperature within the range |
Material | Cycling System Type | Cycles | Melting Enthalpy (J/g) | Solidification Enthalpy (J/g) | Melting Temperature (°C) | Solidification Temperature (°C) |
---|---|---|---|---|---|---|
40 wt % KNO3/60 wt % NaNO3 | Open | 0 | 94.84 | 92.72 | 220.75 | 219.70 |
10 | 93.07 | 91.02 | 222.07 | 221.21 | ||
50 | 94.68 | 80.31 | 222.18 | 221.37 | ||
Myo-Inositol | Closed, in air atmosphere | 0 | 249.76 | 195.00 | 223.26 | 189.91 |
10 | 109.15 | 65.65 | 219.14 | 166.61 | ||
50 | 40.66 | n.a. | 215.31 | n.a. |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maldonado, J.M.; Fullana-Puig, M.; Martín, M.; Solé, A.; Fernández, Á.G.; De Gracia, A.; Cabeza, L.F. Phase Change Material Selection for Thermal Energy Storage at High Temperature Range between 210 °C and 270 °C. Energies 2018, 11, 861. https://doi.org/10.3390/en11040861
Maldonado JM, Fullana-Puig M, Martín M, Solé A, Fernández ÁG, De Gracia A, Cabeza LF. Phase Change Material Selection for Thermal Energy Storage at High Temperature Range between 210 °C and 270 °C. Energies. 2018; 11(4):861. https://doi.org/10.3390/en11040861
Chicago/Turabian StyleMaldonado, José Miguel, Margalida Fullana-Puig, Marc Martín, Aran Solé, Ángel G. Fernández, Alvaro De Gracia, and Luisa F. Cabeza. 2018. "Phase Change Material Selection for Thermal Energy Storage at High Temperature Range between 210 °C and 270 °C" Energies 11, no. 4: 861. https://doi.org/10.3390/en11040861
APA StyleMaldonado, J. M., Fullana-Puig, M., Martín, M., Solé, A., Fernández, Á. G., De Gracia, A., & Cabeza, L. F. (2018). Phase Change Material Selection for Thermal Energy Storage at High Temperature Range between 210 °C and 270 °C. Energies, 11(4), 861. https://doi.org/10.3390/en11040861