Anisotropic Damage to Hard Brittle Shale with Stress and Hydration Coupling
Abstract
:1. Introduction
2. Experimental Scheme
2.1. Rock Sample Description
2.2. Measurement Principle of Ultrasonic Wave Velocity
2.3. Experimental Steps
3. Experimental Results
4. Evolution of Anisotropic Elastic Parameters under Stress and Hydration Coupling
4.1. Evolution of Young’s Modulus and Poisson’s Ratio under Stress and Hydration Coupling
4.2. Evolution of Thomsen Coefficients under Stress and Hydration Coupling
5. Evolution of Anisotropic Damage Characteristics under Stress and Hydration Coupling
5.1. Evaluation of Damage Characteristics Based on Young’s Modulus
5.2. Evaluation of Damage Characteristics Based on the Diffusion Damage Model
5.3. Comparison and Analysis of these Two Damage Models
6. Conclusions
- (1)
- For the same test case, the acoustic-wave velocity is the fastest in the direction parallel to the bedding plane, followed by the 45° coring angle, and lowest in the direction vertical to the bedding plane; rock-mechanics parameters in the horizontal direction are greater than those in the vertical direction; P-wave anisotropy is greater than S-wave anisotropy; and damage parameters in the horizontal direction are greater than those the vertical direction, as microcracks are mainly distributed horizontally.
- (2)
- Under the same confining pressure, with the increase of soaking time, generally speaking, the acoustic-wave velocities decreased, Young’s modulus decreased, Poisson’s ratios increased, ε increased, γ decreased, and both α11 and α33 increased.
- (3)
- For the same soaking time, with increasing confining pressure, the acoustic-wave velocities increased, Young’s modulus and Poisson’s ratio increased, ε decreased, γ increased, and all damage parameters decreased.
- (4)
- By surface-fitting the damage parameters, expressions for α11 and α33 as functions of confining pressure and soaking time were obtained. The fitting results show that the confining pressure and soaking time do not have independent effects on shale damage but mutually influence and interact with each other. The damage to the rock is the product of stress and hydration coupling.
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
Cij | Component of elastic stiffness matrix, GPa |
ρ | Bulk density, g/cm3 |
VP11, VS11 | P-wave and S-wave velocities in the 0° directions with respect to the plane of symmetry, m/s |
VP45, VS45 | P-wave and S-wave velocities in the 45° directions with respect to the plane of symmetry, m/s |
VP33, VS33 | P-wave and S-wave velocities in the 90° directions with respect to the plane of symmetry, m/s |
Ev, Eh | Young’s modulus perpendicular and parallel to the bedding plane, GPa |
μv, μh | Poisson’s ratio perpendicular and parallel to the bedding plane, dimensionless |
ε, γ, δ | Thomsen coefficients, dimensionless |
DEv, DEh | Vertical and horizontal damage parameters defined by Young’s modulus, dimensionless |
Evset, Ehset | Vertical and horizontal Young’s modulus of shale under a confining pressure of 60 MPa and without soaking, GPa |
S0ijkl | Inherent elastic toughness matrix, GPa−1 |
∆Sijkl | Additional elastic toughness matrix, caused by the stress and hydration, GPa−1 |
δij | Kronecker symbol, where δij = 0 (i ≠ j) and δij = 1 (i = j), dimensionless |
αij | Second-order damage parameter, related to the void, GPa−1 |
βijkl | Fourth-order damage parameter, related to the fluid in the void, GPa−1 |
Pc | Confining pressure, MPa |
Ts | Soaking time, h |
References
- Ma, T.; Chen, P. A wellbore stability analysis model with chemical-mechanical coupling for shale gas reservoirs. J. Nat. Gas Sci. Eng. 2015, 26, 72–98. [Google Scholar] [CrossRef]
- Ma, T.; Chen, P.; Yang, C.; Zhao, J. Wellbore stability analysis and well path optimization based on the breakout width model and Mogi-Coulomb criterion. J. Pet. Sci. Eng. 2015, 135, 678–701. [Google Scholar] [CrossRef]
- Ma, T.; Chen, P.; Zhang, Q.; Zhao, J. A novel collapse pressure model with chemical-mechanical coupling in shale gas formations with multi-weakness planes. J. Nat. Gas Sci. Eng. 2016, 36, 1151–1177. [Google Scholar] [CrossRef]
- Ma, T.; Zhang, Q.; Chen, P.; Yang, C.; Zhao, J. Fracture pressure model for inclined wells in layered formations with anisotropic rock strengths. J. Pet. Sci. Eng. 2017, 149, 393–408. [Google Scholar] [CrossRef]
- Dong, D.; Zou, C.; Yang, H.; Wang, Y.; Li, X.; Chen, G.; Wang, S.; Lü, Z.; Huang, Y. Progress and prospects of shale gas exploration and development in China. Acta Petrol. Sin. 2012, 33, 107–114. [Google Scholar]
- Wang, H.; Liu, Y.; Dong, D.; Zhao, Q.; Du, D. Scientific issues on effective development of marine shale gas in southern China. Pet. Explor. Dev. 2013, 40, 574–579. [Google Scholar] [CrossRef]
- Bustin, R. Barnett shale play going strong. AAPG Explor. 2005, 26, 4–6. [Google Scholar]
- Ma, T.; Cheng, P. Study of meso-damage characteristics of shale hydration based on CT scanning technology. Pet. Explor. Dev. 2014, 41, 249–256. [Google Scholar] [CrossRef]
- Ma, T.; Yang, C.; Chen, P.; Wang, X.; Guo, Y. On the damage constitutive model for hydrated shale using CT scanning technology. J. Nat. Gas Sci. Eng. 2016, 28, 204–214. [Google Scholar] [CrossRef]
- Zou, C.; Dong, D.; Wang, C.; Li, J.; Li, X.; Wang, Y.; Li, D.; Cheng, K. Geological characteristics, formation mechanism and resource potential of shale gas in China. Pet. Explor. Dev. 2010, 37, 641–653. [Google Scholar] [CrossRef]
- Ma, T.; Wu, B.; Fu, J.; Zhang, Q.; Chen, P. Fracture pressure prediction for layered formations with anisotropic rock strengths. J. Nat. Gas Sci. Eng. 2017, 38, 485–503. [Google Scholar] [CrossRef]
- Ma, T.; Yang, Z.; Chen, P. Wellbore stability analysis of fractured formations based on Hoek-Brown failure criterion. Int. J. Oil Gas Coal Technol. 2018, 17, 143–171. [Google Scholar] [CrossRef]
- Heng, S.; Yang, C.; Guo, Y.; Wang, C.; Wang, L. Influence of bedding planes on hydraulic fracture propagation in shale formations. Chin. J. Rock Mech. Eng. 2015, 34, 228–237. [Google Scholar]
- Lyu, Q.; Long, X.; Ranjith, P.; Tan, J.; Kang, Y. Experimental investigation on the mechanical behaviours of a low-clay shale under water-based fluids. Eng. Geol. 2018, 233, 124–138. [Google Scholar] [CrossRef]
- Lyu, Q.; Ranjith, P.; Long, X.; Ji, B. Experimental investigation of mechanical properties of black shales after CO2-water-rock interaction. Materials 2016, 9, 663. [Google Scholar] [CrossRef] [PubMed]
- Lyu, Q.; Ranjith, P.; Long, X.; Kang, Y.; Huang, M. A review of shale swelling by water adsorption. J. Nat. Gas Sci. Eng. 2015, 27, 1421–1431. [Google Scholar] [CrossRef]
- Wasantha, P.; Ranjith, P. Water-weakening behavior of Hawkesbury sandstone in brittle regime. Eng. Geol. 2014, 178, 91–101. [Google Scholar] [CrossRef]
- Mavko, G. Predicting stress-induced velocity anisotropy in rocks. Geophysics 1995, 60, 1081–1087. [Google Scholar] [CrossRef]
- Schoenberg, M. Elastic wave behavior across linear slip interfaces. J. Acoust. Soc. Am. 1980, 68, 1516–1521. [Google Scholar] [CrossRef]
- Sayers, C.; Kachanov, M. Microcrack-induced elastic wave anisotropy of brittle rocks. J. Geophys. Res. Solid Earth 1995, 100, 4149–4156. [Google Scholar] [CrossRef]
- Sayers, C. Stress-dependent seismic anisotropy of shales. Geophysics 1995, 64, 93–98. [Google Scholar] [CrossRef]
- Sarout, J.; Molez, L.; Guéguen, Y.; Hoteit, N. Shale dynamic properties and anisotropy under triaxial loading: Experimental and theoretical investigations. Phys. Chem. Earth Parts A/B/C 2007, 32, 896–906. [Google Scholar] [CrossRef]
- Tang, J.; Wu, G. Stress-dependent anisotropic of mudstone and shale with low porosity. Chin. J. Geophys. 2015, 58, 2986–2995. [Google Scholar]
- Ma, T.; Peng, N.; Zhu, Z.; Zhang, Q.; Yang, C.; Zhao, J. Brazilian Tensile Strength of Anisotropic Rocks: Review and New Insights. Energies 2018, 11, 304. [Google Scholar] [CrossRef]
- Hornby, B.; Schwartz, L.; Hudson, J. Anisotropic effective-medium modeling of the elastic properties of shales. Geophysics 1994, 59, 1570–1583. [Google Scholar] [CrossRef]
- Johnston, J.; Christensen, N. Elastic constants and velocity surfaces of indurated anisotropic shales. Surv. Geophys. 1994, 15, 481–494. [Google Scholar] [CrossRef]
- Walsh, J.; Sinha, B.; Donald, A. Formation anisotropy parameters using borehole sonic data. In Proceedings of the SPWLA 47th Annual Logging Symposium, Veracruz, Mexico, 4–7 June 2006. SPWLA-2006-TT. [Google Scholar]
- Tang, X.; Zheng, C. Quantitative Logging Acoustic; Petroleum Industry Press: Beijing, China, 2004. [Google Scholar]
- Higgins, S.; Goodwin, S.; Donald, A.; Bratton, T.; Tracy, G. Anisotropic stress models improve completion design in the Baxter Shale. In Proceedings of the SPE Annual Technical Conference and Exhibition USA, Denver, CO, USA, 21–24 September 2008. SPE 115736. [Google Scholar]
- Denney, D. Improving horizontal completions in heterogeneous tight shales. J. Pet. Technol. 2012, 64, 126–130. [Google Scholar] [CrossRef]
- Song, L.; Hareland, G. Minimum horizontal stress profile from logging data for Montney formation of North East British Columbia. In Proceedings of the SPE Unconventional Resources Conference Canada, Calgary, AB, Canada, 30 October–1 November 2012. SPE 162233. [Google Scholar]
- Wang, H.; Wang, B.; Jing, A.; Tao, G. An algorithm for extracting shear-wave anisotropy parameter γ from stoneley-wave inversion and its case study. Well Logging Technol. 2007, 31, 49–52. [Google Scholar]
- Thomsen, L. Weak elastic anisotropy. Geophysics 1986, 51, 1954–1966. [Google Scholar] [CrossRef]
- Becker, K.; Shapiro, S.; Stanchits, S.; Dresen, G.; Vinciguerra, S. Stress induced elastic anisotropy of the Etnean basalt: Theoretical and laboratory examination. Geophys. Res. Lett. 2007, 34, 224–238. [Google Scholar] [CrossRef]
- Yu, S.; Feng, X. Damage Mechanics; Tsinghua University Press: Beijing, China, 1997. [Google Scholar]
- Eshelby, J. The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 1957, 241, 376–396. [Google Scholar] [CrossRef]
- Withers, P. The determination of the elastic field of an ellipsoidal inclusion in a transversely isotropic medium, and its relevance to composite materials. Philos. Mag. A 1989, 59, 759–781. [Google Scholar] [CrossRef]
- Sarout, J.; Guéguen, Y. Anisotropy of elastic wave velocities in deformed shales: Part 2—Modeling results. Geophysics 2008, 73, D91–D103. [Google Scholar] [CrossRef]
- Dewhurst, D.; Siggins, A. Impact of fabric, microcracks and stress field on shale anisotropy. Geophys. J. Int. 2006, 165, 135–148. [Google Scholar] [CrossRef]
- Horsrud, P.; Sønstebø, E.; Bøe, R. Mechanical and petrophysical properties of North Sea shales. Int. J. Rock Mech. Min. Sci. 1998, 35, 1009–1020. [Google Scholar] [CrossRef]
- Shapiro, S. Elastic piezosensitivity of porous and fractured rocks. Geophysics 2003, 68, 482–486. [Google Scholar] [CrossRef]
- Shapiro, S.; Kaselow, A. Porosity and elastic anisotropy of rocks under tectonic stress and pore-pressure changes. Geophysics 2005, 70, 27–38. [Google Scholar] [CrossRef]
- Sayers, C.; Munster, J.; King, M. Stress-induced ultrasonic anisotrophy in Berea sandstone. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1990, 27, 429–436. [Google Scholar] [CrossRef]
Confining Pressure | Vertical Relative Error EDαv (%) | Horizontal Relative Error EDαh (%) | ||||
---|---|---|---|---|---|---|
0 h | 1 h | 3 h | 0 h | 1 h | 3 h | |
0 | 19.19 | 86.27 | 0.00 | 71.08 | 62.49 | 0.00 |
20 | 25.04 | 29.91 | 41.64 | 11.11 | 15.57 | 17.71 |
40 | 9.58 | 12.63 | 13.30 | 5.09 | 5.55 | 16.43 |
60 | 0.00 | 3.66 | 0.37 | 0.00 | 5.56 | 12.38 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gui, J.; Ma, T.; Chen, P.; Yuan, H.; Guo, Z. Anisotropic Damage to Hard Brittle Shale with Stress and Hydration Coupling. Energies 2018, 11, 926. https://doi.org/10.3390/en11040926
Gui J, Ma T, Chen P, Yuan H, Guo Z. Anisotropic Damage to Hard Brittle Shale with Stress and Hydration Coupling. Energies. 2018; 11(4):926. https://doi.org/10.3390/en11040926
Chicago/Turabian StyleGui, Junchuan, Tianshou Ma, Ping Chen, Heyi Yuan, and Zhaoxue Guo. 2018. "Anisotropic Damage to Hard Brittle Shale with Stress and Hydration Coupling" Energies 11, no. 4: 926. https://doi.org/10.3390/en11040926
APA StyleGui, J., Ma, T., Chen, P., Yuan, H., & Guo, Z. (2018). Anisotropic Damage to Hard Brittle Shale with Stress and Hydration Coupling. Energies, 11(4), 926. https://doi.org/10.3390/en11040926