Wind–PV-Based Hybrid DC Microgrid (DCMG) Development: An Experimental Investigation and Comparative Economic Analysis
Abstract
:1. Introduction
2. Material and Methods
3. Results and Analysis: Hybrid DC Microgrid Operation
3.1. Photovoltaic (PV) Characteristics
3.2. Wind Generator (WG) Characteristics
3.3. Battery Characteristics
3.4. Charge Controller Characteristics
3.5. The Behaviour of the Hybrid DC Microgrid System
4. Levelised Cost of Energy (LCOE) Analysis of the Designed Hybrid DCMG System
Operation and Maintenance Costs of Hybrid DCMG System
- As the PV and BESS are static components hence they require no essential maintenance during their lifetime. Therefore, the maintenance cost of this equipment is assumed as zero in this study.
- Since the WG system has moving parts which result in more wear and tear thus it requires a substantial maintenance cost. However, the maintenance cost of the WG system regarding any significant repair work in its lifetime is ignored. Instead, the routine service and maintenance of the WG system per year at the rate of 5% of the equipment’s capital cost are taken into consideration.
- In addition, it is considered that BESS will be replaced after every 3 years as the performance of the battery decays with time. An increment of 5% of the replaced battery’s cost is counted into the cost of the new battery.
- Finally, a 5% of the CC’s cost is also inlcuded into a maintenance cost per year for the situations if any electronic component needs to be replaced in its circuitry.
- Capital cost of the DCMG system = 1.295 times to the capital cost Gasoline Generator
- Running cost of the DCMG system = 0.147 times to that of the Gasoline Generator
- Total (lifetime) cost of the DCMG system = 0.296 times to that of the Gasoline Generator
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Nfah, E.M.; Ngundam, J.M.; Tchind, R. Modelling of solar/diesel/battery hybrid power systems for far-north Cameroon. Renew. Energy 2007, 32, 832–844. [Google Scholar] [CrossRef]
- The Global Wind Energy Council. Global Wind Energy Outlook; The Global Wind Energy Council: Brussels, Belgium, 2016. [Google Scholar]
- Lins, C.; Williamson, L.E.; Leitner, S.; Teske, S. The First Decade: 2004–2014, 10 Years of Renewable Energy Progress; Renewable Energy Policy Network of 21st Century (REN21): Paris, France, 2014. [Google Scholar]
- Shaikh, P.H.; Shaikh, F.; Mirani, M. Solar Energy: Topographical Asset for Pakistan. Appl. Sol. Energy 2013, 48, 49–53. [Google Scholar] [CrossRef]
- Alternative Energy Development Board. Rural Electrification Program. 2014. Available online: http://www.aedb.org/ (accessed on 11 April 2015).
- Barley, C.D. Optimal dispatch strategy in remote hybrid power systems. Sol. Energy 1996, 58, 165–179. [Google Scholar] [CrossRef]
- Ghafoor, A.; Rehman, T.; Munir, A.; Ahmad, M.; Iqbal, M. Current status and overview of renewable energy potential in Pakistan for continuous energy sustainability. Renew. Sustain. Energy Rev. 2016, 60, 1332–1342. [Google Scholar] [CrossRef]
- Uddin, W.; Khan, B.; Shaukat, N.; Majid, M.; Mujtaba, G.; Mehmood, A.; Ali, S.M.; Younas, U.; Anwar, M.; Almeshal, A.M. Biogas potential for electric power generation in Pakistan: A survey. Renew. Sustain. Energy Rev. 2016, 54, 25–33. [Google Scholar] [CrossRef]
- Notton, G.; Muselli, M.; Louche, A. Autonomous hybrid photovoltaic power plant using a back-up generator: A case study in a Mediterranean Island. Renew. Energy 1996, 7, 371–391. [Google Scholar] [CrossRef]
- Ulfat, I.; Javed, F.; Abbasi, F.A.; Kanwal, F.; Usman, A.; Jahangir, M.; Ahmad, F. Estimation of solar energy potential for Islamabad, Pakistan. Energy Procedia 2012, 18, 1496–1500. [Google Scholar] [CrossRef]
- Bhutto, A.W.; Aqeel, A.B.; Gholamreza, Z. Greener energy: Issues and challenges for Pakistan—Solar energy prospective. Renew. Sustain. Energy Rev. 2012, 16, 2762–2780. [Google Scholar] [CrossRef]
- Luqman, M.; Sajid, R.A.; Samiullah, K.; Usman, A.; Ahmad, R.; Farkhanda, A. Estimation of solar energy potential from the roof top of Punjab Government Servants Cooperative Housing Society Lahore using GIS. Smart Grid Renew. Energy 2015, 6, 128–139. [Google Scholar] [CrossRef]
- The National Renewable Energy Laboratory (NREL). Pakistan Resource Maps and Toolkit; The National Renewable Energy Laboratory (NREL): Golden, CO, USA, 2014.
- Farooqui, S.Z. Prospects of renewable penetration in the energy mix of Pakistan. Renew. Sustain. Energy Rev. 2014, 29, 693–700. [Google Scholar] [CrossRef]
- Khan, N.A. Energy Resources and Utilization in Pakistan; College of EME: Rawalpindi, Pakistan, 2000. [Google Scholar]
- Nayyer, A.Z.; Nayyer, Z.A. Prospects of renewable energy resources in Pakistan. In Renewable-Energy Technologies and Sustainable Development; Comsats: Islamabad, Pakistan, February 2005; pp. 65–86. [Google Scholar]
- Manoj, S.; Srinivasaiah, P.P. Estimation and Cost Effective Analysis of Hybrid—Wind/PV Generation for Rural/Remote Electrification. Int. J. Emerg. Technol. Adv. Eng. 2012, 2, 740–745. [Google Scholar]
- Abbas, M.K.; Hassan, Q. Economic Power Generation for an off—Grid site in Pakistan. In Proceedings of the IEEE 2015 Power Generation System and Renewable Energy Technologies (PGSRET), Islamabad, Pakistan, 10–11 June 2015. [Google Scholar]
- Maouedj, R.; Mammeri, A.; Benyoucef, B. Performance evaluation of hybrid Photovoltaic—Wind power systems. Energy Procedia 2014, 50, 797–807. [Google Scholar] [CrossRef]
- Caisheng, W. Modeling and Control of Hybrid Wind/Photovoltaic/Fuel Cell Distributed Generation Systems. Ph.D. Thesis, Montana State University-Bozeman, College of Engineering, Bozeman, MT, USA, 2006. [Google Scholar]
- Vivek, D.; Bhatia, J.S. Analysis and design of a domestic solar-wind hybrid energy system for low wind speeds. Int. J. Comput. Appl. 2013, 72, 40–44. [Google Scholar]
- Sigarchian, S.G.; Anders, M.; Torsten, F. Modeling and control strategy of a hybrid PV/Wind/Engine/Battery system to provide electricity and drinkable water for remote applications. Energy Procedia 2014, 57, 1401–1410. [Google Scholar] [CrossRef]
- Godson, J.; Karthick, M.; Muthukrishnan, T.; Sivagamasundari, M.S. Solar PV-Wind hybrid power generation System. Int. J. Adv. Res. Electr. Electron. Instrum. Eng. 2013, 11, 5350–5354. [Google Scholar]
- Arun, G.E.; Ashna, C.A.; Sareena, M.K.; Shijina, K. A Relay Based Controller Designing of Hybrid Power Systems. Int. J. Adv. Res. Electr. Electron. Instrum. Eng. 2015, 4, 2505–2511. [Google Scholar]
- Wang, T. The Design of Charging Controller in Wind-Photovoltaic Hybrid Power Generation System. In Proceedings of the International Conference on Civil, Materials and Environmental Sciences (CMES 2015), London, UK, 13–14 March 2015; pp. 402–404. [Google Scholar]
- Diab, F.; Lan, H.; Zhang, L.; Ali, S. An environmentally friendly factory in Egypt based on hybrid photovoltaic/wind/diesel/battery system. J. Clean. Prod. 2016, 112, 3884–3894. [Google Scholar] [CrossRef]
- Freire, N.; Ribeiro, E.; Marques, A.J.; Boccaletti, C.C. Experimental Analysis of a Standalone Renewable Energy Based Hybrid System. In Proceedings of the International Conference on Computing, Electrical and Industrial Systems, Costa de Caparica, Portugal, 27–29 February 2012; Springer: Berlin/Heidelberg, Germany, 2012; pp. 337–344. [Google Scholar]
- Muni, T.V.; Kishore, K.V. Experimental Setup of Solar–Wind Hybrid Power System Interface to Grid System. Int. J. Modern Trends Sci. Technol. 2016, 2, 1–6. [Google Scholar]
- Jadallah, A.A.; Mahmood, D.Y.; Er, Z.; Abdulqaedr, Z.A. Hybridization of Solar/Wind Energy System for Power Generation in Rural Areas. In Proceedings of the 2nd International Conference on Computational and Experimental Science and Engineering (ICCESEN 2015), Antalya, Turkey, 14–19 October 2015; Volume 130, pp. 434–437. [Google Scholar]
- Sungwoo, B.; Kwasinski, A. Dynamic modeling and operation strategy for a microgrid with wind and photovoltaic resources. IEEE Trans. Smart Grid 2012, 3, 1867–1876. [Google Scholar]
- Kwasinski, A.; Krein, P.T. Optimal configuration analysis of a microgrid-based telecom power system. In Proceedings of the IEEE 28th INTELEC, Providence, RI, USA, 10–14 September 2006; pp. 1–8. [Google Scholar]
- Kwasinski, A.; Krein, P.T. A microgrid-based telecom power system using modular multiple-input DC-DC converters. In Proceedings of the IEEE 27th INTELEC, Berlin, Germany, 18–22 September 2005; pp. 515–520. [Google Scholar]
- Rashid, A.B.; Abusara, M.; Mallick, T. A review of hybrid solar PV and wind energy system. Smart Sci. 2015, 3, 127–138. [Google Scholar]
- Ganesan, S.; Padmanaban, S.; Varadarajan, R.; Subramaniam, U.; Mihet-Popa, L. Study and Analysis of an Intelligent Microgrid Energy Management Solution with Distributed Energy Sources. Energies 2017, 10, 1419. [Google Scholar] [CrossRef]
- Cucchiella, F.; D’Adamo, I.; Gastaldi, M. The Economic Feasibility of Residential Energy Storage Combined with PV Panels: The Role of Subsidies in Italy. Energies 2017, 10, 1434. [Google Scholar] [CrossRef]
- Javaid, N.; Javaid, S.; Wadood, A.; Ahmed, I.; Almogren, A.; Alamri, A.; Niaz, I.A. A hybrid genetic wind driven heuristic optimization algorithm for demand side management in smart grid. Energies 2017, 10, 319. [Google Scholar] [CrossRef]
- Dali, M.; Belhadj, J.; Roboam, X. Hybrid solarewind system with battery storage operating in grid-connected and standalone mode: Control and energy management—Experimental investigation. Energy 2010, 35, 2587–2595. [Google Scholar] [CrossRef]
- Ou, T.-C.; Hong, C.-M. Dynamic operation and control of microgrid hybrid power systems. Energy 2014, 66, 314–323. [Google Scholar] [CrossRef]
- Hong, C.-M.; Ou, T.-C.; Lu, K.-H. Development of intelligent MPPT (maximum power point tracking) control for a grid-connected hybrid power generation system. Energy 2013, 50, 270–279. [Google Scholar] [CrossRef]
- Bui, V.-H.; Hussain, A.; Kim, H.-M. Optimal Operation of Microgrids Considering Auto-Configuration Function Using Multiagent System. Energies 2017, 10, 1484. [Google Scholar] [CrossRef]
- Ou, T.-C.; Tsao, T.-P.; Lin, W.-M.; Hong, C.-M.; Lu, K.-H.; Tu, C.-S. A novel Power Flow Analysis for Microgrid Distribution System. In Proceedings of the 2013 8th IEEE Conference on Industrial Electronics and Applications (ICIEA), Melbourne, VIC, Australia, 19–21 June 2013. [Google Scholar]
- Lin, W.-M.; Ou, T.-C. Unbalanced distribution network fault analysis with hybrid compensation. IET Gener. Transm. Distrib. 2011, 5, 92–100. [Google Scholar] [CrossRef]
- Chena, S.-L.; Chen, Y.-L.; Chang, Y.-R.; Chan, C.-M. Stage Fault Test of a Low Voltage Microgrid for Development of Protection Scheme. Int. J. Smart Grid Clean Energy 2012, 1, 116–121. [Google Scholar] [CrossRef]
- Ou, T.-C. Ground fault current analysis with a direct building algorithm for microgrid distribution. Electr. Power Energy Syst. 2013, 53, 867–875. [Google Scholar] [CrossRef]
- Ou, T.-C. A novel unsymmetrical faults analysis for microgrid distribution systems. Electr. Power Energy Syst. 2012, 43, 1017–1024. [Google Scholar] [CrossRef]
- Eltamaly, A.M.; Al-Shamma’a, A.A. Optimal configuration for isolated hybrid renewable energy systems. J. Renew. Sustain. Energy 2016, 8, 045502. [Google Scholar] [CrossRef]
- Türkay, B.E.; Telli, A.Y. Economic analysis of standalone and grid connected hybrid energy systems. Renew. Energy 2011, 36, 1931–1943. [Google Scholar] [CrossRef]
- Shaikh, P.H.; Jan, T.; Solangi, A.R.; Leghari, Z.H.; Baloch, A.A.; Uqaili, M.A. Performance analysis of wind-photovoltaic-battery based DC microgrid setup for off-grid applications. In Proceedings of the IEEE 3rd International Conference on Engineering Technologies and Social Sciences (ICETSS), Bangkok, Thailand, 7–8 August 2017. [Google Scholar]
- Pakistan Solar Radiation Measurement Data. Available online: https://energydata.info/dataset/pakistan-solar-measurement-wbg-esmp (accessed on 31 March 2017).
- Mulligan, C.J.; Bilen, C.; Zhou, X.; Belcher, W.J.; Dastoor, P.C. Dastoor. Levelised cost of electricity for organic photovoltaics. Sol. Energy Mater. Sol. Cells 2015, 133, 26–31. [Google Scholar] [CrossRef]
- Gielen, D. Renewable energy technologies: Cost analysis series—Wind power. In IRENA Working Paper; Gielen, D., Ed.; International Renewable Energy Agency (IRENA): Abu Dhabi, UAE, 2012. [Google Scholar]
- Maheshwari, H.; Jain, K. Financial Viability of Solar Photovoltaic System: A Case Study. Int. J. Civ. Eng. Technol. 2017, 8, 180–190. [Google Scholar]
- Khambalkar, V.P.; Gadge, S.R.; Dahatonde, S.B.; Kale, M.U.; Karale, D.S. Wind Energy Cost and Feasibility of a 2 MW Wind Power Project. Int. Energy J. 2007, 8, 285–290. [Google Scholar]
- State Bank of Pakistan. Domestic Markets and Monetary Management Department. Available online: http://fma.com.pk/index.php/history-of-discount-rate/ (accessed on 24 April 2018).
Parameter | Characteristics |
---|---|
Solar | |
Solar global insulation Available average solar energy | 5–7 kWh/m2/day 5.5 kWh/m2/day |
Mean sunshine duration | 8–10 h/day 300 days/year |
Global solar irradiance | 1500–3000 h/year 200–250 W/m2/day 6840–8280 MJ/m2/year 1.9–2.3 MWh/m2/year |
Total solar energy potential exists in Pakistan | 2.9 Million MW |
Wind | |
Wind speeds in Sindh & Balochistan’s coastal areas (10 m height) Wind speeds in Sindh & Balochistan’s coastal areas (50 m height) Total wind power potential of coastal areas of Sindh Viable wind power potential of coastal areas of Sindh Total wind power potential of Pakistan Viable wind power potential of Pakistan | 4–9 m/s 12.5 m/s 43,871 MW 11,000 MW 346,000 MW 120,000 MW |
Hydropower | |
Hydropower potential of Pakistan | 30,000–50,000 MW |
Biomass | |
Potential of sugarcane trash for power generation (2011–2012) Potential of cotton sticks for power generation (2011–2012) Potential of maize stalks for power generation (2011–2012) Potential of paddy straw for power generation (2011–2012) | 20,313 GWh 8671 GWh 4627 GWh 15,058 GWh |
Biogas | |
Total animal (cow + buffalo) population (2011–2012) Manure produced per year at 10 kg/day/animal (2011–2012) Collected manure produced per year (2011–2012) Biogas produced at 50 m3/ton manure (2011–2012) Thermal energy in biogas at 22 MJ/m3 Total biogas power potential at 8.14 kWh/m3 | 70 Millions 255.5 Million Tons 127.750 Million Tons 6387.5 Million m3 140.525 Million GJ 13,670 GWh |
Source | Total Power Generation (%) | Electricity Generation (MW) |
---|---|---|
Oil | 35.2 | 8025 |
Gas | 29 | 6611 |
Coal | 0.1 | 23 |
Hydel | 29.9 | 6816 |
Nuclear | 5.8 | 1322 |
Total | 100 | 22,797 |
PV Panels | |
Rated power per panel | 150 W |
Total power of the three panels | 450 W |
Rated voltage per panel | 18 V |
Rated current per panel | 8.96 A |
Open circuit voltage | 21.6 V |
Short circuit current | 9.0 A |
Number of cells per panel | 36 |
Size (mm × mm × mm) | 1480 × 680 × 40 |
WG System | |
Rated power | 50 W |
Rated voltage | 24 V |
Minimum operating wind speed | 2 m/s |
Rated operating wind speed | 6–8 m/s |
BESS | |
Rated voltage | 12 V |
Ampere-hour rating | 50 Ah |
DC Load | |
LED bulbs | - |
Power rating | 12 W |
Voltage rating | 12 V |
Number of bulbs | 40 |
Fan | - |
Power rating | 25 W |
Voltage rating | 12 V |
Number of fans | 1 |
Sr. # | Equipment | Capital (Equipment) Cost (PKR) | Running (Maintenance/Replacement) Cost (PKR) | Total Cost (PKR and $) |
---|---|---|---|---|
1. | Photovoltaic Plates (PV) | 6500 × 3 = 19,500/- | - | 19,500/-PKR ($185) |
2. | Wind Generator (WG) | 20,000/- | 500 × 20 = 10,000/-PKR (at 5% of initial cost per year) | 20,000 + 10,000 = 30,000/-PKR ($285) |
3. | Battery Energy Storage System (BESS) | 4500/- | 32,000/-PKR (battery replaced after every 3 years’ time with 5% increase in its cost) | 4500 + 32,000 = 36,500/-PKR ($347) |
4. | Charge Controllers (CCs) | 8000/- | 400 × 20 = 8000/-PKR (at 5% of initial cost per year) | 8000 + 8000 = 16,000/-PKR ($152) |
5. | Photovoltaic and Wind Generator Stands | 12,000/- | - | 12,000/-PKR ($114) |
6. | Cable | 2000/- | - | 2000/-PKR ($19) |
Total | 66,000/- ($627) | 50,000/-PKR ($475) | 116,000/-PKR ($1102) |
Year | Cost per Year ($) (Capital + Running) | Cumulative Cost for 20 Years ($) | kWh’s Generated per Year with 5% Decrease per Year after the 3rd Year | Cumulative kWh’s Generated in 20 Years |
---|---|---|---|---|
0 | 627 | 627.00 | 0 | 0 |
1 | 8.55 | 635.55 | 888.26 | 888.26 |
2 | 8.55 | 644.10 | 888.26 | 1776.53 |
3 | 8.55 | 652.65 | 888.26 | 2664.79 |
4 | 53.58 | 706.23 | 843.85 | 3508.64 |
5 | 8.55 | 714.78 | 801.65 | 4310.29 |
6 | 8.55 | 723.33 | 761.57 | 5071.87 |
7 | 55.67 | 779.00 | 723.49 | 5795.37 |
8 | 8.55 | 787.55 | 687.32 | 6482.69 |
9 | 8.55 | 796.10 | 652.96 | 7135.64 |
10 | 57.95 | 854.05 | 620.31 | 7755.95 |
11 | 8.55 | 862.60 | 589.29 | 8345.24 |
12 | 8.55 | 871.15 | 559.83 | 8905.07 |
13 | 59.85 | 931.00 | 531.84 | 9436.91 |
14 | 8.55 | 939.55 | 505.24 | 9942.15 |
15 | 8.55 | 948.10 | 479.98 | 10,422.13 |
16 | 62.7 | 1010.80 | 455.98 | 10,878.11 |
17 | 8.55 | 1019.35 | 433.18 | 11,311.29 |
18 | 8.55 | 1027.90 | 411.52 | 11,722.82 |
19 | 65.55 | 1093.45 | 390.95 | 12,113.77 |
20 | 8.55 | 1102.00 | 371.40 | 12,485.17 |
- | 1102 | - | 12,485.17 | - |
Year | Cost per Year ($) (1) | Cumulative Cost (for 20 Years) ($) (2) | Cumulative kWh’s Generated (3) | Generated Revenue (at 0.1425/Unit) ($) (4) | Cumulative Generated Revenue ($) (5) | Cash Flow ($) (6) = (4) − (1) | Cumulative Cash Flow ($) (6) |
---|---|---|---|---|---|---|---|
0 | 627.00 | 627.00 | 0.00 | 0.00 | 0.00 | −627.00 | −627.00 |
1 | 8.55 | 635.55 | 888.26 | 126.58 | 126.58 | 118.03 | −508.97 |
2 | 8.55 | 644.10 | 1776.53 | 126.58 | 253.16 | 118.03 | −390.94 |
3 | 8.55 | 652.65 | 2664.79 | 126.58 | 379.73 | 118.03 | −272.92 |
4 | 53.58 | 706.23 | 3508.64 | 120.25 | 499.98 | 66.67 | −206.25 |
5 | 8.55 | 714.78 | 4310.29 | 114.24 | 614.22 | 105.69 | −100.56 |
6 (A) | 8.55 | 723.33 | 5071.87 | 108.52 | 722.74 | 99.97 | −0.59 (B) |
7 | 55.67 | 779.00 | 5795.37 | 103.10 | 825.84 | 47.43 (C) | 46.84 |
8 | 8.55 | 787.55 | 6482.69 | 97.94 | 923.78 | 89.39 | 136.23 |
9 | 8.55 | 796.10 | 7135.64 | 93.05 | 1016.83 | 84.50 | 220.73 |
10 | 57.95 | 854.05 | 7755.95 | 88.39 | 1105.22 | 30.44 | 251.17 |
11 | 8.55 | 862.60 | 8345.24 | 83.97 | 1189.20 | 75.42 | 326.60 |
12 | 8.55 | 871.15 | 8905.07 | 79.78 | 1268.97 | 71.23 | 397.82 |
13 | 59.85 | 931.00 | 9436.91 | 75.79 | 1344.76 | 15.94 | 413.76 |
14 | 8.55 | 939.55 | 9942.15 | 72.00 | 1416.76 | 63.45 | 477.21 |
15 | 8.55 | 948.10 | 10,422.13 | 68.40 | 1485.15 | 59.85 | 537.05 |
16 | 62.7 | 1010.80 | 10,878.12 | 64.98 | 1550.13 | 2.28 | 539.33 |
17 | 8.55 | 1019.35 | 11,311.29 | 61.73 | 1611.86 | 53.18 | 592.51 |
18 | 8.55 | 1027.90 | 11,722.82 | 58.64 | 1670.50 | 50.09 | 642.60 |
19 | 65.55 | 1093.45 | 12,113.77 | 55.71 | 1726.21 | −9.84 | 632.76 |
20 | 8.55 | 1102.00 | 12,485.17 | 52.92 | 1779.14 | 44.37 | 677.14 |
- | 1102.00 | - | - | 1779.14 | - | 677.14 | - |
Year | Discounted Cost per Year ($) (1) | Discounted Cumulative Cost (for 20 Years) ($) (2) | Cumulative kWh’s Generated (3) | Discounted Generated Revenue (at 0.1425/unit) ($) (4) | Discounted Cumulative Generated Revenue ($) (5) | Discounted Cash Flow ($) (6) = (4) – (1) | Discounted Cumulative Cash Flow ($) (7) |
---|---|---|---|---|---|---|---|
0 | 627.00 | 627.00 | 0.00 | 0.00 | 0.00 | −627.00 | −627.00 |
1 | 7.99 | 634.99 | 888.26 | 118.30 | 118.30 | 110.31 | −516.69 |
2 | 7.47 | 642.46 | 1776.53 | 110.56 | 228.86 | 103.09 | −413.60 |
3 | 6.98 | 649.44 | 2664.79 | 103.33 | 332.19 | 96.35 | −317.25 |
4 | 40.88 | 690.31 | 3508.64 | 91.74 | 423.92 | 50.86 | −266.39 |
5 | 6.10 | 696.41 | 4310.29 | 81.45 | 505.38 | 75.36 | −191.03 |
6 | 5.70 | 702.11 | 5071.87 | 72.31 | 577.69 | 66.61 | −124.42 |
7 | 34.67 | 736.78 | 5795.37 | 64.21 | 641.89 | 29.54 | −94.88 |
8 (A) | 4.98 | 741.75 | 6482.69 | 57.00 | 698.89 | 52.03 | −42.86 (B) |
9 | 4.65 | 746.40 | 7135.64 | 50.61 | 749.51 | 45.96 (C) | 3.11 |
10 | 29.46 | 775.86 | 7755.95 | 44.93 | 794.44 | 15.47 | 18.58 |
11 | 4.06 | 779.92 | 8345.24 | 39.89 | 834.33 | 35.83 | 54.41 |
12 | 3.80 | 783.72 | 8905.07 | 35.42 | 869.76 | 31.63 | 86.04 |
13 | 24.84 | 808.56 | 9436.91 | 31.45 | 901.21 | 6.61 | 92.65 |
14 | 3.32 | 811.87 | 9942.15 | 27.92 | 929.13 | 24.61 | 117.26 |
15 | 3.10 | 814.97 | 10,422.13 | 24.79 | 953.92 | 21.69 | 138.95 |
16 | 21.24 | 836.21 | 10,878.12 | 22.01 | 975.93 | 0.77 | 139.72 |
17 | 2.71 | 838.92 | 11,311.29 | 19.54 | 995.47 | 16.84 | 156.56 |
18 | 2.53 | 841.44 | 11,722.82 | 17.35 | 1012.82 | 14.82 | 171.38 |
19 | 18.13 | 859.57 | 12,113.77 | 15.40 | 1028.23 | −2.72 | 168.66 |
20 | 2.21 | 861.78 | 12,485.17 | 13.68 | 1041.90 | 11.47 | 180.12 |
- | 861.78 | - | - | 1041.90 | - | 180.12 | - |
Parameter | Characteristics |
---|---|
Max. AC output | 550 VA |
Rated AC output | 450 VA |
DC output | 12 V * 8.3 A |
Type | Single cylinder, 4 stroke |
Petrol consumption | 0.49 L in 1 h |
Price | 51,000/-PKR |
Equipment | Capital (Equipment) Cost | Running Cost | Total Cost | |
---|---|---|---|---|
Repair and Maintenance Cost | Fuel Cost | |||
Gasoline Generator set | 51,000/-PKR ($484) | 2550 × 20 = 51,000/-PKR ($484) At the rate of 5% of the equipment cost per year | 289,441/-PKR ($2750) At price of $0.7 per liter | 391,441/-PKR ($3718) |
Year | Cost per Year ($) | kWh’s Generated with 5% Decrease per Year after the 3rd Year | Litres Consumed per Year | Fuel Cost Price of $0.7 per Litre |
---|---|---|---|---|
0 | 485 | 0 | 0 | 0 |
1 | 220 | 888.26 | 282.09 | 195.77 |
2 | 220 | 888.26 | 282.08 | 195.76 |
3 | 220 | 888.26 | 282.09 | 195.77 |
4 | 210 | 843.85 | 267.98 | 185.98 |
5 | 201 | 801.66 | 254.58 | 176.68 |
6 | 192 | 761.57 | 241.85 | 167.85 |
7 | 184 | 723.49 | 229.76 | 159.45 |
8 | 176 | 687.32 | 218.27 | 151.48 |
9 | 168 | 652.96 | 207.36 | 143.91 |
10 | 161 | 620.31 | 196.99 | 136.71 |
11 | 154 | 589.29 | 187.14 | 129.88 |
12 | 148 | 559.83 | 177.79 | 123.38 |
13 | 141 | 531.84 | 168.89 | 117.21 |
14 | 135 | 505.24 | 160.45 | 111.35 |
15 | 130 | 479.98 | 152.43 | 105.79 |
16 | 125 | 455.98 | 144.81 | 100.49 |
17 | 120 | 433.18 | 137.57 | 95.47 |
18 | 115 | 411.52 | 130.69 | 90.69 |
19 | 110 | 390.95 | 124.15 | 86.16 |
20 | 106 | 371.40 | 117.95 | 81.85 |
- | 3718 | 12,485.17 | 3964.94 | 2751.67 |
Sr. # | Cost Comparison | Hybrid DCMG ($) | Gasoline Generator ($) |
---|---|---|---|
1 | Capital Cost | 627 | 484 |
2 | Running Cost | 475 | 3234 |
3 | Total (Lifetime) Cost | 1102 | 3718 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shaikh, P.H.; Leghari, Z.H.; Mirjat, N.H.; Shaikh, F.; Solangi, A.R.; Jan, T.; Uqaili, M.A. Wind–PV-Based Hybrid DC Microgrid (DCMG) Development: An Experimental Investigation and Comparative Economic Analysis. Energies 2018, 11, 1295. https://doi.org/10.3390/en11051295
Shaikh PH, Leghari ZH, Mirjat NH, Shaikh F, Solangi AR, Jan T, Uqaili MA. Wind–PV-Based Hybrid DC Microgrid (DCMG) Development: An Experimental Investigation and Comparative Economic Analysis. Energies. 2018; 11(5):1295. https://doi.org/10.3390/en11051295
Chicago/Turabian StyleShaikh, Pervez Hameed, Zohaib Hussain Leghari, Nayyar Hussain Mirjat, Faheemullah Shaikh, Asif Raza Solangi, Tariqullah Jan, and Muhammad Aslam Uqaili. 2018. "Wind–PV-Based Hybrid DC Microgrid (DCMG) Development: An Experimental Investigation and Comparative Economic Analysis" Energies 11, no. 5: 1295. https://doi.org/10.3390/en11051295
APA StyleShaikh, P. H., Leghari, Z. H., Mirjat, N. H., Shaikh, F., Solangi, A. R., Jan, T., & Uqaili, M. A. (2018). Wind–PV-Based Hybrid DC Microgrid (DCMG) Development: An Experimental Investigation and Comparative Economic Analysis. Energies, 11(5), 1295. https://doi.org/10.3390/en11051295