Influence of Grain Size Heterogeneity and In-Situ Stress on the Hydraulic Fracturing Process by PFC2D Modeling
Abstract
:1. Introduction
2. Modeling Methodology
2.1. Fluid-Mechanical Coupling in PFC2D
2.2. Optimization of Fluid Pressure Calculation after Bond Failure
3. Hydraulic Fracturing Modeling and Scenarios
3.1. Model Description and Parameters
3.2. Modeling Validation
3.3. Modeling Scenarios
4. Modeling Results and Discussions
4.1. Effects of Grain Size Heterogeneity under Different In-Situ Stress
4.2. Effects of Grian Size Heterogeneity under Different In-Situ Stress Ratios
5. Conclusions
- (1)
- Grain size heterogeneity significantly affects the behavior of rock hydraulic fracturing. Under the same in-situ stress conditions, the initiation and breakdown pressures decrease with increasing grain size heterogeneity. In the models with higher grain size heterogeneity, the borehole pressure decreases slowly and fluctuates after reaching the breakdown pressure.
- (2)
- The in-situ stress also has a great effect on the critical pressures of hydraulic fracturing. With increasing in-situ stress, the initiation and breakdown pressures increase, and the reduction effect of grain size heterogeneity on the breakdown pressure becomes more obvious.
- (3)
- Under the condition that the average value of the maximum and minimum principal stresses are constant, the breakdown pressure decreases with the increase of in-situ stress ratio, however, the variation of crack initiation pressure with in-situ stress ratio is related to the grain size heterogeneity. For models with homogeneous grain size, the crack initiation pressure decreases with increasing in-situ stress ratio, but in grain size heterogeneous models, the crack initiation pressure is almost unaffected by the in-situ stress ratio.
- (4)
- The in-situ stress and the grain size heterogeneity have a great influence on the spatial distribution and micromorphology of hydraulic fractures. When the stress ratio is greater than 1, the hydraulic fractures propagate basically along the direction of maximum principal stress. With the decrease of grain size heterogeneity, the hydraulic fractures on both sides of the borehole become more symmetrical and straight. When the stress ratio is 1, the initiation position and extension direction of hydraulic fractures are random. The grain size homogeneous models have more branches of hydraulic fractures.
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Montgomery, C.T.; Smith, M.B. Hydraulic Fracturing: History of an Enduring Technology. J. Pet. Technol. 2010, 62, 26–40. [Google Scholar] [CrossRef]
- Yokoyama, T.; Sano, O.; Hirata, A.; Ogawa, K.; Nakayama, Y.; Ishida, T.; Mizuta, Y. Development of borehole-jack fracturing technique for in situ stress measurement. Int. J. Rock Mech. Min. 2014, 67, 9–19. [Google Scholar] [CrossRef]
- Osborn, S.G.; Vengosh, A.; Warner, N.R.; Jackson, R.B. Methane contamination of drinking water accompanying gas-well drilling and hydraulic fracturing. In Proceedings of the National Academy of Sciences of the Unite States of America, Washington, DC, USA, 17 May 2011. [Google Scholar]
- Hossain, M.M.; Rahman, M.K. Numerical simulation of complex fracture growth during tight reservoir stimulation by hydraulic fracturing. J. Pet. Sci. Eng. 2008, 60, 86–104. [Google Scholar] [CrossRef]
- Ishida, T.; Chen, Q.; Mizuta, Y.; Roegiers, J.C. Influence of Fluid Viscosity on the Hydraulic Fracturing Mechanism. J. Energy Resour. Technol. 2004, 126, 190–200. [Google Scholar] [CrossRef]
- Zhou, J.; Chen, M.; Jin, Y.; Zhang, G.Q. Analysis of fracture propagation behavior and fracture geometry using a tri-axial fracturing system in naturally fractured reservoirs. Int. J. Rock Mech. Min. 2008, 45, 1143–1152. [Google Scholar] [CrossRef]
- Eshiet, K.I.; Sheng, Y.; Ye, J. Microscopic modelling of the hydraulic fracturing process. Environ. Earth Sci. 2013, 68, 1169–1186. [Google Scholar] [CrossRef]
- Zhang, L.; Zhou, J.; Han, Z. Hydraulic fracturing process by using a modified two-dimensional particle flow code-case study. Prog. Comput. Fluid Dyn. Int. J. 2017, 17, 13. [Google Scholar] [CrossRef]
- Al-Busaidi, A.; Hazzard, J.F.; Young, R.P. Distinct element modeling of hydraulically fractured Lac du Bonnet granite. J. Geophys. Res. Solid Earth 2005, 110. [Google Scholar] [CrossRef] [Green Version]
- Warpinski, N.R.; Teufel, L.W. Influence of geologic discontinuities on hydraulic fracture propagation. J. Pet. Technol. 1984, 39, 209–220. [Google Scholar] [CrossRef]
- Gale, J.F.W.; Reed, R.M.; Holder, J. Natural fractures in the Barnett Shale and their importance for hydraulic fracture treatments. AAPG Bull. 2007, 91, 603–622. [Google Scholar] [CrossRef]
- Zhou, J.; Zhang, L.Q.; Pan, Z.J.; Han, Z.H. Numerical investigation of fluid-driven near-borehole fracture propagation in laminated reservoir rock using PFC 2D. J. Nat. Gas Sci. Eng. 2016, 36, 719–733. [Google Scholar] [CrossRef]
- He, J.M.; Lin, C.; Li, X.; Wan, X.L. Experimental Investigation of Crack Extension Patterns in Hydraulic Fracturing with Shale, Sandstone and Granite Cores. Energies 2016, 9, 1018. [Google Scholar] [CrossRef]
- Lan, H.X.; Martin, C.D.; Hu, B. Effect of heterogeneity of brittle rock on micromechanical extensile behavior during compression loading. J. Geophys. Res. Sol. Earth 2010, 115, B01202. [Google Scholar] [CrossRef]
- Shimizu, H.; Murata, S.; Ishida, T. The distinct element analysis for hydraulic fracturing in hard rock considering fluid viscosity and particle size distribution. Int. J. Rock Mech. Min. Sci. 2011, 48, 712–727. [Google Scholar] [CrossRef]
- Yang, T.H.; Tham, L.G.; Tang, C.A.; Liang, Z.Z.; Tsui, Y. Influence of Heterogeneity of Mechanical Properties on Hydraulic Fracturing in Permeable Rocks. Rock Mech. Rock Eng. 2004, 37, 251–275. [Google Scholar] [CrossRef]
- Vaselli, M. 3D imaging of fracture propagation using synchrotron X-ray microtomography. Earth Planet. Sci. Lett. 2009, 286, 285–291. [Google Scholar] [CrossRef]
- Matsunaga, I.; Kobayashi, H.; Sasaki, S.; Ishida, T. Studying hydraulic fracturing mechanism by laboratory experiments with acoustic emission monitoring. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1993, 30, 909–912. [Google Scholar] [CrossRef]
- Chen, Q.; Ishida, T.; Sasaki, S.; Matsunaga, I.; Mizuta, Y. Influence of Grain Size of Granite on Hydraulic Fracturing Mechanism. Doboku Gakkai Ronbunshu 1998, 589, 179–194. [Google Scholar] [CrossRef]
- Ishida, T.; Mizuta, Y.; Matsunaga, I.; Sasaki, S.; Chen, Q. Effect of grain size in granitic rock on crack extension in hydraulic fracturing. In Proceedings of the 4th North American Rock Mechanics Symposium, Seattle, Washington, DC, USA, 31 July–3 August 2000. [Google Scholar]
- Ishida, T.; Sasaki, S.; Matsunaga, I.; Chen, Q.; Mizuta, Y. Effect of grain size in granitic rocks on hydraulic fracturing mechanism. In Proceedings of the Trends in Rock Mechanics, Geotechnical Special Publications, Denver, CO, USA, 5–8 August 2000. [Google Scholar]
- Hubbert, M.K.; Willis, D.G. Mechanics of hydraulic fracturing. Petr. Trans. AIME 1957, 210, 153–168. [Google Scholar]
- Haimson, B.; Fairhurst, C. Initiation and extension of hydraulic fractures in rocks. Soc. Pet. Eng. J. 1967, 7, 310–318. [Google Scholar] [CrossRef]
- Nasehi, M.J.; Mortazavi, A. Effects of in-situ stress regime and intact rock strength parameters on the hydraulic fracturing. J. Petrol. Sci. Eng. 2013, 108, 211–221. [Google Scholar] [CrossRef]
- Potyondy, D.O.; Cundall, P.A. A Bonded-Particle Model for Rock. Int. J. Rock Mech. Min. Sci. 2004, 41, 1329–1364. [Google Scholar] [CrossRef]
- Cundall, P.A. Computer Simulations of Dense Sphere Assemblies. Stud. Appl. Mech. 1988, 20, 113–123. [Google Scholar] [CrossRef]
- Cundall, P. Fluid Formulation for PFC2D; Itasca Consulting Group: Minneapolis, MN, USA, 2000. [Google Scholar]
- Zhou, J.; Zhang, L.Q.; Braun, A.; Han, Z.H. Numerical Modeling and Investigation of Fluid-Driven Fracture Propagation in Reservoirs Based on a Modified Fluid-Mechanically Coupled Model in Two-Dimensional Particle Flow Code. Energies 2016, 9, 699. [Google Scholar] [CrossRef]
- Hökmark, H.; Lönnqvist, M.; Fälth, B. THM-Issues in Repository Rock; Svensk Kärnbränslehantering AB: Stockholm, Sweden, 2010. [Google Scholar]
- Yoon, J.S.; Zang, A.; Stephansson, O. Numerical investigation on optimized stimulation of intact and naturally fractured deep geothermal reservoirs using hydro-mechanical coupled discrete particles joints model. Geothermics 2014, 52, 165–184. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.; Young, P.R. Numerical modeling of seismicity induced by fluid injection in naturally fractured reservoirs. Geophysics 2011, 76, WC167–WC180. [Google Scholar] [CrossRef]
- Hazzard, J.F.; Young, R.P.; Oates, S.J. Numerical modeling of seismicity induced by fluid injection in a fractured reservoir. In Proceedings of the 5th North American Rock Mechanics Symposium Mining and Tunnel Innovation and Opportunity, Toronto, ON, Canada, 7–10 July 2002; pp. 1023–1030. [Google Scholar]
- Blair, S.C.; Cook, N.G.W. Analysis of compressive fracture in rock using statistical techniques: Part I, A non-linear rule-based model. Int. J. Rock Mech. Min. Sci. 1998, 35, 837–848. [Google Scholar] [CrossRef]
- Blair, S.C.; Cook, N.G.W. Analysis of compressive fracture in rock using statistical techniques: Part II. Effect of microscale heterogeneity on macroscopic deformation. Int. J. Rock Mech. Min. Sci. 1998, 35, 849–861. [Google Scholar] [CrossRef]
Microparameters | Notations | Values | |
---|---|---|---|
Particle | Density (kg/m3) | ρ | 2680 |
Contact modulus (GPa) | E | 35 | |
Ratio of normal to shear stiffness | kn/ks | 1.5 | |
Friction coefficient | f | 0.4 | |
Parallel bond | Tensile strength (MPa) | σc | 60 |
Normal to shear stiffness ratio | 1.5 | ||
Shear strength (MPa) | τc | 110 | |
Modulus (GPa) | Ec | 35 | |
Radius multiplier | λ | 1 | |
Fluid | Bulk modulus (GPa) | 2 | |
Viscosity (Pa·s) | 1.0 × 10−3 | ||
Initial hydraulic aperture (m) | e0 | 1.0 × 10−6 | |
Infinite hydraulic aperture (m) | einf | 1.0 × 10−8 | |
Permeability (m2) | 1.0 × 10−17 |
Parameters | Minimum Grain Size (mm) | Grain Size Ratio (Rmax/Rmin) | In-Situ Stress (MPa) and Stress Ratio |
---|---|---|---|
Scheme 1 | 2.5 | 1.2, 1.5, 2.0, 2.5, 3.0 | SH = ShSH = 5, 10, 15, 20 |
Scheme 2 | 2.5 | 1.2, 1.5, 2.0, 2.5, 3.0 | (SH + Sh)/2 = 10SH/Sh = 1.0, 2.0, 3.0, 4.0 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, Z.; Zhou, J.; Zhang, L. Influence of Grain Size Heterogeneity and In-Situ Stress on the Hydraulic Fracturing Process by PFC2D Modeling. Energies 2018, 11, 1413. https://doi.org/10.3390/en11061413
Han Z, Zhou J, Zhang L. Influence of Grain Size Heterogeneity and In-Situ Stress on the Hydraulic Fracturing Process by PFC2D Modeling. Energies. 2018; 11(6):1413. https://doi.org/10.3390/en11061413
Chicago/Turabian StyleHan, Zhenhua, Jian Zhou, and Luqing Zhang. 2018. "Influence of Grain Size Heterogeneity and In-Situ Stress on the Hydraulic Fracturing Process by PFC2D Modeling" Energies 11, no. 6: 1413. https://doi.org/10.3390/en11061413
APA StyleHan, Z., Zhou, J., & Zhang, L. (2018). Influence of Grain Size Heterogeneity and In-Situ Stress on the Hydraulic Fracturing Process by PFC2D Modeling. Energies, 11(6), 1413. https://doi.org/10.3390/en11061413