A Dynamic Model for Indoor Temperature Prediction in Buildings
Abstract
:1. Introduction
- To combine easily available, existing real measurements, building information and tabular values while minimizing the number of model parameters and inputs,
- To apply the modelling approach for multiple buildings to validate the generalizability.
2. Building Characteristics and Measurement Data
2.1. Buildings
2.2. Measurements
3. Modelling and Analysis Methods
3.1. General Structure of the Model
3.2. Model Performance Analysis
4. Model Identification and Validation
4.1. Physical Parameters
4.2. Cross-Validation
4.3. Generalizability Assessment
4.4. Error Analysis
4.5. Uncertainty of the Outdoor Temperature Forecast
5. Applying the Model in Optimization of the Heat Demand
6. Discussion
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pérez-Lombard, L.; Ortiz, J.; Pout, C. A review on buildings energy consumption information. Energy Build. 2008, 40, 394–398. [Google Scholar] [CrossRef]
- Eisentraut, A.; Brown, A. Heating without Global Warming—Market Developments and Policy Considerations for Renewable Heat; IEA: Paris, France, 2014. [Google Scholar]
- Allegrini, J.; Orehounig, K.; Mavromatidis, G.; Ruesch, F.; Dorer, V.; Evins, R. A review of modelling approaches and tools for the simulation of district-scale energy systems. Renew. Sustain. Energy Rev. 2015, 52, 1391–1404. [Google Scholar] [CrossRef]
- Hietaharju, P.; Ruusunen, M. A concept for cutting peak loads in district heating. In Proceedings of the Automaatio XXI, Helsinki, Finland, 17–18 March 2015. [Google Scholar]
- Hietaharju, P.; Ruusunen, M. Peak Load Cutting in District Heating Network. In Proceedings of the 9th EUROSIM Congress on Modelling and Simulation, Oulu, Finland, 12–16 September 2016. [Google Scholar]
- Braun, J.E. Load Control Using Building Thermal Mass. J. Sol. Energy Eng. 2003, 125, 292–301. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Wang, S.; Xiao, F.; Gao, D. Peak load shifting control using different cold thermal energy storage facilities in commercial buildings: A review. Energy Convers. Manag. 2013, 71, 101–114. [Google Scholar] [CrossRef]
- Romanchenko, D.; Kensby, J.; Odenberger, M.; Johnsson, F. Thermal energy storage in district heating: Centralised storage vs. storage in thermal inertia of buildings. Energy Convers. Manag. 2018, 162, 26–38. [Google Scholar] [CrossRef]
- Kensby, J.; Trüschel, A.; Dalenbäck, J.-O. Potential of residential buildings as thermal energy storage in district heating systems—Results from a pilot test. Appl. Energy 2015, 137, 773–781. [Google Scholar] [CrossRef]
- Prívara, S.; Cigler, J.; Váňa, Z.; Oldewurtel, F.; Žáčeková, E. Use of partial least squares within the control relevant identification for buildings. Control Eng. Pract. 2013, 21, 113–121. [Google Scholar] [CrossRef]
- Zhao, H.; Magoulès, F. A review on the prediction of building energy consumption. Renew. Sustain. Energy Rev. 2012, 16, 3586–3592. [Google Scholar] [CrossRef]
- Kramer, R.; van Schijndel, J.; Schellen, H. Simplified thermal and hygric building models: A literature review. Front. Archit. Res. 2012, 1, 318–325. [Google Scholar] [CrossRef]
- Foucquier, A.; Robert, S.; Suard, F.; Stéphan, L.; Jay, A. State of the art in building modelling and energy performances prediction: A review. Renew. Sustain. Energy Rev. 2013, 23, 272–288. [Google Scholar] [CrossRef]
- Fraisse, G.; Viardot, C.; Lafabrie, O.; Achard, G. Development of a simplified and accurate building model based on electrical analogy. Energy Build. 2002, 34, 1017–1031. [Google Scholar] [CrossRef]
- Hudson, G.; Underwood, C.P. A simple building modelling procedure for MATLAB/SIMULINK. In Proceedings of the International Building Performance and Simulation Conference, Kyoto, Japan, 13–15 September 1999; Volume 2, pp. 777–783. [Google Scholar]
- Kossak, B.; Stadler, M. Adaptive thermal zone modeling including the storage mass of the building zone. Energy Build. 2015, 109, 407–417. [Google Scholar] [CrossRef]
- Royapoor, M.; Roskilly, T. Building model calibration using energy and environmental data. Energy Build. 2015, 94, 109–120. [Google Scholar] [CrossRef]
- Collotta, M.; Messineo, A.; Nicolosi, G.; Pau, G. A Dynamic Fuzzy Controller to Meet Thermal Comfort by Using Neural Network Forecasted Parameters as the Input. Energies 2014, 7, 4727–4756. [Google Scholar] [CrossRef] [Green Version]
- Gorni, D.; del Mar Castilla, M.; Visioli, A. An efficient modelling for temperature control of residential buildings. Build. Environ. 2016, 103, 86–98. [Google Scholar] [CrossRef]
- Gouda, M.M.; Danaher, S.; Underwood, C.P. Application of an Artificial Neural Network for Modelling the Thermal Dynamics of a Building’s Space and its Heating System. Math. Comput. Model. Dyn. Syst. 2002, 8, 333–344. [Google Scholar] [CrossRef]
- Huang, H.; Chen, L.; Hu, E. A neural network-based multi-zone modelling approach for predictive control system design in commercial buildings. Energy Build. 2015, 97, 86–97. [Google Scholar] [CrossRef]
- Kusiak, A.; Xu, G.; Zhang, Z. Minimization of energy consumption in HVAC systems with data-driven models and an interior-point method. Energy Convers. Manag. 2014, 85, 146–153. [Google Scholar] [CrossRef]
- Marvuglia, A.; Messineo, A.; Nicolosi, G. Coupling a neural network temperature predictor and a fuzzy logic controller to perform thermal comfort regulation in an office building. Build. Environ. 2014, 72, 287–299. [Google Scholar] [CrossRef]
- Mechaqrane, A.; Zouak, M. A comparison of linear and neural network ARX models applied to a prediction of the indoor temperature of a building. Neural Comput. Appl. 2004, 13, 32–37. [Google Scholar] [CrossRef]
- Mustafaraj, G.; Chen, J.; Lowry, G. Development of room temperature and relative humidity linear parametric models for an open office using BMS data. Energy Build. 2010, 42, 348–356. [Google Scholar] [CrossRef]
- Ruano, A.E.; Crispim, E.M.; Conceição, E.Z.E.; Lúcio, M.M.J.R. Prediction of building’s temperature using neural networks models. Energy Build. 2006, 38, 682–694. [Google Scholar] [CrossRef]
- Zamora-Martínez, F.; Romeu, P.; Botella-Rocamora, P.; Pardo, J. Towards Energy Efficiency: Forecasting Indoor Temperature via Multivariate Analysis. Energies 2013, 6, 4639–4659. [Google Scholar] [CrossRef] [Green Version]
- Attoue, N.; Shahrour, I.; Younes, R. Smart Building: Use of the Artificial Neural Network Approach for Indoor Temperature Forecasting. Energies 2018, 11, 395. [Google Scholar] [CrossRef]
- Fux, S.F.; Ashouri, A.; Benz, M.J.; Guzzella, L. EKF based self-adaptive thermal model for a passive house. Energy Build. 2014, 68, 811–817. [Google Scholar] [CrossRef]
- Gouda, M.M.; Danaher, S.; Underwood, C.P. Building thermal model reduction using nonlinear constrained optimization. Build. Environ. 2002, 37, 1255–1265. [Google Scholar] [CrossRef]
- Liao, Z.; Dexter, A.L. A simplified physical model for estimating the average air temperature in multi-zone heating systems. Build. Environ. 2004, 39, 1013–1022. [Google Scholar] [CrossRef]
- Underwood, C.P. An improved lumped parameter method for building thermal modelling. Energy Build. 2014, 79, 191–201. [Google Scholar] [CrossRef] [Green Version]
- Viot, H.; Sempey, A.; Mora, L.; Batsale, J.-C. Fast on-Site Measurement Campaigns and Simple Building Models Identification for Heating Control. Energy Procedia 2015, 78, 812–817. [Google Scholar] [CrossRef]
- Wang, S.; Xu, X. Simplified building model for transient thermal performance estimation using GA-based parameter identification. Int. J. Therm. Sci. 2006, 45, 419–432. [Google Scholar] [CrossRef]
- Wang, S.; Xu, X. Parameter estimation of internal thermal mass of building dynamic models using genetic algorithm. Energy Convers. Manag. 2006, 47, 1927–1941. [Google Scholar] [CrossRef]
- Braun, J.E.; Chaturvedi, N. An inverse gray-box model for transient building load prediction. HVAC R Res. 2002, 8, 73–99. [Google Scholar] [CrossRef]
- Kramer, R.; van Schijndel, J.; Schellen, H. Inverse modeling of simplified hygrothermal building models to predict and characterize indoor climates. Build. Environ. 2013, 68, 87–99. [Google Scholar] [CrossRef]
- Berthou, T.; Stabat, P.; Salvazet, R.; Marchio, D. Development and validation of a gray box model to predict thermal behavior of occupied office buildings. Energy Build. 2014, 74, 91–100. [Google Scholar] [CrossRef]
- Freire, R.Z.; Oliveira, G.H.C.; Mendes, N. Development of regression equations for predicting energy and hygrothermal performance of buildings. Energy Build. 2008, 40, 810–820. [Google Scholar] [CrossRef]
- Hazyuk, I.; Ghiaus, C.; Penhouet, D. Optimal temperature control of intermittently heated buildings using Model Predictive Control: Part I—Building modeling. Build. Environ. 2012, 51, 379–387. [Google Scholar] [CrossRef]
- Mateo, F.; Carrasco, J.J.; Sellami, A.; Millán-Giraldo, M.; Domínguez, M.; Soria-Olivas, E. Machine learning methods to forecast temperature in buildings. Expert Syst. Appl. 2013, 40, 1061–1068. [Google Scholar] [CrossRef] [Green Version]
- Moon, J.W.; Chung, M.H.; Song, H.; Lee, S.-Y. Performance of a Predictive Model for Calculating Ascent Time to a Target Temperature. Energies 2016, 9, 1090. [Google Scholar] [CrossRef]
- Prívara, S.; Cigler, J.; Váňa, Z.; Oldewurtel, F.; Sagerschnig, C.; Žáčeková, E. Building modeling as a crucial part for building predictive control. Energy Build. 2013, 56, 8–22. [Google Scholar] [CrossRef]
- Royer, S.; Thil, S.; Talbert, T.; Polit, M. A procedure for modeling buildings and their thermal zones using co-simulation and system identification. Energy Build. 2014, 78, 231–237. [Google Scholar] [CrossRef]
- Hilliard, T.; Swan, L.; Qin, Z. Experimental implementation of whole building MPC with zone based thermal comfort adjustments. Build. Environ. 2017, 125, 326–338. [Google Scholar] [CrossRef]
- Killian, M.; Mayer, B.; Kozek, M. Effective fuzzy black-box modeling for building heating dynamics. Energy Build. 2015, 96, 175–186. [Google Scholar] [CrossRef]
- Andersen, K.K.; Madsen, H.; Hansen, L.H. Modelling the heat dynamics of a building using stochastic differential equations. Energy Build. 2000, 31, 13–24. [Google Scholar] [CrossRef] [Green Version]
- Armstrong, P.R.; Leeb, S.B.; Norford, L.K. Control with building mass-Part I: Thermal response model. Trans. Am. Soc. Heat. Refrig. AIR Cond. Eng. 2006, 112, 449. [Google Scholar]
- Bacher, P.; Madsen, H. Identifying suitable models for the heat dynamics of buildings. Energy Build. 2011, 43, 1511–1522. [Google Scholar] [CrossRef] [Green Version]
- Madsen, H.; Holst, J. Estimation of continuous-time models for the heat dynamics of a building. Energy Build. 1995, 22, 67–79. [Google Scholar] [CrossRef]
- Thavlov, A.; Madsen, H. A non-linear stochastic model for an office building with air infiltration. Int. J. Sustain. Energy Plan. Manag. 2015, 7, 55–66. [Google Scholar] [CrossRef]
- Brastein, O.M.; Perera, D.W.U.; Pfeifer, C.; Skeie, N.-O. Parameter estimation for grey-box models of building thermal behaviour. Energy Build. 2018, 169, 58–68. [Google Scholar] [CrossRef]
- Hsu, D. Identifying key variables and interactions in statistical models of building energy consumption using regularization. Energy 2015, 83, 144–155. [Google Scholar] [CrossRef]
- Olsson Ingvarson, L.; Werner, S. Building mass used as short term heat storage. In Proceedings of the 11th International Symposium on District Heating and Cooling, Reykjavik, Iceland, 31 August–2 September 2008. [Google Scholar]
- Ministry of the Environment. The National Building Code of Finland. Available online: http://www.ym.fi/en-US/Land_use_and_building/Legislation_and_instructions/The_National_Building_Code_of_Finland (accessed on 23 April 2018).
- Petersen, S.; Bundgaard, K.W. The effect of weather forecast uncertainty on a predictive control concept for building systems operation. Appl. Energy 2014, 116, 311–321. [Google Scholar] [CrossRef]
- Bacher, P.; Madsen, H.; Nielsen, H.A.; Perers, B. Short-term heat load forecasting for single family houses. Energy Build. 2013, 65, 101–112. [Google Scholar] [CrossRef] [Green Version]
- Kapetanakis, D.-S.; Mangina, E.; Finn, D.P. Input variable selection for thermal load predictive models of commercial buildings. Energy Build. 2017, 137, 13–26. [Google Scholar] [CrossRef]
Building | Basal Area (m2) | Wall Area (m2) | Window Area (m2) | Floor Area (m2) | Volume (m3) | Construction Year | Building Type |
---|---|---|---|---|---|---|---|
A | 6700 | 4979 | 2418 | 13,400 | 79,781 | 2003–2004 | School |
B | 633 | 1153 | 352 | 1903 | 8300 | 1982 | Apartment building |
C | 1510 | 1274 | 142 | 3020 | 10,250 | 1983 | Municipal hall |
D | 545 | 2000 | 400 | 3703 | 12,400 | 1972 | Apartment building |
E | 993 | 2900 | 510 | 4200 | 15,617 | 2011 | Apartment building |
Building | Measurement Period (mm/dd/yyyy) | Number of Sensor Locations | Range of Measurement Data | ||
---|---|---|---|---|---|
Heating Power (kW) | Outdoor Temperature (°C) | Indoor Temperature (°C) | |||
A | 1/30/2014–2/5/2014 | 6 | 140–790 | −20.8–+0.5 | +16.1–+22.7 |
B | 10/14/2014–10/20/2014 | 1 | 30–53 | −6.5–+3.8 | +14.3–+17.9 |
C | 4/8/2014–4/14/2014 | 5 | 20–70 | −2.7–+9.0 | +19.3–+24.4 |
D | 1/3/2015–1/8/2015 | 8 | 60–160 | −24.0–+0.4 | +20.2–+24.0 |
E | 1/3/2015–1/8/2015 | 6 | 30–160 | −24.0–+0.4 | +21.2–+24.0 |
Year | Walls (W/(m2·K)) | Roof (W/(m2·K)) | Floor (W/(m2·K)) | Building(s) Where Used |
---|---|---|---|---|
1978 | 0.35 | 0.29 | 0.29 | B, C and D |
2003 | 0.25 | 0.16 | 0.20 | A |
2010 | 0.17 | 0.09 | 0.14 | E |
Building | U (kW/K) | C (kJ/K) | ||
---|---|---|---|---|
Light | Medium | Heavy | ||
A | 6.58 | 3,376,800 | 5,306,400 | 7,718,400 |
B | 1.19 | 274,032 | 1,096,128 | 1,507,176 |
C | 1.49 | 761,040 | 1,195,920 | 1,739,520 |
D | 1.50 | 533,232 | 2,132,928 | 2,932,776 |
E | 1.33 | 604,800 | 2,419,200 | 3,326,400 |
Building (Model Structure) | Identification Data | Validation Data | Parameters 1 | |||||||
---|---|---|---|---|---|---|---|---|---|---|
RMSE ± stdRMSE (°C) | corr ± stdcorr | RMSE ± stdRMSE (°C) | corr ± stdcorr | C | a | b | x1 | x2 | x3 | |
A (P2P3) | 0.12 ± 0.03 | 0.96 ± 0.01 | 0.14 ± 0.06 | 0.87 ± 0.07 | L | 0.92 ± 0.01 | 1.65 ± 0.15 | −0.64 ± 0.29 | 0.82 ± 0.31 | - |
B (P2P3P7) | 0.48 ± 0.10 | 0.63 ± 0.14 | 0.42 ± 0.44 | 0.59 ± 0.29 | L | 0.96 ± 0.07 | 0.91 ± 1.53 | −0.15 ± 0.83 | 1.12 ± 1.25 | −0.85 ± 1.26 |
C (P8) | 0.28 ± 0.12 | 0.45 ± 0.16 | 0.23 ± 0.20 | 0.67 ± 0.33 | L | 0.65 ± 0.10 | 7.06 ± 1.98 | - | - | - |
D (P1P2) | 0.21 ± 0.01 | 0.74 ± 0.04 | 0.23 ± 0.06 | 0.68 ± 0.14 | M | 0.79 ± 0.06 | 4.50 ± 1.39 | 2.61 ± 1.92 | 0.06 ± 1.67 | - |
E (P3) | 0.25 ± 0.01 | 0.69 ± 0.11 | 0.27 ± 0.11 | 0.65 ± 0.28 | M | 0.90 ± 0.03 | 2.09 ± 0.56 | - | - | - |
Model Structure (Rank No.) | Identification Data | Validation Data | Parameters 1 | |||||||
---|---|---|---|---|---|---|---|---|---|---|
RMSE ± stdRMSE (°C) | corr ± stdcorr | RMSE ± stdRMSE (°C) | corr ± stdcorr | C | a | b | x1 | x2 | x3 | |
P1P3 (1) | 0.25 ± 0.13 | 0.68 ± 0.18 | 0.27 ± 0.14 | 0.59 ± 0.19 | L | 0.92 ± 0.01 | 1.62 ± 0.12 | −0.32 ± 0.12 | 0.53 ± 0.09 | - |
P3P6 (1) | 0.25 ± 0.13 | 0.69 ± 0.17 | 0.27 ± 0.11 | 0.59 ± 0.12 | L | 0.91 ± 0.02 | 1.86 ± 0.31 | −0.32 ± 0.08 | 0.44 ± 0.07 | - |
P3 (2) | 0.28 ± 0.13 | 0.61 ± 0.17 | 0.28 ± 0.10 | 0.59 ± 0.15 | L | 0.51 ± 0.06 | 10.11 ± 1.29 | - | - | - |
P1P8 (2) | 0.25 ± 0.13 | 0.69 ± 0.18 | 0.27 ± 0.13 | 0.58 ± 0.17 | L | 0.91 ± 0.01 | 1.76 ± 0.21 | −0.09 ± 0.06 | 0.28 ± 0.02 | - |
P1P4P7 (2) | 0.24 ± 0.13 | 0.69 ± 0.18 | 0.29 ± 0.13 | 0.60 ± 0.18 | M | 0.95 ± 0.01 | 1.08 ± 0.11 | 0.13 ± 0.22 | −0.50 ± 0.22 | 0.65 ± 0.20 |
P2P6P7 (2) | 0.24 ± 0.14 | 0.68 ± 0.15 | 0.26 ± 0.10 | 0.57 ± 0.12 | L | 0.80 ± 0.11 | 4.34 ± 2.18 | 0.63 ± 0.22 | −0.85 ± 0.29 | 0.67 ± 0.10 |
P1P4 (3) | 0.24 ± 0.14 | 0.67 ± 0.17 | 0.28 ± 0.15 | 0.58 ± 0.15 | M | 0.88 ± 0.07 | 2.65 ± 1.36 | −0.25 ± 0.14 | 0.70 ± 0.02 | - |
P2P3P6 (3) | 0.25 ± 0.12 | 0.73 ± 0.15 | 0.29 ± 0.12 | 0.59 ± 0.17 | L | 0.92 ± 0.01 | 1.63 ± 0.14 | 0.08 ± 0.25 | −1.04 ± 0.62 | 1.19 ± 0.45 |
P3P7P8 (3) | 0.27 ± 0.13 | 0.69 ± 0.19 | 0.31 ± 0.13 | 0.61 ± 0.12 | L | 0.92 ± 0.01 | 1.69 ± 0.28 | 0.84 ± 0.34 | −1.18 ± 0.33 | 0.54 ± 0.05 |
P1 (17) | 0.28 ± 0.14 | 0.61 ± 0.19 | 0.31 ± 0.15 | 0.46 ± 0.28 | L | 0.56 ± 0.07 | 9.23 ± 1.40 | - | - | - |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hietaharju, P.; Ruusunen, M.; Leiviskä, K. A Dynamic Model for Indoor Temperature Prediction in Buildings. Energies 2018, 11, 1477. https://doi.org/10.3390/en11061477
Hietaharju P, Ruusunen M, Leiviskä K. A Dynamic Model for Indoor Temperature Prediction in Buildings. Energies. 2018; 11(6):1477. https://doi.org/10.3390/en11061477
Chicago/Turabian StyleHietaharju, Petri, Mika Ruusunen, and Kauko Leiviskä. 2018. "A Dynamic Model for Indoor Temperature Prediction in Buildings" Energies 11, no. 6: 1477. https://doi.org/10.3390/en11061477
APA StyleHietaharju, P., Ruusunen, M., & Leiviskä, K. (2018). A Dynamic Model for Indoor Temperature Prediction in Buildings. Energies, 11(6), 1477. https://doi.org/10.3390/en11061477