Prediction of Layered Thermal Conductivity Using Artificial Neural Network in Order to Have Better Design of Ground Source Heat Pump System
Abstract
:1. Introduction
2. Formation Characteristic of the Test Area
3. Project Example 1
3.1. Project Overview of CY01 Study Region
3.2. Artificial Neural Network
3.3. Modeling of Layered Thermal Conductivity with ANN
- (1)
- Input layer
- (2)
- Output layer
- (3)
- Hidden layer
- (4)
- Learning algorithms
- (5)
- Training and testing samples
3.4. Results of ANN Models of Layered Thermal Conductivity
4. Project Example 2
4.1. Project Overview of CY02 Study Region
4.2. Project Application
5. Conclusions
- In the study region, the average temperature is 8.6 °C over the entire range of the ground within 120 m, except for the changing temperature layer, and the geothermal gradient is approximately 3 °C/100 m from 40 m to 120 m.
- The average layered thermal conductivity values obtained by DTRT are 0.979, 1.768, 2.106, 2.042, and 2.313 W/(m·K) for silty clay, mudstone, sandstone, silty mudstone, and fine sandstone, respectively. The corresponding average layered thermal conductivity values obtained by laboratory are 0.520, 1.358, 1.647, 1.837, and 1.915 W/(m·K). These values are caused by the changes in water content and space environment during sampling, especially the groundwater seepage. The measured values of layered thermal conductivity by the laboratory are all less than those by by DTRT.
- Based on the analyses of the test results in the CY01 study region and previous research data, the main factors influencing the conductivity results are water content, porosity, and density, which can be used as input variables for the ANN models.
- BP neural network models are established to predict the layered thermal conductivity for the CY01 study region. The prediction accuracy is measured by R2, RMS, and MAPE. The results show that the average MAPE values are 1.496, 1.879, and 2.006 for the training, validation, and test sets, respectively. The average RMS values of the training, validation, and test sets are 0.0244, 0.0294, and 0.0410, respectively. The average R2 values of the training, validation, and test sets are 0.9692, 0.9448, and 0.9162, respectively. The results demonstrate that the use of ANN for predicting the layered thermal conductivity has high prediction accuracy.
- For the CY01 study region, the absolute errors between the test values by DTRT and the predicted value of the ANN models are all within the interval of [−0.1, 0.1]. The maximum relative error of the training sample is 4.7%, and the average value is 0.7%. The maximum relative error of the test sample is 5.6%, and the average value is 1.1%.
- For the CY02 study region, the discrepancy of the heat exchanging capacity between the standard TRT and the laboratory methods is 20.77% and 17.97% for ZK05 and ZK06, respectively. The discrepancy of the heat exchanging capacity between the standard TRT and the ANN models is 5.43% and 6.37% for ZK05 and ZK06, respectively. The results demonstrate that the proposed method of ANN is feasible, and the results are satisfactory.
- Compared with DTRT, the prediction model of ANN is more economical and time-saving. Furthermore, the model has higher accuracy in predicting sites with similar formation conditions. The method can be extended to other regions with different strata. As for the next step, we will continue to explore the suitability of ANN for predicting the layered thermal conductivity under other lithologic conditions.
Author Contributions
Acknowledgments
Conflicts of Interest
Nomenclature
the weight between the input and hidden neurons | |
the weight between the hidden and output neurons | |
the value of the input | |
the value of the output for hidden nodes | |
the value of the output for output nodes | |
the number of neurons of the output layer | |
the bias weight between the input and hidden neurons | |
the bias weight between the hidden and output neurons | |
the prediction error | |
the expected value | |
the learning rate | |
the testing value | |
he calculated value, W/m·K | |
the mean of the calculated value, W/m·K | |
the number of neurons of the hidden layer | |
the number of inputs of neuron | |
the number of samples | |
the heat exchanging capacity, W/K | |
the total depth of the borehole, m | |
the thermal conductivity, W/m·K | |
the uniform predicted thermal conductivity, W/m·K | |
the predicted thermal conductivity corresponding to each rock and soil layer, respectively, W/m·K | |
the depths of each rock and soil layer after generalization, m | |
the root mean squared error | |
the coefficient of determination | |
mean absolute percentage error |
Appendix A
Sample Name | Sample Depth (m) | Physical Properties | Thermal Physical Properties | ||||
---|---|---|---|---|---|---|---|
Water Content % | Density kg/m3 | Porosity | Thermal Conductivity W/(m·K) | Mass Specific Heat Capacity kJ/(kg·K) | Thermal Diffusivity 10−6 m2/s | ||
silty clay | 2.0–2.2 | 22.8 | 2070 | 0.987 | 0.29 | 1.264 | 0.116 |
silty clay | 4.0–4.2 | 24 | 2060 | 0.921 | 0.28 | 1.212 | 0.113 |
silty clay | 6.0–6.2 | 27.3 | 2040 | 0.851 | 0.37 | 1.203 | 0.147 |
silty clay | 8.0–8.2 | 21.9 | 2020 | 0.729 | 0.41 | 1.145 | 0.168 |
silty clay | 10.0–10.2 | 23 | 2000 | 0.756 | 0.65 | 1.056 | 0.272 |
silty clay | 12.0–12.2 | 25.2 | 1920 | 0.699 | 0.54 | 1.099 | 0.237 |
silty clay | 14.0–14.2 | 24.6 | 1850 | 0.839 | 0.61 | 1.045 | 0.512 |
silty clay | 16.0–16.2 | 20 | 1860 | 0.671 | 0.69 | 1.023 | 0.377 |
silty clay | 18.0–18.2 | 21.9 | 1850 | 0.779 | 0.85 | 1.073 | 0.609 |
mudstone | 20.0–20.2 | 19.2 | 1920 | 0.648 | 1.126 | 1.097 | 0.641 |
mudstone | 22.0–22.2 | 18.1 | 1970 | 0.509 | 1.224 | 0.977 | 0.651 |
mudstone | 24.0–24.2 | 13.9 | 1990 | 0.451 | 1.645 | 1.054 | 1.563 |
mudstone | 26.0–26.2 | 13 | 1970 | 0.303 | 1.328 | 0.983 | 0.723 |
mudstone | 28.0–28.2 | 15.2 | 1940 | 0.384 | 1.448 | 0.986 | 0.837 |
mudstone | 30.0–30.2 | 14.8 | 1990 | 0.398 | 1.323 | 1.373 | 0.738 |
mudstone | 32.0–32.2 | 11.9 | 2040 | 0.283 | 1.222 | 1.023 | 0.694 |
mudstone | 34.0–34.2 | 13.1 | 2010 | 0.271 | 1.345 | 1.035 | 0.545 |
mudstone | 36.0–36.2 | 11.9 | 2100 | 0.246 | 1.453 | 0.971 | 0.779 |
mudstone | 38.0–38.2 | 15.7 | 2080 | 0.283 | 1.355 | 0.769 | 0.709 |
mudstone | 40.0–40.2 | 17.5 | 2000 | 0.359 | 1.411 | 0.993 | 0.786 |
mudstone | 42.0–42.2 | 15.1 | 1980 | 0.368 | 1.507 | 0.964 | 0.904 |
mudstone | 44.0–44.2 | 14.1 | 1980 | 0.371 | 1.452 | 0.694 | 0.647 |
mudstone | 46.0–46.2 | 18.6 | 1960 | 0.487 | 1.447 | 0.973 | 0.828 |
mudstone | 48.0–48.2 | 18.8 | 2050 | 0.403 | 1.471 | 0.976 | 0.753 |
sandstone | 50.0–50.2 | 22.5 | 2150 | 0.435 | 1.707 | 1.015 | 0.931 |
sandstone | 52.0–52.2 | 19.7 | 2160 | 0.521 | 1.702 | 1.304 | 0.957 |
sandstone | 54.0–54.2 | 18.4 | 2090 | 0.409 | 1.813 | 1.036 | 0.623 |
sandstone | 56.0–56.2 | 19.6 | 2150 | 0.386 | 1.655 | 1.075 | 0.752 |
sandstone | 58.0–58.2 | 18.7 | 2100 | 0.468 | 1.611 | 0.975 | 0.896 |
sandstone | 60.0–60.2 | 19.1 | 2180 | 0.481 | 1.507 | 0.942 | 0.695 |
mudstone | 62.0–62.2 | 15.9 | 2110 | 0.445 | 1.504 | 0.955 | 0.835 |
mudstone | 64.0–64.2 | 10.8 | 2000 | 0.387 | 1.651 | 1.073 | 0.681 |
mudstone | 66.0–66.2 | 8.6 | 1990 | 0.306 | 1.427 | 0.968 | 0.494 |
mudstone | 68.0–68.2 | 9.6 | 2010 | 0.354 | 1.495 | 0.939 | 0.719 |
mudstone | 70.0–70.2 | 10.7 | 1995 | 0.321 | 1.646 | 0.873 | 0.905 |
mudstone | 72.0–72.2 | 8.1 | 2040 | 0.346 | 1.563 | 0.861 | 0.780 |
mudstone | 74.0–74.2 | 10.8 | 2090 | 0.255 | 1.575 | 1.015 | 0.678 |
mudstone | 76.0–76.2 | 8.4 | 2060 | 0.346 | 1.75 | 1.092 | 0.892 |
mudstone | 78.0–78.2 | 9.6 | 2050 | 0.300 | 1.661 | 0.872 | 1.026 |
mudstone | 80.0–80.2 | 10.4 | 2095 | 0.401 | 1.669 | 1.053 | 0.883 |
mudstone | 82.0–82.2 | 11.2 | 2075 | 0.261 | 1.507 | 0.835 | 0.461 |
mudstone | 84.0–84.2 | 9.9 | 2085 | 0.316 | 1.52 | 0.964 | 0.603 |
sandstone | 86.0–86.2 | 12.5 | 2000 | 0.300 | 1.857 | 0.835 | 0.833 |
sandstone | 88.0–88.2 | 12.8 | 1995 | 0.351 | 1.601 | 0.852 | 0.851 |
sandstone | 90.0–90.2 | 8.1 | 2025 | 0.332 | 1.548 | 0.955 | 0.737 |
mudstone | 92.0–92.2 | 12 | 2145 | 0.398 | 1.493 | 1.156 | 0.714 |
mudstone | 94.0–94.2 | 13.1 | 2210 | 0.425 | 1.687 | 1.056 | 0.941 |
sandstone | 96.0–96.2 | 15.3 | 2240 | 0.445 | 1.432 | 1.038 | 0.787 |
mudstone | 98.0–98.2 | 16.3 | 2150 | 0.451 | 1.607 | 1.202 | 0.810 |
mudstone | 100.0–100.2 | 13.1 | 2220 | 0.439 | 1.72 | 0.932 | 0.929 |
sandstone | 102.0–102.2 | 14.3 | 2200 | 0.513 | 1.899 | 1.125 | 0.984 |
sandstone | 104.0–104.2 | 15.4 | 2260 | 0.507 | 1.689 | 0.78 | 0.902 |
sandstone | 106.0–106.2 | 12.9 | 2150 | 0.498 | 1.627 | 1.134 | 0.971 |
sandstone | 108.0–108.2 | 12.5 | 2250 | 0.376 | 1.807 | 0.922 | 0.932 |
sandstone | 110.0–110.2 | 11.9 | 2230 | 0.437 | 1.996 | 1.064 | 0.732 |
sandstone | 112.0–112.2 | 16.8 | 2140 | 0.399 | 2.137 | 0.954 | 1.397 |
sandstone | 114.0–114.2 | 16.2 | 2260 | 0.499 | 1.709 | 0.943 | 0.794 |
sandstone | 116.0–116.2 | 18.6 | 2220 | 0.419 | 1.602 | 0.978 | 0.600 |
sandstone | 118.0–118.2 | 11.2 | 2230 | 0.361 | 1.661 | 0.83 | 0.663 |
sandstone | 120.0–120.2 | 11.5 | 2290 | 0.432 | 1.432 | 0.989 | 0.558 |
References
- Mensah, K.; Jang, Y.S.; Choi, J.M. Assessment of design strategies in a ground source heat pump system. Energy Build. 2017, 138, 301–308. [Google Scholar] [CrossRef]
- Soriano, G.; Espinoza, T.; Villanueva, R.; Gonzalez, I.; Montero, A.; Cornejo, M.; Lopez, K. Thermal geological model of the city of Guayaquil, Ecuador. Geothermics 2017, 66, 101–109. [Google Scholar] [CrossRef]
- Guo, M.; Diao, N.; Man, Y.; Fang, Z. Research and development of the hybrid ground–coupled heat pump technology in China. Renew. Energy 2016, 87, 1033–1044. [Google Scholar] [CrossRef]
- Franco, A.; Moffat, R.; Toledo, M.; Herrera, P. Numerical sensitivity analysis of thermal response tests (TRT) in energy piles. Renew. Energy 2016, 86, 985–992. [Google Scholar] [CrossRef]
- Dehkordi, S.E.; Schincariol, R.A.; Reitsma, S. Thermal performance of a tight borehole heat exchanger. Renew. Energy 2015, 83, 698–704. [Google Scholar] [CrossRef]
- Zheng, W.; Zhang, H.; You, S.; Ye, T. The Thermal Characteristics of a Helical Coil Heat Exchanger for Seawater-source Heat Pump in Cold Winter. Procedia Eng. 2016, 146, 549–558. [Google Scholar] [CrossRef]
- Kharseh, M.; Al-Khawaja, M.; Suleiman, M.T. Potential of ground source heat pump systems in cooling-dominated environments: Residential buildings. Geothermics 2015, 57, 104–110. [Google Scholar] [CrossRef]
- Herrera, C.; Nellis, G.; Reindl, D.; Klein, S.; Tinjum, J.M.; McDaniel, A. Use of a fiber optic distributed temperature sensing system for thermal response testing of ground-coupled heat exchangers. Geothermics 2018, 71, 331–338. [Google Scholar] [CrossRef]
- Zhang, Y.J.; Zhang, J.N.; Yu, Z.W.; Guo, L.L.; Hao, S.R. Analysis of the influence of different groundwater flow conditions on the thermal response test in Tangshan. Environ. Earth Sci. 2016, 75, 1444. [Google Scholar] [CrossRef]
- Sakata, Y.; Katsura, T.; Nagano, K. Multilayer-concept thermal response test: Measurement and analysis methodologies with a case study. Geothermics 2018, 71, 178–186. [Google Scholar] [CrossRef]
- Gao, P.; Zhang, Y.J.; Yu, Z.W.; Fang, J.T.; Zhang, Q. Correlation study of shallow layer rock and soil thermal physical tests in laboratory and field. Geothermics 2015, 53, 508–516. [Google Scholar] [CrossRef]
- Zhang, Y.J.; Gao, P.; Yu, Z.W.; Fang, J.T.; Li, C. Characteristics of ground thermal properties in Harbin, China. Energy Build. 2014, 69, 251–259. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, Y.J.; Gao, P.; Yu, Z.W. Effect of natural cold source on groundwater source heat pump according to laboratory and field geotechnical thermal physical tests. Energy Build. 2014, 84, 557–566. [Google Scholar] [CrossRef]
- Bertermann, D.; Klug, H.; Morper-Busch, L. A pan-European planning basis for estimating the very shallow geothermal energy potentials. Renew. Energy 2015, 75, 335–347. [Google Scholar] [CrossRef]
- Zhang, C.X.; Guo, Z.J.; Liu, Y.F.; Cong, X.C.; Peng, D.G. A review on thermal response test of ground-coupled heat pump systems. Renew. Sustain. Energy Rev. 2014, 40, 851–867. [Google Scholar] [CrossRef]
- Mogensen, P. Fluid to duct wall heat transfer in duct system heat storages. In Proceedings of the International Conference on Subsurface Heat Storage in Theory and Practice, Stockholm, Sweden, 6–8 June 1983; pp. 1652–6571. [Google Scholar]
- Ingersoll, L.R.; Plass, H.J. Theory of the ground pipe heat source for the heat pump. Heat. Pip. Air Cond. 1948, 20, 119–122. [Google Scholar]
- Cao, D.; Shia, B.; Ii, S.P.L.; Gong, X.; Zhu, H.H.; Wei, G.Q.; Yang, L.M. Investigation of the influence of soil moisture on thermal response tests using active distributed temperature sensing (A–DTS) technology. Energy Build. 2018, 173, 239–251. [Google Scholar] [CrossRef]
- Lee, C.K. Effects of multiple ground layers on thermal response test analysis and ground-source heat pump simulation. Appl. Energy 2011, 88, 4405–4410. [Google Scholar] [CrossRef]
- Fujii, H.; Okubo, H.; Itoi, R. Thermal response tests using optical fiber thermometers. Trans. Geotherm. Resour. Counc. 2006, 30, 545–551. [Google Scholar]
- Fujii, H.; Okubo, H.; Nishi, K.; Itoi, R.; Ohyama, K.; Shibata, K. An improved thermal response test for U-tube ground heat exchanger based on optical fiber thermometers. Geothermics 2009, 38, 399–406. [Google Scholar] [CrossRef]
- Acuña, J.; Mogensen, P.; Palm, B. Distributed thermal response test on a u-pipe borehole heat exchanger. Appl. Energy 2009, 109. [Google Scholar] [CrossRef]
- Zhang, Y.J.; Yu, Z.W.; Huang, R.; Wu, G.; Hu, J.H. Measurement of thermal conductivity and temperature effect of geotechnical materials. Chin. J. Geotech. Eng. 2009, 31, 213–217. (In Chinese) [Google Scholar]
- Cho, W.J.; Kwon, S.; Choi, J.W. The thermal conductivity for granite with various water contents. Eng. Geol. 2009, 107, 167–171. [Google Scholar] [CrossRef]
- Cho, W.J.; Kwon, S. Estimation of the thermal properties for partially saturated granite. Eng. Geol. 2010, 115, 132–138. [Google Scholar] [CrossRef]
- Alishaev, M.G.; Abdulagatov, I.M.; Abdulagatova, Z.Z. Effective thermal conductivity of fluid-saturated rocks: Experiment and modeling. Eng. Geol. 2012, 135–136, 24–39. [Google Scholar] [CrossRef]
- Zhang, Y.J.; Hao, S.R.; Yu, Z.W.; Fang, J.T.; Zhang, J.N.; Yu, X.M. Comparison of test methods for shallow layered rock thermal conductivity between in situ distributed thermal response tests and laboratory test based on drilling in northeast China. Energy Build. 2018, 173, 634–648. [Google Scholar] [CrossRef]
- Arcaklioğlu, E.; Erişen, A.; Yilmaz, R. Artificial neural network analysis of heat pumps using refrigerant mixtures. Energy Convers. Manag. 2004, 45, 1917–1929. [Google Scholar] [CrossRef]
- Kumar, R.; Aggarwal, R.K.; Sharma, J.D. Energy analysis of a building using artificial neural network: A review. Energy Build. 2013, 65, 352–358. [Google Scholar] [CrossRef]
- Esen, H.; Inalli, M.; Sengur, A.; Esen, M. Modelling a ground-coupled heat pump system using adaptive neuro-fuzzy inference systems. Int. J. Refrig. 2008, 31, 65–74. [Google Scholar] [CrossRef]
- Esen, H.; Inalli, M.; Sengur, A.; Esen, M. Modeling a ground-coupled heat pump system by a support vector machine. Renew. Energy 2008, 33, 1814–1823. [Google Scholar] [CrossRef]
- Esen, H.; Inalli, M.; Sengur, A.; Esen, M. Performance prediction of a groundcoupled heat pump system using artificial neural networks. Expert Syst. Appl. 2008, 35, 1940–1948. [Google Scholar] [CrossRef]
- Esen, H.; Inalli, M. Modelling of a vertical ground coupled heat pump system by using artificial neural networks. Expert Syst. Appl. 2009, 36, 10229–10238. [Google Scholar] [CrossRef]
- Fannou, J.L.C.; Rousseau, C.; Lamarche, L.; Kajl, S. Modeling of a direct expansion geothermal heat pump using artificialneural networks. Energy Build. 2014, 81, 381–390. [Google Scholar] [CrossRef]
- Gang, W.J.; Wang, J.B. Predictive ANN models of ground heat exchanger for the control. Appl. Energy 2013, 112, 1146–1153. [Google Scholar] [CrossRef]
- Gang, W.J.; Wang, J.B.; Wang, S.W. Performance analysis of hybrid ground source heat pump systems based on ANN predictive control of hybrid ground source heat pump systems. Appl. Energy 2014, 136, 1138–1144. [Google Scholar] [CrossRef]
- Sang, K.P.; Moon, H.J.; Min, K.C.; Hwang, C.; Kim, S. Application of a multiple linear regression and an artificial neural network model for the heating performance analysis and hourly prediction of a large-scale ground source heat pump system. Energy Build. 2018, 165, 206–215. [Google Scholar]
- Fu, Z.Y.; Su, X.J. The suitability estimation and the prospect analysis of the development and utilization of buried-pipe ground source heat pump system in Changchun. Jilin Geol. 2017, 36, 39–41+47. (In Chinese) [Google Scholar]
- Popov, Y.A.; Berezin, V.; Semionov, V.G.; Korosteliov, V.M. Complex detail investigations of the thermal properties of rocks on the basis of a moving point source. Izv. Phys. Solid Earth 1985, 21, 64–70. [Google Scholar]
- Kallio, J.; Leppäharju, N.; Martinkauppi, I.; Nousiainen, M. Geoenergy research and its utilization in Finland. Geol. Surv. Finl. 2011, 49, 179–185. [Google Scholar]
- Grattan, K.T.V.; Sun, T. Fiber optic sensor technology: An overview. Sens. Actuators A Phys. 2000, 82, 40–61. [Google Scholar] [CrossRef]
- Abu-Hamdeh, H.N. Thermal properties of soils as affected by density and water content. Biosyst. Eng. 2003, 86, 97–102. [Google Scholar] [CrossRef]
- Abuel-Naga, H.; Bergado, D.T.; Bouazza, A.; Pender, M. Thermal conductivity of soft Bankok clay from laboratory and field measurements. Eng. Geol. 2009, 105, 211–219. [Google Scholar] [CrossRef]
- Haykin, S. Neural Networks: A Comprehensive Foundation, 2nd ed.; Pearson Education: Cranbury, NJ, USA, 1998. [Google Scholar]
- Bowden, G.J.; Dandy, G.C.; Maier, H.R. Input determination for neural network models in water resources applications. Part 1—Background and Methodology. J. Hydrol. 2005, 301, 93–107. [Google Scholar] [CrossRef]
Name | Training and Validation Samples | Testing Samples |
---|---|---|
Case 1 | silty clay of ZK01, ZK02, ZK03 borehole | silty clay of ZK04 borehole |
Case 2 | mudstone of ZK01, ZK02, ZK03 borehole | mudstone of ZK04 borehole |
Case 3 | sandstone of ZK01, ZK02, ZK03 borehole | sandstone of ZK04 borehole |
Case 4 | silty mudstone of ZK01, ZK02, ZK03 borehole | silty mudstone of ZK04 borehole |
Case 5 | fine sandstone of ZK01, ZK02, ZK03 borehole | fine sandstone of ZK04 borehole |
RMS | R2 | MAPE | |||||||
---|---|---|---|---|---|---|---|---|---|
Train | Validation | Test | Train | Validation | Test | Train | Validation | Test | |
Case 1 | 0.028 | 0.029 | 0.039 | 0.99 | 0.987 | 0.938 | 1.683 | 2.371 | 2.437 |
Case 2 | 0.018 | 0.031 | 0.042 | 0.925 | 0.913 | 0.902 | 1.637 | 2.177 | 2.211 |
Case 3 | 0.026 | 0.026 | 0.038 | 0.988 | 0.963 | 0.923 | 1.158 | 1.358 | 1.563 |
Case 4 | 0.025 | 0.028 | 0.045 | 0.948 | 0.906 | 0.887 | 1.436 | 1.611 | 1.804 |
Case 5 | 0.025 | 0.033 | 0.041 | 0.935 | 0.905 | 0.898 | 1.567 | 1.878 | 2.013 |
Borehole | ZK05 | ZK06 |
---|---|---|
Pipe depth (m) | 120 | |
Type | single-U | |
Initial temperature (°C) | 8.3 | |
Heating power (W) | 5600 | |
Thermal conductivity (W/(m·K)) | 1.786 | 1.742 |
Volumetric specific heat capacity (106 J/(m3·K)) | 1.097 | 1.253 |
Borehole thermal resistance ((m·K)/W) | 0.116 | 0.104 |
Thermal diffusivity (10−6 m2/s) | 1.628 | 1.511 |
Layer Type | Thermal Conductivity of ZK05 (W/m·K) | Thermal Conductivity of ZK06 (W/m·K) | ||||
---|---|---|---|---|---|---|
ANN | Laboratory | TRT | ANN | Laboratory | TRT | |
silty clay | 1.060 | 0.582 | 1.786 | 1.016 | 0.502 | 1.742 |
mudstone | 1.795 | 1.393 | 1.780 | 1.445 | ||
sandstone | 2.090 | 1.602 | 1.994 | 1.591 | ||
fine sandstone | 1.982 | 1.598 | 1.933 | 1.667 | ||
silty mudstone | 2.306 | 1.715 | 2.287 | 1.672 | ||
Heat exchanging capacity (W/K) | 226.0 | 169.8 | 214.3 | 222.4 | 171.5 | 209.0 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Zhou, L.; Hu, Z.; Yu, Z.; Hao, S.; Lei, Z.; Xie, Y. Prediction of Layered Thermal Conductivity Using Artificial Neural Network in Order to Have Better Design of Ground Source Heat Pump System. Energies 2018, 11, 1896. https://doi.org/10.3390/en11071896
Zhang Y, Zhou L, Hu Z, Yu Z, Hao S, Lei Z, Xie Y. Prediction of Layered Thermal Conductivity Using Artificial Neural Network in Order to Have Better Design of Ground Source Heat Pump System. Energies. 2018; 11(7):1896. https://doi.org/10.3390/en11071896
Chicago/Turabian StyleZhang, Yanjun, Ling Zhou, Zhongjun Hu, Ziwang Yu, Shuren Hao, Zhihong Lei, and Yangyang Xie. 2018. "Prediction of Layered Thermal Conductivity Using Artificial Neural Network in Order to Have Better Design of Ground Source Heat Pump System" Energies 11, no. 7: 1896. https://doi.org/10.3390/en11071896
APA StyleZhang, Y., Zhou, L., Hu, Z., Yu, Z., Hao, S., Lei, Z., & Xie, Y. (2018). Prediction of Layered Thermal Conductivity Using Artificial Neural Network in Order to Have Better Design of Ground Source Heat Pump System. Energies, 11(7), 1896. https://doi.org/10.3390/en11071896